Section 3.2 Measures of Central Tendency

Size: px
Start display at page:

Download "Section 3.2 Measures of Central Tendency"

Transcription

1 Section 3.2 Measures of Central Tendency 1 of 149

2 Section 3.2 Objectives Determine the mean, median, and mode of a population and of a sample Determine the weighted mean of a data set and the mean of a frequency distribution Describe the shape of a distribution as symmetric, uniform, or skewed and compare the mean and median for each 2 of 149

3 Measures of Central Tendency Measure of central tendency A value that represents a typical, or central, entry of a data set. Most common measures of central tendency: Mean Median Mode 3 of 149

4 Measure of Central Tendency: Mean Mean (average) The sum of all the data entries divided by the number of entries. Sigma notation: Σx = add all of the data entries (x) in the data set. Population mean: x µ = Σ N Sample mean: x = Σx n 4 of 149

5 Example: Finding a Sample Mean The prices (in dollars) for a sample of round-trip flights from Chicago, Illinois to Cancun, Mexico are listed. What is the mean price of the flights? of 149

6 Solution: Finding a Sample Mean The sum of the flight prices is Σx = = 3695 To find the mean price, divide the sum of the prices by the number of prices in the sample x = Σx n = The mean price of the flights is about $ of 149

7 Measure of Central Tendency: Median Median The value that lies in the middle of the data when the data set is ordered. Measures the center of an ordered data set by dividing it into two equal parts. If the data set has an odd number of entries: median is the middle data entry. even number of entries: median is the mean of the two middle data entries. 7 of 149

8 Example: Finding the Median The prices (in dollars) for a sample of roundtrip flights from Chicago, Illinois to Cancun, Mexico are listed. Find the median of the flight prices of 149

9 Solution: Finding the Median First order the data There are seven entries (an odd number), the median is the middle, or fourth, data entry. The median price of the flights is $ of 149

10 Example: Finding the Median The flight priced at $432 is no longer available. What is the median price of the remaining flights? of 149

11 Solution: Finding the Median First order the data There are six entries (an even number), the median is the mean of the two middle entries Median = = The median price of the flights is $ of 149

12 Measure of Central Tendency: Mode Mode The data entry that occurs with the greatest frequency. A data set can have one mode, more than one mode, or no mode. If no entry is repeated the data set has no mode. If two entries occur with the same greatest frequency, each entry is a mode (bimodal). 12 of 149

13 Example: Finding the Mode The prices (in dollars) for a sample of roundtrip flights from Chicago, Illinois to Cancun, Mexico are listed. Find the mode of the flight prices of 149

14 Solution: Finding the Mode Ordering the data helps to find the mode The entry of 397 occurs twice, whereas the other data entries occur only once. The mode of the flight prices is $ of 149

15 Example: Finding the Mode At a political debate a sample of audience members was asked to name the political party to which they belong. Their responses are shown in the table. What is the mode of the responses? Political Party Frequency, f Democrat 34 Republican 56 Other 21 Did not respond 9 15 of 149

16 Solution: Finding the Mode Political Party Frequency, f Democrat 34 Republican 56 Other 21 Did not respond 9 The mode is Republican (the response occurring with the greatest frequency). In this sample there were more Republicans than people of any other single affiliation. 16 of 149

17 Comparing the Mean, Median, and Mode All three measures describe a typical entry of a data set. Advantage of using the mean: The mean is a reliable measure because it takes into account every entry of a data set. Disadvantage of using the mean: Greatly affected by outliers (a data entry that is far removed from the other entries in the data set). 17 of 149

18 Example: Comparing the Mean, Median, and Mode Find the mean, median, and mode of the sample ages of a class shown. Which measure of central tendency best describes a typical entry of this data set? Are there any outliers? Ages in a class of 149

19 Solution: Comparing the Mean, Median, and Mode Ages in a class Mean: Median: x = Σx = n = 21.5 years years Mode: 20 years (the entry occurring with the greatest frequency) 19 of 149

20 Solution: Comparing the Mean, Median, and Mode Mean 23.8 years Median = 21.5 years Mode = 20 years The mean takes every entry into account, but is influenced by the outlier of 65. The median also takes every entry into account, and it is not affected by the outlier. In this case the mode exists, but it doesn't appear to represent a typical entry. 20 of 149

21 Solution: Comparing the Mean, Median, and Mode Sometimes a graphical comparison can help you decide which measure of central tendency best represents a data set. In this case, it appears that the median best describes the data set. 21 of 149

22 Weighted Mean Weighted Mean The mean of a data set whose entries have varying weights. x = Σ( x w) Σw where w is the weight of each entry x 22 of 149

23 Example: Finding a Weighted Mean You are taking a class in which your grade is determined from five sources: 50% from your test mean, 15% from your midterm, 20% from your final exam, 10% from your computer lab work, and 5% from your homework. Your scores are 86 (test mean), 96 (midterm), 82 (final exam), 98 (computer lab), and 100 (homework). What is the weighted mean of your scores? If the minimum average for an A is 90, did you get an A? 23 of 149

24 Solution: Finding a Weighted Mean Source Score, x Weight, w x w Test Mean (0.50)= 43.0 Midterm (0.15) = 14.4 Final Exam (0.20) = 16.4 Computer Lab (0.10) = 9.8 Homework (0.05) = 5.0 Σw = 1 Σ(x w) = 88.6 Σ( x w) 88.6 x = = = 88.6 Σw 1 Your weighted mean for the course is You did not get an A. 24 of 149

25 Mean of Grouped Data Mean of a Frequency Distribution Approximated by Σ( x f) x = n = Σf n where x and f are the midpoints and frequencies of a class, respectively 25 of 149

26 Finding the Mean of a Frequency Distribution In Words 1. Find the midpoint of each class. x = In Symbols (lower limit)+(upper limit) 2 2. Find the sum of the products of the midpoints and the frequencies. Σ( x f) 3. Find the sum of the frequencies. n = Σf 4. Find the mean of the frequency distribution. x = Σ( x f) n 26 of 149

