Deliverable WP2 / D2.11 (M42) WP2- NA2: Remote sensing of vertical aerosol distribution Deliverable D2.11: Report on 2nd IC campaign

Size: px
Start display at page:

Download "Deliverable WP2 / D2.11 (M42) WP2- NA2: Remote sensing of vertical aerosol distribution Deliverable D2.11: Report on 2nd IC campaign"

Transcription

1 WP2- NA2: Remote sensing of vertical aerosol distribution Deliverable D2.11: Report on 2nd IC campaign

2 Table of Contents 1 Introduction MUSA (reference lidar system) Inter-comparison MALIA - MUSA October MALIA Day time intercomparison 17. October Night time intercomparison 17. October Inter-comparison Lecce lidar - MUSA October Lecce lidar system Intercomparison 23. October Inter-comparison Minsk MSTL-2 with LMR Introduction Figure 1.1 EARLINET lidar stations (2014) The many lidar systems within EARLINET are all home- or custom-made, and hence very different. From small, portable, single wavelength lidar systems to huge, stationary, multi-channel lidar systems with several telescopes to better cover the far and near ranges. Furthermore, as most lidar systems are research instruments, they are continuously developing and changing. A common quality assurance strategy can not cover all the details of all systems, but must focus on some main paramet ers. One can evaluate the quality of a measurement instrument by either comparing a measured quantity

3 with a known quantity like a standard target, or one compares with the outcome of a standard meas urement instrument of the same target. For lidar systems both standards do not exist neither a standard target, nor a standard instrument. In the frame of EARLINET-ASOS the activity NA2.2 (Quality Assurance) had been established to de velop tools for testing the accuracy and the temporal stability of the quality of the lidar systems. The developed internal check-up tools can be applied to all lidar systems. The near range limit (overlap function) is checked with the telecover test, and the far range capability and accuracy with the Rayleigh fit test. The trigger-delay (zero-bin) test verifies the correct range correction, which is very important in the near range below about 1 km range, and the dark measurement and pulse gener ator measurements deal with signal distortions. These tests are performed yearly with every lidar system and with every signal channel, and the results are documented in yearly ACTRIS "reports on internal hardware quality checks". Regarding the overall quality check, direct lidar inter-comparisons are scheduled during ACTRIS for all lidar systems not checked in this way within the last five years. For direct lidar inter-comparisons two or more lidar systems are located close to each other to measure the same atmosphere during the same time periods. Although the lidars are located close to each other, the measured atmospheric volume is never exactly the same, and the intercomparison between systems is often complicated by the intrinsic differences of the systems (at least one must be moveable), which are e.g. different measurement ranges, different sampling rates, and different analysis software packages. Sometimes the weather conditions during the limited intercomparison campaigns can be unfortunate, so that the inter-compared signals cannot reveal the desired details. Furthermore, such direct lidar intercomparisons are costly regarding man power and money, and cannot be repeated regularly. Three transportable EARLINET lidar systems are currently available as reference lidar systems, which have shown their outstanding quality and temporal stability in several inter-comparisons. These are the MULIS and POLIS lidar systems of the Ludwig-Maximilians-University of Munich, Germany, and the MUSA lidar system of the Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l'analisi Ambientale, Potenza, Italy.

4 2 MUSA (reference lidar system) The MUSA lidar system of the Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'analisi Ambientale (CNR-IMAA) in Potenza / Italia was selected as an EARLINET reference lidar system during the direct intercomparison of twelve EARLINET lidar systems during EARLI09 [Wandiger et al., EARLINET instrument intercomparison campaigns: overview on strategy and results, Atmos. Meas.Tech. Discuss., in preparation, 2014]. MUSA signals at all wavelengths showed deviations <5% from the wheigthed mean of all the lidar sytems. Figure 2.1 The MUSA lidar in the mobile container. Figure 2.2 Optical setup of the MUSA lidar.

5 Table 2.1 Specifications of the MUSA reference lidar from the EARLINET handbook of instruments.

6 3 Inter-comparison MALIA - MUSA October 2013 The MALIA lidar system of the Consorzio Nazionale Interuniversitario per la Scienze Fisiche della Materia (CNISM) in Napoli/Italia was inter-compared with the MUSA referece lidar of the Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'analisi Ambientale (CNR-IMAA) during the measurement campaign in Napoli CNISM NALI13 (Napoli Lidar Intercomparison 2013) between 1418 October MALIA MUSA Figure 3.1 The MALIA and MUSA lidar systems in their containers. 3.1 MALIA Table 3.1 Main specifications of the MALIA lidar.