27 Example: Find the Mean of a Frequency Distribution Use the frequency distribution to approximate the mean number of minutes that a sample of Internet subscribers spent online during their most recent session. Class Midpoint Frequency, f of 149

28 Solution: Find the Mean of a Frequency Distribution Class Midpoint, x Frequency, f (x f) = = = = = = = n = 50 Σ(x f) = x Σ( x f) 2089 = = n minutes 28 of 149

29 The Shape of Distributions Symmetric Distribution A vertical line can be drawn through the middle of a graph of the distribution and the resulting halves are approximately mirror images. 29 of 149

30 The Shape of Distributions Uniform Distribution (rectangular) All entries or classes in the distribution have equal or approximately equal frequencies. Symmetric. 30 of 149

31 The Shape of Distributions Skewed Left Distribution (negatively skewed) The tail of the graph elongates more to the left. The mean is to the left of the median. 31 of 149

32 The Shape of Distributions Skewed Right Distribution (positively skewed) The tail of the graph elongates more to the right. The mean is to the right of the median. 32 of 149

33 Section 3.3 Summary Determined the mean, median, and mode of a population and of a sample Determined the weighted mean of a data set and the mean of a frequency distribution Described the shape of a distribution as symmetric, uniform, or skewed and compared the mean and median for each 33 of 149

34 Section 3.3 Measures of Variation 34 of 149

35 Section 3.3 Objectives Determine the range of a data set Determine the variance and standard deviation of a population and of a sample Use the Empirical Rule and Chebychev s Theorem to interpret standard deviation Approximate the sample standard deviation for grouped data 35 of 149

36 Range Range The difference between the maximum and minimum data entries in the set. The data must be quantitative. Range = (Max. data entry) (Min. data entry) 36 of 149

37 Example: Finding the Range A corporation hired 10 graduates. The starting salaries for each graduate are shown. Find the range of the starting salaries. Starting salaries (1000s of dollars) of 149

38 Solution: Finding the Range Ordering the data helps to find the least and greatest salaries minimum Range = (Max. salary) (Min. salary) = = 10 maximum The range of starting salaries is 10 or $10, of 149

39 Deviation, Variance, and Standard Deviation Deviation The difference between the data entry, x, and the mean of the data set. Population data set: Deviation of x = x μ Sample data set: Deviation of x = x x 39 of 149

40 Example: Finding the Deviation A corporation hired 10 graduates. The starting salaries for each graduate are shown. Find the deviation of the starting salaries. Starting salaries (1000s of dollars) Solution: First determine the mean starting salary. x 415 µ = Σ = = 41.5 N of 149

41 Solution: Finding the Deviation Determine the deviation for each data entry. Salary ($1000s), x Deviation ($1000s) x μ = = = = = = = = = = 0.5 Σx = 415 Σ(x μ) = 0 41 of 149

42 Deviation, Variance, and Standard Deviation Population Variance σ 2 Σ( x µ ) = N 2 Sum of squares, SS x Population Standard Deviation σ 2 Σ( x µ ) = σ = N 2 42 of 149

43 Finding the Population Variance & Standard Deviation In Words 1. Find the mean of the population data set. 2. Find the deviation of each entry. 3. Square each deviation. 4. Add to get the sum of squares. In Symbols x µ = Σ N x μ (x μ) 2 SS x = Σ(x μ) 2 43 of 149

44 Finding the Population Variance & Standard Deviation In Words 5. Divide by N to get the population variance. 6. Find the square root of the variance to get the population standard deviation. 2 Σ( x µ ) σ = N σ = In Symbols Σ( x µ ) N of 149

45 Example: Finding the Population Standard Deviation A corporation hired 10 graduates. The starting salaries for each graduate are shown. Find the population variance and standard deviation of the starting salaries. Starting salaries (1000s of dollars) Recall μ = of 149

46 Solution: Finding the Population Standard Deviation Determine SS x N = 10 Salary, x Deviation: x μ Squares: (x μ) = 0.5 ( 0.5) 2 = = 3.5 ( 3.5) 2 = = 2.5 ( 2.5) 2 = = 3.5 (3.5) 2 = = 5.5 (5.5) 2 = = 0.5 ( 0.5) 2 = = 2.5 (2.5) 2 = = 0.5 ( 0.5) 2 = = 4.5 ( 4.5) 2 = = 0.5 (0.5) 2 = 0.25 Σ(x μ) = 0 SS x = of 149

47 Solution: Finding the Population Standard Deviation Population Variance σ 2 2 Σ( x µ ) 88.5 = = N Population Standard Deviation σ σ = = The population standard deviation is about 3.0, or $ of 149

48 Deviation, Variance, and Standard Deviation Sample Variance s 2 Σ( x x) = n 1 Sample Standard Deviation 2 s 2 Σ( x x) = s = n of 149

49 Finding the Sample Variance & Standard Deviation In Words 1. Find the mean of the sample data set. 2. Find the deviation of each entry. 3. Square each deviation. 4. Add to get the sum of squares. In Symbols x = Σx n SS =Σ( x x) x x x ( x x) of 149

50 Finding the Sample Variance & Standard Deviation In Words 5. Divide by n 1 to get the sample variance. 6. Find the square root of the variance to get the sample standard deviation. In Symbols 2 Σ( x x) s = n 1 s = 2 Σ( x x) n of 149

51 Example: Finding the Sample Standard Deviation The starting salaries are for the Chicago branches of a corporation. The corporation has several other branches, and you plan to use the starting salaries of the Chicago branches to estimate the starting salaries for the larger population. Find the sample standard deviation of the starting salaries. Starting salaries (1000s of dollars) of 149

52 Solution: Finding the Sample Standard Deviation Determine SS x n = 10 Salary, x Deviation: x μ Squares: (x μ) = 0.5 ( 0.5) 2 = = 3.5 ( 3.5) 2 = = 2.5 ( 2.5) 2 = = 3.5 (3.5) 2 = = 5.5 (5.5) 2 = = 0.5 ( 0.5) 2 = = 2.5 (2.5) 2 = = 0.5 ( 0.5) 2 = = 4.5 ( 4.5) 2 = = 0.5 (0.5) 2 = 0.25 Σ(x μ) = 0 SS x = of 149

53 Solution: Finding the Sample Standard Deviation Sample Variance 2 2 Σ( x x) 88.5 s = = n Sample Standard Deviation s = s = The sample standard deviation is about 3.1, or $ of 149

54 Example: Using Technology to Find the Standard Deviation Sample office rental rates (in dollars per square foot per year) for Miami s central business district are shown in the table. Use a calculator or a computer to find the mean rental rate and the sample standard deviation. (Adapted from: Cushman & Wakefield Inc.) Office Rental Rates of 149

55 Solution: Using Technology to Find the Standard Deviation Sample Mean Sample Standard Deviation 55 of 149

56 Interpreting Standard Deviation Standard deviation is a measure of the typical amount an entry deviates from the mean. The more the entries are spread out, the greater the standard deviation. 56 of 149

57 Interpreting Standard Deviation: Empirical Rule ( Rule) For data with a (symmetric) bell-shaped distribution, the standard deviation has the following characteristics: About 68% of the data lie within one standard deviation of the mean. About 95% of the data lie within two standard deviations of the mean. About 99.7% of the data lie within three standard deviations of the mean. 57 of 149

58 Interpreting Standard Deviation: Empirical Rule ( Rule) 99.7% within 3 standard deviations 95% within 2 standard deviations 68% within 1 standard deviation 34% 34% 2.35% 2.35% 13.5% 13.5% x 3s x 2s x s x x + s x + 2s x + 3s 58 of 149

59 Example: Using the Empirical Rule In a survey conducted by the National Center for Health Statistics, the sample mean height of women in the United States (ages 20-29) was 64.3 inches, with a sample standard deviation of 2.62 inches. Estimate the percent of the women whose heights are between inches and 64.3 inches. 59 of 149

60 Solution: Using the Empirical Rule Because the distribution is bell-shaped, you can use the Empirical Rule. 34% % = 47.5% of women are between and 64.3 inches tall. 60 of 149

61 Chebychev s Theorem The portion of any data set lying within k standard deviations (k > 1) of the mean is at least: 1 1 k 2 k = 2: In any data set, at least = or 75% 2 4 of the data lie within 2 standard deviations of the mean. 1 8 k = 3: In any data set, at least 1 = or 88.9% of the data lie within 3 standard deviations of the mean. 61 of 149

62 Example: Using Chebychev s Theorem The age distribution for Florida is shown in the histogram. Apply Chebychev s Theorem to the data using k = 2. What can you conclude? 62 of 149

63 Solution: Using Chebychev s Theorem k = 2: μ 2σ = (24.8) = 10.4 (use 0 since age can t be negative) μ + 2σ = (24.8) = 88.8 At least 75% of the population of Florida is between 0 and 88.8 years old. 63 of 149

64 Standard Deviation for Grouped Data Sample standard deviation for a frequency distribution s = Σ( ) n 1 2 x x f where n = Σf (the number of entries in the data set) When a frequency distribution has classes, estimate the sample mean and the sample standard deviation by using the midpoint of each class. 64 of 149

65 Example: Finding the Standard Deviation for Grouped Data You collect a random sample of the number of children per household in a region. Find the sample mean and the sample standard deviation of the data set. Number of Children in 50 Households of 149

66 Solution: Finding the Standard Deviation for Grouped Data First construct a frequency distribution. Find the mean of the frequency distribution. Σxf 91 x = = 1.8 n 50 The sample mean is about 1.8 children. x f xf (10) = (19) = (7) = (7) = (2) = (1) = (4) = 24 Σf = 50 Σ(xf )= of 149

67 Solution: Finding the Standard Deviation for Grouped Data Determine the sum of squares. x f x x ( x x) = 1.8 ( 1.8) 2 = (10) = = 0.8 ( 0.8) 2 = (19) = = 0.2 (0.2) 2 = (7) = = 1.2 (1.2) 2 = (7) = = 2.2 (2.2) 2 = (2) = = 3.2 (3.2) 2 = (1) = = 4.2 (4.2) 2 = (4) = x x f ( ) Σ = 2 ( x x) f of 149

68 Solution: Finding the Standard Deviation for Grouped Data Find the sample standard deviation. s x x ( x x) 2 Σ( x x) f = = 1.7 n x x f ( ) The standard deviation is about 1.7 children. 68 of 149

69 Section 3.3 Summary Determined the range of a data set Determined the variance and standard deviation of a population and of a sample Used the Empirical Rule and Chebychev s Theorem to interpret standard deviation Approximated the sample standard deviation for grouped data 69 of 149

70 Section 3.4 Measures of Position 70 of 149

71 Section 3.4 Objectives Determine the quartiles of a data set Determine the interquartile range of a data set Create a box-and-whisker plot Interpret other fractiles such as percentiles Determine and interpret the standard score (z-score) 71 of 149

72 Quartiles Fractiles are numbers that partition (divide) an ordered data set into equal parts. Quartiles approximately divide an ordered data set into four equal parts. First quartile, Q 1 : About one quarter of the data fall on or below Q 1. Second quartile, Q 2 : About one half of the data fall on or below Q 2 (median). Third quartile, Q 3 : About three quarters of the data fall on or below Q of 149

73 Example: Finding Quartiles The number of nuclear power plants in the top 15 nuclear power-producing countries in the world are listed. Find the first, second, and third quartiles of the data set Solution: Q 2 divides the data set into two halves. Lower half Upper half Q 2 73 of 149

74 Solution: Finding Quartiles The first and third quartiles are the medians of the lower and upper halves of the data set. Lower half Upper half Q 1 Q 2 Q 3 About one fourth of the countries have 10 or fewer nuclear power plants; about one half have 18 or fewer; and about three fourths have 31 or fewer. 74 of 149