7 Figure 3.2 Optical setup of the MALIA lidar.

8 Table 3.2 Full specifications of the MALIA lidar from the EARLINET handbook of instruments.

9 3.2 Day time intercomparison 17. October 2013 Figure 3.3 Quicklook of the atmospheric situation during the daytime intercomparison period (red rectangle) on Figure 3.4 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 355 nm on between 11:45 and 12:04 UT.

10 Figure 3.5 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 532 nm (parallel polarization) on between 11:45 and 12:04 UT. Figure 3.6 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 532 nm (perpendicular polarization) on between 11:45 and 12:04 UT.

11 3.3 Night time intercomparison 17. October 2013 Figure 3.7 Quicklook of the atmospheric situation during the nighttime intercomparison period (red rectangle) on Figure 3.8 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 355 nm on between 23:03 and 00:06 UT.

12 Figure 3.9 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 532 nm (parallel polarization) on between 23:03 and 00:06 UT. Figure 3.10 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 532 nm (perpendicular polarization) on between 23:03 and 00:06 UT.

13 Figure 3.11 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 387 nm on between 23:03 and 00:06 UT Figure 3.12 Attenuated backscatter signals and relative deviation of the MALIA from the MUSA signal at 607 nm on between 23:03 and 00:06 UT

14 4 Inter-comparison Lecce lidar - MUSA October 2013 The Lecce lidar system of the University of Salento, Lecce, Italia, was inter-compared with the MUSA referece lidar of the Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'analisi Ambien tale (CNR-IMAA) during the measurement campaign in Lecce (Lecce Lidar Intercomparison 2013) between October MUSA LECCE system Figure 4.1 The Lecce lidar in the University building with roof window and the MUSA lidar systems in the container. 4.1 Lecce lidar system Table 4.1 Main specifications of Lecce lidar system.

15 Figure 4.2Optical setup of the Lecce lidar system.

16 Table 4.2 Full specifications of the Lecce lidar from the EARLINET handbook of instruments.

17 4.2 Intercomparison 23. October 2013 Figure 4.3 Quicklook of the atmospheric situation during the intercomparison period (red rectangle) on Figure 4.4 Attenuated backscatter signals and relative deviation of the Lecce lidar from the MUSA signal at 355 nm on between 20:39 and 21:06 UT. Calculated molecular backscatter signal from radiosonde data Brindisi airport 00 UT for comparison.

18 Figure 4.5 Attenuated backscatter signals and relative deviation of the Lecce lidar from the MUSA signal at 387 nm on between 20:39 and 21:06 UT. Calculated molecular backscatter signal from radiosonde data Brindisi airport 00 UT for comparison. Figure 4.6 Attenuated backscatter signals and relative deviation of the Lecce lidar from the MUSA signal at 532 nm on between 20:39 and 21:06 UT. Calculated molecular backscatter signal from radiosonde data Brindisi airport 00 UT for comparison.

19 Figure 4.7 Attenuated backscatter signals and relative deviation of the Lecce lidar from the MUSA signal at 607 nm on between 20:39 and 21:06 UT. Calculated molecular backscatter signal from radiosonde data Brindisi airport 00 UT for comparison. Figure 4.8 Attenuated backscatter signals and relative deviation of the Lecce lidar from the MUSA signal at 1064 nm on between 20:39 and 21:06 UT. Calculated molecular backscatter signal from radiosonde data Brindisi airport 00 UT for comparison.

20 5 Inter-comparison Minsk MSTL-2 with LMR The Stepanov Institute of Physics (IPNASB) in Minsk, Belarus, operates two lidar systems: the mobile LMR, and the stationary MSTL-2. The LMR-mobile lidar participated in the EARLI09 intercomparison of twelve lidar systems in Leipzig, Germany, in The both lidars were intercompared in Minsk on :00 16:07. Table 5.1 Full specifications of the MSTL-2-lidar from the EARLINET handbook of instruments.

21 Table 5.2 Full specifications of the LMR-mobile lidar from the EARLINET handbook of instruments.

22 Figure 5.1 Attenuated backscatter signals (left) and relative deviation (right) between the LMR and MSTL-2 lidar systems at 355 nm on between 16:00 and 16:07. Figure 5.2 Attenuated backscatter signals (left) and relative deviation (right) between the LMR and MSTL-2 lidar systems at 532 nm on between 16:00 and 16:07. Figure 5.3 Attenuated backscatter signals (left) and relative deviation (right) between the LMR and MSTL-2 lidar systems at 1064 nm on between 16:00 and 16:07.