75 Interquartile Range Interquartile Range (IQR) The difference between the third and first quartiles. IQR = Q 3 Q 1 75 of 149

76 Example: Finding the Interquartile Range Find the interquartile range of the data set Recall Q 1 = 10, Q 2 = 18, and Q 3 = 31 Solution: IQR = Q 3 Q 1 = = 21 The number of power plants in the middle portion of the data set vary by at most of 149

77 Box-and-whisker plot Box-and-Whisker Plot Exploratory data analysis tool. Highlights important features of a data set. Requires (five-number summary): Minimum entry First quartile Q 1 Median Q 2 Third quartile Q 3 Maximum entry 77 of 149

78 Drawing a Box-and-Whisker Plot 1. Find the five-number summary of the data set. 2. Construct a horizontal scale that spans the range of the data. 3. Plot the five numbers above the horizontal scale. 4. Draw a box above the horizontal scale from Q 1 to Q 3 and draw a vertical line in the box at Q Draw whiskers from the box to the minimum and maximum entries. Whisker Box Whisker Minimum entry Median, Q 2 Q 3 Maximum entry 78 of 149

79 Example: Drawing a Box-and-Whisker Plot Draw a box-and-whisker plot that represents the data set Min = 6, Q 1 = 10, Q 2 = 18, Q 3 = 31, Max = 104, Solution: About half the data values are between 10 and 31. By looking at the length of the right whisker, you can conclude 104 is a possible outlier. 79 of 149

80 Percentiles and Other Fractiles Fractiles Summary Symbols Quartiles Divide a data set into 4 equal Q 1, Q 2, Q 3 parts Deciles Divide a data set into 10 D 1, D 2, D 3,, D 9 equal parts Percentiles Divide a data set into 100 equal parts P 1, P 2, P 3,, P of 149

81 Example: Interpreting Percentiles The ogive represents the cumulative frequency distribution for SAT test scores of college-bound students in a recent year. What test score represents the 62 nd percentile? How should you interpret this? (Source: College Board) 81 of 149

82 Solution: Interpreting Percentiles The 62 nd percentile corresponds to a test score of This means that 62% of the students had an SAT score of 1600 or less. 82 of 149

83 The Standard Score Standard Score (z-score) Represents the number of standard deviations a given value x falls from the mean μ. z = value mean standard deviation = x µ σ 83 of 149

84 Example: Comparing z-scores from Different Data Sets In 2009, Heath Ledger won the Oscar for Best Supporting Actor at age 29 for his role in the movie The Dark Knight. Penelope Cruz won the Oscar for Best Supporting Actress at age 34 for her role in Vicky Cristina Barcelona. The mean age of all Best Supporting Actor winners is 49.5, with a standard deviation of The mean age of all Best Supporting Actress winners is 39.9, with a standard deviation of Find the z-scores that correspond to the ages of Ledger and Cruz. Then compare your results. 84 of 149

85 Solution: Comparing z-scores from Different Data Sets Heath Ledger z x µ = = 1.49 σ 13.8 Penelope Cruz z x µ = = 0.42 σ standard deviations below the mean 0.42 standard deviations below the mean 85 of 149

86 Solution: Comparing z-scores from Different Data Sets Both z-scores fall between 2 and 2, so neither score would be considered unusual. Compared with other Best Supporting Actor winners, Heath Ledger was relatively younger, whereas the age of Penelope Cruz was only slightly lower than the average age of other Best Supporting Actress winners. 86 of 149

87 Section 3.4 Summary Determined the quartiles of a data set Determined the interquartile range of a data set Created a box-and-whisker plot Interpreted other fractiles such as percentiles Determined and interpreted the standard score (z-score) 87 of 149

Introduction to Statistics

Introduction to Statistics Introduction to Statistics Data and Statistics Data consists of information coming from observations, counts, measurements, or responses. Statistics is the science of collecting, organizing, analyzing,

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview 3-2 Measures

More information

3.1 Measure of Center

3.1 Measure of Center 3.1 Measure of Center Calculate the mean for a given data set Find the median, and describe why the median is sometimes preferable to the mean Find the mode of a data set Describe how skewness affects

More information

Section 3. Measures of Variation

Section 3. Measures of Variation Section 3 Measures of Variation Range Range = (maximum value) (minimum value) It is very sensitive to extreme values; therefore not as useful as other measures of variation. Sample Standard Deviation The

More information

Slide 1. Slide 2. Slide 3. Pick a Brick. Daphne. 400 pts 200 pts 300 pts 500 pts 100 pts. 300 pts. 300 pts 400 pts 100 pts 400 pts.

Slide 1. Slide 2. Slide 3. Pick a Brick. Daphne. 400 pts 200 pts 300 pts 500 pts 100 pts. 300 pts. 300 pts 400 pts 100 pts 400 pts. Slide 1 Slide 2 Daphne Phillip Kathy Slide 3 Pick a Brick 100 pts 200 pts 500 pts 300 pts 400 pts 200 pts 300 pts 500 pts 100 pts 300 pts 400 pts 100 pts 400 pts 100 pts 200 pts 500 pts 100 pts 400 pts

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Overview 3-2 Measures

More information

Chapter 3 Data Description

Chapter 3 Data Description Chapter 3 Data Description Section 3.1: Measures of Central Tendency Section 3.2: Measures of Variation Section 3.3: Measures of Position Section 3.1: Measures of Central Tendency Definition of Average

More information

Unit 2. Describing Data: Numerical

Unit 2. Describing Data: Numerical Unit 2 Describing Data: Numerical Describing Data Numerically Describing Data Numerically Central Tendency Arithmetic Mean Median Mode Variation Range Interquartile Range Variance Standard Deviation Coefficient

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

TOPIC: Descriptive Statistics Single Variable

TOPIC: Descriptive Statistics Single Variable TOPIC: Descriptive Statistics Single Variable I. Numerical data summary measurements A. Measures of Location. Measures of central tendency Mean; Median; Mode. Quantiles - measures of noncentral tendency