Misure LIDAR di aerosol e trasporto da sorgenti remote. Gelsomina Pappalardo CNR-IMAA

Misure LIDAR di aerosol e trasporto da sorgenti remote. Gelsomina Pappalardo CNR-IMAA Misure LIDAR di aerosol e trasporto da sorgenti remote Gelsomina Pappalardo CNR-IMAA G. Pappalardo, Misure LIDAR di aerosol e trasporto da sorgenti remote - ISAC Bologna, 9 ottobre Outline Introduction

More information

EARLINET, the ACTRIS aerosol vertical profiling component

EARLINET, the ACTRIS aerosol vertical profiling component EARLINET, the ACTRIS aerosol vertical profiling component L. Mona* and the EARLINET team *CNR-IMAA, Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l Analisi Ambientale ITALY OUTLINE What

More information

Raman and elastic lidar techniques for aerosol observation at CIAO

Raman and elastic lidar techniques for aerosol observation at CIAO Raman and elastic lidar techniques for aerosol observation at CIAO F. Madonna, A. Amodeo, I. Binietoglou, G. D Amico, A. Giunta, L. Mona, G. Pappalardo Consiglio Nazionale delle Ricerche, Istituto di Metodologie

More information

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products

Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products Lidar and radiosonde measurement campaign for the validation of ENVISAT atmospheric products V. Cuomo, G. Pappalardo, A. Amodeo, C. Cornacchia, L. Mona, M. Pandolfi IMAA-CNR Istituto di Metodologie per

More information

Long-term aerosol and cloud database from correlative CALIPSO and EARLINET observations

Long-term aerosol and cloud database from correlative CALIPSO and EARLINET observations Long-term aerosol and cloud database from correlative CALIPSO and EARLINET observations Ulla Wandinger, Anja Hiebsch, Ina Mattis Leibniz Institute for Tropospheric Research, Leipzig, Germany Gelsomina

More information

2.5 COMPARING WATER VAPOR VERTICAL PROFILES USING CNR-IMAA RAMAN LIDAR AND CLOUDNET DATA

2.5 COMPARING WATER VAPOR VERTICAL PROFILES USING CNR-IMAA RAMAN LIDAR AND CLOUDNET DATA 2.5 COMPARING WATER VAPOR VERTICAL PROFILES USING CNR-IMAA RAMAN LIDAR AND CLOUDNET DATA Lucia Mona*, 1, Aldo Amodeo 1, Carmela Cornacchia 1, Fabio Madonna 1, Gelsomina Pappalardo 1 and Ewan O Connor 2

More information

FIRST SYSTEMATIC OBSERVATIONS OF SAHARAN DUST OVER EUROPE DURING EARLINET ( ): STATISTICAL ANALYSIS AND RESULTS

FIRST SYSTEMATIC OBSERVATIONS OF SAHARAN DUST OVER EUROPE DURING EARLINET ( ): STATISTICAL ANALYSIS AND RESULTS FIRST SYSTEMATIC OBSERVATIONS OF SAHARAN DUST OVER EUROPE DURING EARLINET (2-22): STATISTICAL ANALYSIS AND RESULTS A. Papayannis 1, V. Amiridis 2, G. Tsaknakis 1, D. Balis 3, J. Bösenberg 4, A. Chaikovski

More information

Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments

Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments Volker Matthais, Volker Freudenthaler, Aldo Amodeo, Ioan Balin, Dimitris Balis, Jens Bösenberg, Anatoly Chaikovsky,

More information

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach

ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach ACTRIS aerosol vertical profiles: advanced data and their potential use in a aerosol observations/models combined approach Lucia Mona CNR-IMAA, Potenza, Italy mona@imaa.cnr.it and EARLINET Team OUTLINE

More information

Three years of systematic lidar observations of Saharan dust outbreaks at Naples EARLINET station

Three years of systematic lidar observations of Saharan dust outbreaks at Naples EARLINET station Three years of systematic lidar observations of Saharan dust outbreaks at Naples EARLINET station A. Boselli a, M. Armenante b, G. Pisani c, N. Spinelli c, X. Wang d (a) IMAA-CNR Istituto di Metodologie