More information

Sampling, Frequency Distributions, and Graphs (12.1)

Sampling, Frequency Distributions, and Graphs (12.1) 1 Sampling, Frequency Distributions, and Graphs (1.1) Design: Plan how to obtain the data. What are typical Statistical Methods? Collect the data, which is then subjected to statistical analysis, which

More information

Lecture 11. Data Description Estimation

Lecture 11. Data Description Estimation Lecture 11 Data Description Estimation Measures of Central Tendency (continued, see last lecture) Sample mean, population mean Sample mean for frequency distributions The median The mode The midrange 3-22

More information

After completing this chapter, you should be able to:

After completing this chapter, you should be able to: Chapter 2 Descriptive Statistics Chapter Goals After completing this chapter, you should be able to: Compute and interpret the mean, median, and mode for a set of data Find the range, variance, standard

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things.

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things. (c) Epstein 2013 Chapter 5: Exploring Data Distributions Page 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms Individuals are the objects described by a set of data. These individuals

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 2 Methods for Describing Sets of Data Summary of Central Tendency Measures Measure Formula Description Mean x i / n Balance Point Median ( n +1) Middle Value

More information

1. Exploratory Data Analysis

1. Exploratory Data Analysis 1. Exploratory Data Analysis 1.1 Methods of Displaying Data A visual display aids understanding and can highlight features which may be worth exploring more formally. Displays should have impact and be

More information

Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size. Arrange the values from smallest to largest:

Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size. Arrange the values from smallest to largest: 1 Chapter 3 - Descriptive stats: Numerical measures 3.1 Measures of Location Mean Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size Example: The number

More information

Describing Distributions with Numbers

Describing Distributions with Numbers Describing Distributions with Numbers Using graphs, we could determine the center, spread, and shape of the distribution of a quantitative variable. We can also use numbers (called summary statistics)

More information

3.1 Measures of Central Tendency: Mode, Median and Mean. Average a single number that is used to describe the entire sample or population

3.1 Measures of Central Tendency: Mode, Median and Mean. Average a single number that is used to describe the entire sample or population . Measures of Central Tendency: Mode, Median and Mean Average a single number that is used to describe the entire sample or population. Mode a. Easiest to compute, but not too stable i. Changing just one

More information

Chapter 3. Data Description

Chapter 3. Data Description Chapter 3. Data Description Graphical Methods Pie chart It is used to display the percentage of the total number of measurements falling into each of the categories of the variable by partition a circle.

More information

Chapter 2: Tools for Exploring Univariate Data

Chapter 2: Tools for Exploring Univariate Data Stats 11 (Fall 2004) Lecture Note Introduction to Statistical Methods for Business and Economics Instructor: Hongquan Xu Chapter 2: Tools for Exploring Univariate Data Section 2.1: Introduction What is

More information

Chapter. Numerically Summarizing Data Pearson Prentice Hall. All rights reserved

Chapter. Numerically Summarizing Data Pearson Prentice Hall. All rights reserved Chapter 3 Numerically Summarizing Data Section 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Spring 2008

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Spring 2008 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 3 Spring 2008 Measures of central tendency for ungrouped data 2 Graphs are very helpful to describe

More information

MATH 117 Statistical Methods for Management I Chapter Three

MATH 117 Statistical Methods for Management I Chapter Three Jubail University College MATH 117 Statistical Methods for Management I Chapter Three This chapter covers the following topics: I. Measures of Center Tendency. 1. Mean for Ungrouped Data (Raw Data) 2.

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Engineers and scientists are constantly exposed to collections of facts, or data. The discipline of statistics provides methods for organizing and summarizing data, and for drawing

More information

Unit 2: Numerical Descriptive Measures

Unit 2: Numerical Descriptive Measures Unit 2: Numerical Descriptive Measures Summation Notation Measures of Central Tendency Measures of Dispersion Chebyshev's Rule Empirical Rule Measures of Relative Standing Box Plots z scores Jan 28 10:48

More information

Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries)

Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Lecture 6: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Summarize with Shape, Center, Spread Displays: Stemplots, Histograms Five Number Summary, Outliers, Boxplots Cengage Learning

More information

QUANTITATIVE DATA. UNIVARIATE DATA data for one variable

QUANTITATIVE DATA. UNIVARIATE DATA data for one variable QUANTITATIVE DATA Recall that quantitative (numeric) data values are numbers where data take numerical values for which it is sensible to find averages, such as height, hourly pay, and pulse rates. UNIVARIATE

More information

Resistant Measure - A statistic that is not affected very much by extreme observations.

Resistant Measure - A statistic that is not affected very much by extreme observations. Chapter 1.3 Lecture Notes & Examples Section 1.3 Describing Quantitative Data with Numbers (pp. 50-74) 1.3.1 Measuring Center: The Mean Mean - The arithmetic average. To find the mean (pronounced x bar)

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Exercises from Chapter 3, Section 1

Exercises from Chapter 3, Section 1 Exercises from Chapter 3, Section 1 1. Consider the following sample consisting of 20 numbers. (a) Find the mode of the data 21 23 24 24 25 26 29 30 32 34 39 41 41 41 42 43 48 51 53 53 (b) Find the median

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Chapters 1 & 2 Exam Review

Chapters 1 & 2 Exam Review Problems 1-3 refer to the following five boxplots. 1.) To which of the above boxplots does the following histogram correspond? (A) A (B) B (C) C (D) D (E) E 2.) To which of the above boxplots does the

More information

Unit 1: Statistics. Mrs. Valentine Math III

Unit 1: Statistics. Mrs. Valentine Math III Unit 1: Statistics Mrs. Valentine Math III 1.1 Analyzing Data Statistics Study, analysis, and interpretation of data Find measure of central tendency Mean average of the data Median Odd # data pts: middle

More information

Measures of the Location of the Data

Measures of the Location of the Data Measures of the Location of the Data 1. 5. Mark has 51 films in his collection. Each movie comes with a rating on a scale from 0.0 to 10.0. The following table displays the ratings of the aforementioned

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

Finding Quartiles. . Q1 is the median of the lower half of the data. Q3 is the median of the upper half of the data

Finding Quartiles. . Q1 is the median of the lower half of the data. Q3 is the median of the upper half of the data Finding Quartiles. Use the median to divide the ordered data set into two halves.. If n is odd, do not include the median in either half. If n is even, split this data set exactly in half.. Q1 is the median

More information

Chapter 5: Exploring Data: Distributions Lesson Plan

Chapter 5: Exploring Data: Distributions Lesson Plan Lesson Plan Exploring Data Displaying Distributions: Histograms Interpreting Histograms Displaying Distributions: Stemplots Describing Center: Mean and Median Describing Variability: The Quartiles The

More information

Chapter 3. Measuring data

Chapter 3. Measuring data Chapter 3 Measuring data 1 Measuring data versus presenting data We present data to help us draw meaning from it But pictures of data are subjective They re also not susceptible to rigorous inference Measuring

More information

Example 2. Given the data below, complete the chart:

Example 2. Given the data below, complete the chart: Statistics 2035 Quiz 1 Solutions Example 1. 2 64 150 150 2 128 150 2 256 150 8 8 Example 2. Given the data below, complete the chart: 52.4, 68.1, 66.5, 75.0, 60.5, 78.8, 63.5, 48.9, 81.3 n=9 The data is

More information

ADMS2320.com. We Make Stats Easy. Chapter 4. ADMS2320.com Tutorials Past Tests. Tutorial Length 1 Hour 45 Minutes

ADMS2320.com. We Make Stats Easy. Chapter 4. ADMS2320.com Tutorials Past Tests. Tutorial Length 1 Hour 45 Minutes We Make Stats Easy. Chapter 4 Tutorial Length 1 Hour 45 Minutes Tutorials Past Tests Chapter 4 Page 1 Chapter 4 Note The following topics will be covered in this chapter: Measures of central location Measures

More information

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES INTRODUCTION TO APPLIED STATISTICS NOTES PART - DATA CHAPTER LOOKING AT DATA - DISTRIBUTIONS Individuals objects described by a set of data (people, animals, things) - all the data for one individual make

More information

Chapter 6 Assessment. 3. Which points in the data set below are outliers? Multiple Choice. 1. The boxplot summarizes the test scores of a math class?

Chapter 6 Assessment. 3. Which points in the data set below are outliers? Multiple Choice. 1. The boxplot summarizes the test scores of a math class? Chapter Assessment Multiple Choice 1. The boxplot summarizes the test scores of a math class? Test Scores 3. Which points in the data set below are outliers? 73, 73, 7, 75, 75, 75, 77, 77, 77, 77, 7, 7,

More information

M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points Total 75

M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points Total 75 M 225 Test 1 B Name SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points 1-13 13 14 3 15 8 16 4 17 10 18 9 19 7 20 3 21 16 22 2 Total 75 1 Multiple choice questions (1 point each) 1. Look at

More information

Chapter Four. Numerical Descriptive Techniques. Range, Standard Deviation, Variance, Coefficient of Variation

Chapter Four. Numerical Descriptive Techniques. Range, Standard Deviation, Variance, Coefficient of Variation Chapter Four Numerical Descriptive Techniques 4.1 Numerical Descriptive Techniques Measures of Central Location Mean, Median, Mode Measures of Variability Range, Standard Deviation, Variance, Coefficient

More information

Topic 3: Introduction to Statistics. Algebra 1. Collecting Data. Table of Contents. Categorical or Quantitative? What is the Study of Statistics?!

Topic 3: Introduction to Statistics. Algebra 1. Collecting Data. Table of Contents. Categorical or Quantitative? What is the Study of Statistics?! Topic 3: Introduction to Statistics Collecting Data We collect data through observation, surveys and experiments. We can collect two different types of data: Categorical Quantitative Algebra 1 Table of

More information

Identify the scale of measurement most appropriate for each of the following variables. (Use A = nominal, B = ordinal, C = interval, D = ratio.

Identify the scale of measurement most appropriate for each of the following variables. (Use A = nominal, B = ordinal, C = interval, D = ratio. Answers to Items from Problem Set 1 Item 1 Identify the scale of measurement most appropriate for each of the following variables. (Use A = nominal, B = ordinal, C = interval, D = ratio.) a. response latency

More information

Range The range is the simplest of the three measures and is defined now.

Range The range is the simplest of the three measures and is defined now. Measures of Variation EXAMPLE A testing lab wishes to test two experimental brands of outdoor paint to see how long each will last before fading. The testing lab makes 6 gallons of each paint to test.

More information

Chapter 5. Understanding and Comparing. Distributions

Chapter 5. Understanding and Comparing. Distributions STAT 141 Introduction to Statistics Chapter 5 Understanding and Comparing Distributions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 27 Boxplots How to create a boxplot? Assume

More information

2/2/2015 GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY MEASURES OF CENTRAL TENDENCY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS

2/2/2015 GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY MEASURES OF CENTRAL TENDENCY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS Spring 2015: Lembo GEOGRAPHY 204: STATISTICAL PROBLEM SOLVING IN GEOGRAPHY CHAPTER 3: DESCRIPTIVE STATISTICS AND GRAPHICS Descriptive statistics concise and easily understood summary of data set characteristics

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Histograms allow a visual interpretation

Histograms allow a visual interpretation Chapter 4: Displaying and Summarizing i Quantitative Data s allow a visual interpretation of quantitative (numerical) data by indicating the number of data points that lie within a range of values, called

More information

3.3. Section. Measures of Central Tendency and Dispersion from Grouped Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc.

3.3. Section. Measures of Central Tendency and Dispersion from Grouped Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc. Section 3.3 Measures of Central Tendency and Dispersion from Grouped Data Objectives 1. Approximate the mean of a variable from grouped data 2. Compute the weighted mean 3. Approximate the standard deviation

More information

Exam: practice test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam: practice test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam: practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Using the information in the table on home sale prices in

More information

STT 315 This lecture is based on Chapter 2 of the textbook.

STT 315 This lecture is based on Chapter 2 of the textbook. STT 315 This lecture is based on Chapter 2 of the textbook. Acknowledgement: Author is thankful to Dr. Ashok Sinha, Dr. Jennifer Kaplan and Dr. Parthanil Roy for allowing him to use/edit some of their

More information

Math 1040 Sample Final Examination. Problem Points Score Total 200

Math 1040 Sample Final Examination. Problem Points Score Total 200 Name: Math 1040 Sample Final Examination Relax and good luck! Problem Points Score 1 25 2 25 3 25 4 25 5 25 6 25 7 25 8 25 Total 200 1. (25 points) The systolic blood pressures of 20 elderly patients in

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

Practice problems from chapters 2 and 3

Practice problems from chapters 2 and 3 Practice problems from chapters and 3 Question-1. For each of the following variables, indicate whether it is quantitative or qualitative and specify which of the four levels of measurement (nominal, ordinal,

More information

A C E. Answers Investigation 4. Applications

A C E. Answers Investigation 4. Applications Answers Applications 1. 1 student 2. You can use the histogram with 5-minute intervals to determine the number of students that spend at least 15 minutes traveling to school. To find the number of students,

More information

Continuous random variables

Continuous random variables Continuous random variables A continuous random variable X takes all values in an interval of numbers. The probability distribution of X is described by a density curve. The total area under a density

More information

equal to the of the. Sample variance: Population variance: **The sample variance is an unbiased estimator of the

equal to the of the. Sample variance: Population variance: **The sample variance is an unbiased estimator of the DEFINITION The variance (aka dispersion aka spread) of a set of values is a measure of equal to the of the. Sample variance: s Population variance: **The sample variance is an unbiased estimator of the

More information

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved.

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved. 1-1 Chapter 1 Sampling and Descriptive Statistics 1-2 Why Statistics? Deal with uncertainty in repeated scientific measurements Draw conclusions from data Design valid experiments and draw reliable conclusions

More information

F78SC2 Notes 2 RJRC. If the interest rate is 5%, we substitute x = 0.05 in the formula. This gives

F78SC2 Notes 2 RJRC. If the interest rate is 5%, we substitute x = 0.05 in the formula. This gives F78SC2 Notes 2 RJRC Algebra It is useful to use letters to represent numbers. We can use the rules of arithmetic to manipulate the formula and just substitute in the numbers at the end. Example: 100 invested

More information

CHAPTER 2: Describing Distributions with Numbers

CHAPTER 2: Describing Distributions with Numbers CHAPTER 2: Describing Distributions with Numbers The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 2 Concepts 2 Measuring Center: Mean and Median Measuring

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency The word average: is very ambiguous and can actually refer to the mean, median, mode or midrange. Notation:

More information

GRACEY/STATISTICS CH. 3. CHAPTER PROBLEM Do women really talk more than men? Science, Vol. 317, No. 5834). The study

GRACEY/STATISTICS CH. 3. CHAPTER PROBLEM Do women really talk more than men? Science, Vol. 317, No. 5834). The study CHAPTER PROBLEM Do women really talk more than men? A common belief is that women talk more than men. Is that belief founded in fact, or is it a myth? Do men actually talk more than women? Or do men and

More information

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected What is statistics? Statistics is the science of: Collecting information Organizing and summarizing the information collected Analyzing the information collected in order to draw conclusions Two types

More information

Chapter 4. Displaying and Summarizing. Quantitative Data

Chapter 4. Displaying and Summarizing. Quantitative Data STAT 141 Introduction to Statistics Chapter 4 Displaying and Summarizing Quantitative Data Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 31 4.1 Histograms 1 We divide the range

More information

P8130: Biostatistical Methods I

P8130: Biostatistical Methods I P8130: Biostatistical Methods I Lecture 2: Descriptive Statistics Cody Chiuzan, PhD Department of Biostatistics Mailman School of Public Health (MSPH) Lecture 1: Recap Intro to Biostatistics Types of Data

More information

Determining the Spread of a Distribution Variance & Standard Deviation

Determining the Spread of a Distribution Variance & Standard Deviation Determining the Spread of a Distribution Variance & Standard Deviation 1.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3 Lecture 3 1 / 32 Outline 1 Describing

More information

Instructor: Doug Ensley Course: MAT Applied Statistics - Ensley

Instructor: Doug Ensley Course: MAT Applied Statistics - Ensley Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics - Ensley Assignment: Online 04 - Sections 2.5 and 2.6 1. A travel magazine recently presented data on the annual number of vacation

More information

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1: Exploring Data Section 1.3 with Numbers The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE Chapter 1 Exploring Data Introduction: Data Analysis: Making Sense of Data 1.1

More information

Describing Distributions With Numbers Chapter 12

Describing Distributions With Numbers Chapter 12 Describing Distributions With Numbers Chapter 12 May 1, 2013 What Do We Usually Summarize? Measures of Center. Percentiles. Measures of Spread. A Summary. 1.0 What Do We Usually Summarize? source: Prof.

More information

Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries)

Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Lecture 3B: Chapter 4, Section 2 Quantitative Variables (Displays, Begin Summaries) Summarize with Shape, Center, Spread Displays: Stemplots, Histograms Five Number Summary, Outliers, Boxplots Mean vs.

More information

Chapter 3: The Normal Distributions

Chapter 3: The Normal Distributions Chapter 3: The Normal Distributions http://www.yorku.ca/nuri/econ2500/econ2500-online-course-materials.pdf graphs-normal.doc / histogram-density.txt / normal dist table / ch3-image Ch3 exercises: 3.2,

More information

Math 223 Lecture Notes 3/15/04 From The Basic Practice of Statistics, bymoore

Math 223 Lecture Notes 3/15/04 From The Basic Practice of Statistics, bymoore Math 223 Lecture Notes 3/15/04 From The Basic Practice of Statistics, bymoore Chapter 3 continued Describing distributions with numbers Measuring spread of data: Quartiles Definition 1: The interquartile

More information

Descriptive Statistics-I. Dr Mahmoud Alhussami

Descriptive Statistics-I. Dr Mahmoud Alhussami Descriptive Statistics-I Dr Mahmoud Alhussami Biostatistics What is the biostatistics? A branch of applied math. that deals with collecting, organizing and interpreting data using well-defined procedures.

More information

ST Presenting & Summarising Data Descriptive Statistics. Frequency Distribution, Histogram & Bar Chart

ST Presenting & Summarising Data Descriptive Statistics. Frequency Distribution, Histogram & Bar Chart ST2001 2. Presenting & Summarising Data Descriptive Statistics Frequency Distribution, Histogram & Bar Chart Summary of Previous Lecture u A study often involves taking a sample from a population that

More information

Units. Exploratory Data Analysis. Variables. Student Data

Units. Exploratory Data Analysis. Variables. Student Data Units Exploratory Data Analysis Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison Statistics 371 13th September 2005 A unit is an object that can be measured, such as

More information

Lecture 1: Descriptive Statistics

Lecture 1: Descriptive Statistics Lecture 1: Descriptive Statistics MSU-STT-351-Sum 15 (P. Vellaisamy: MSU-STT-351-Sum 15) Probability & Statistics for Engineers 1 / 56 Contents 1 Introduction 2 Branches of Statistics Descriptive Statistics

More information

Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations

Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations DAY 4 16 Jan 2014 Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations Two Important Three-Standard-Deviation Rules 1. Chebychev s Rule : Implies that at least 89% of the observations

More information

CIVL 7012/8012. Collection and Analysis of Information

CIVL 7012/8012. Collection and Analysis of Information CIVL 7012/8012 Collection and Analysis of Information Uncertainty in Engineering Statistics deals with the collection and analysis of data to solve real-world problems. Uncertainty is inherent in all real

More information

Lecture 2. Descriptive Statistics: Measures of Center

Lecture 2. Descriptive Statistics: Measures of Center Lecture 2. Descriptive Statistics: Measures of Center Descriptive Statistics summarize or describe the important characteristics of a known set of data Inferential Statistics use sample data to make inferences

More information

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data:

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Lecture 2 Quantitative variables There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Stemplot (stem-and-leaf plot) Histogram Dot plot Stemplots

More information

Unit Two Descriptive Biostatistics. Dr Mahmoud Alhussami

Unit Two Descriptive Biostatistics. Dr Mahmoud Alhussami Unit Two Descriptive Biostatistics Dr Mahmoud Alhussami Descriptive Biostatistics The best way to work with data is to summarize and organize them. Numbers that have not been summarized and organized are

More information

OCR Maths S1. Topic Questions from Papers. Representation of Data

OCR Maths S1. Topic Questions from Papers. Representation of Data OCR Maths S1 Topic Questions from Papers Representation of Data PhysicsAndMathsTutor.com 12 The back-to-back stem-and-leaf diagram below shows the number of hours of television watched per week by each

More information

Math 138 Summer Section 412- Unit Test 1 Green Form, page 1 of 7

Math 138 Summer Section 412- Unit Test 1 Green Form, page 1 of 7 Math 138 Summer 1 2013 Section 412- Unit Test 1 Green Form page 1 of 7 1. Multiple Choice. Please circle your answer. Each question is worth 3 points. (a) Social Security Numbers are illustrations of which

More information

Quantitative Tools for Research

Quantitative Tools for Research Quantitative Tools for Research KASHIF QADRI Descriptive Analysis Lecture Week 4 1 Overview Measurement of Central Tendency / Location Mean, Median & Mode Quantiles (Quartiles, Deciles, Percentiles) Measurement

More information

AP Final Review II Exploring Data (20% 30%)

AP Final Review II Exploring Data (20% 30%) AP Final Review II Exploring Data (20% 30%) Quantitative vs Categorical Variables Quantitative variables are numerical values for which arithmetic operations such as means make sense. It is usually a measure

More information

STAT 200 Chapter 1 Looking at Data - Distributions

STAT 200 Chapter 1 Looking at Data - Distributions STAT 200 Chapter 1 Looking at Data - Distributions What is Statistics? Statistics is a science that involves the design of studies, data collection, summarizing and analyzing the data, interpreting the

More information

Introduction to Statistical Data Analysis Lecture 1: Working with Data Sets

Introduction to Statistical Data Analysis Lecture 1: Working with Data Sets Introduction to Statistical Data Analysis Lecture 1: Working with Data Sets James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

1. Descriptive stats methods for organizing and summarizing information

1. Descriptive stats methods for organizing and summarizing information Two basic types of statistics: 1. Descriptive stats methods for organizing and summarizing information Stats in sports are a great example Usually we use graphs, charts, and tables showing averages and

More information

Chapter 2: Descriptive Analysis and Presentation of Single- Variable Data

Chapter 2: Descriptive Analysis and Presentation of Single- Variable Data Chapter 2: Descriptive Analysis and Presentation of Single- Variable Data Mean 26.86667 Standard Error 2.816392 Median 25 Mode 20 Standard Deviation 10.90784 Sample Variance 118.981 Kurtosis -0.61717 Skewness

More information

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above King Abdul Aziz University Faculty of Sciences Statistics Department Final Exam STAT 0 First Term 49-430 A 40 Name No ID: Section: You have 40 questions in 9 pages. You have 90 minutes to solve the exam.

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Professor Silvia Fernández Chapter 2 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Visualizing Distributions Recall the definition: The

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Visualizing Distributions Math 140 Introductory Statistics Professor Silvia Fernández Chapter Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Recall the definition: The

More information