More information

EARLINET lidar quality assurance tools

EARLINET lidar quality assurance tools Atmos. Meas. Tech. Discuss., https://doi.org/0./amt-0- Discussion started: January 0 c Author(s) 0. CC BY.0 License. EARLINET lidar quality assurance tools Volker Freudenthaler, Holger Linné, Anatoli Chaikovski,

More information

25 TH INTERNATIONAL LASER RADAR CONFERENCE

25 TH INTERNATIONAL LASER RADAR CONFERENCE PROCEEDINGS OF THE 25 TH INTERNATIONAL LASER RADAR CONFERENCE St.-Petersburg 5 9 July 2010 Volume II Proceedings of the 25 th International Laser Radar Conference, 5 9 July 2010, St.-Petersburg, Russia

More information

Ground-based Validation of spaceborne lidar measurements

Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements Ground-based Validation of spaceborne lidar measurements to make something officially acceptable or approved, to prove that something is correct

More information

Aerosols and Clouds: Long-term Database from Spaceborne Lidar Measurements

Aerosols and Clouds: Long-term Database from Spaceborne Lidar Measurements AEROSOLS AND CLOUDS: LONG-TERM DATABASE FROM SPACEBORNE LIDAR MEASUREMENTS ESTEC Contract No. 21487/08/NL/HE Aerosols and Clouds: Long-term Database from Spaceborne Lidar Measurements Executive Summary

More information

Validation of ADM-Aeolus L2 aerosol and cloud product employing advanced ground-based lidar measurements (VADAM)

Validation of ADM-Aeolus L2 aerosol and cloud product employing advanced ground-based lidar measurements (VADAM) Validation of ADM-Aeolus L2 aerosol and cloud product employing advanced ground-based lidar measurements (VADAM) V. Amiridis, National Observatory of Athens, Greece U. Wandinger, TROPOS-Leibniz Institute

More information

MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR

MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR T.Colavitto (1) (2), F.Congeduti (1), C.M. Medaglia (1), F. Fierli (1), P. D Aulerio (1) (1) Istituto di Scienze dell

More information

Atmospheric aerosol characterization in the urban area of Napoli

Atmospheric aerosol characterization in the urban area of Napoli Atmospheric aerosol characterization in the urban area of Napoli M.Armenante 1, A. Boselli 2, L. Nasti 3, G.Pica 4 N.Spinelli 3, X.Wang 5 1. INFN Sezione di Napoli - ITALY 2.CNR -IMAAi - ITALY 3. CNISM

More information

Aerosol-type-dependent lidar ratios observed with Raman lidar

Aerosol-type-dependent lidar ratios observed with Raman lidar JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd008292, 2007 Aerosol-type-dependent lidar ratios observed with Raman lidar D. Müller, 1 A. Ansmann, 1 I. Mattis, 1 M. Tesche, 1 U. Wandinger,

More information

microwave profiler: comparisons and synergies

microwave profiler: comparisons and synergies Water vapour Raman lidar and microwave profiler: comparisons and synergies F. Madonna, A. Amodeo, C. Cornacchia, G. D Amico, L. Mona, G. Pappalardo Istituto di Metodologie per l Analisi Ambientale CNR-IMAA,

More information

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution

European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution European ceilometer and lidar networks for aerosol profiling and aviation safety the German contribution Werner Thomas Deutscher Wetterdienst (DWD) Hohenpeissenberg Meteorological Observatory www.dwd.de/ceilomap

More information

Lidar intercomparisons on algorithm and system level in the frame of EARLINET

Lidar intercomparisons on algorithm and system level in the frame of EARLINET Report No. 337 mean deviation [%] 4 2-2 Mean deviations within the atmospheric dust layer of all performed intercomparisons 355 nm 532 nm 164 nm -4 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 Lidar

More information

Integrazione di tecniche di osservazione per la caratterizzazione di aerosol di origine vulcanica

Integrazione di tecniche di osservazione per la caratterizzazione di aerosol di origine vulcanica Integrazione di tecniche di osservazione per la caratterizzazione di aerosol di origine vulcanica Amodeo Aldo, Boselli Antonella, D'Amico Giuseppe, Giunta Aldo, Madonna Fabio, Mona Lucia, Pappalardo Gelsomina

More information

1 Fundamentals of Lidar

1 Fundamentals of Lidar 1 Fundamentals of Lidar The lidar profiling technique (Fiocco, 1963) is based on the study of the interaction between a laser radiation sent into the atmosphere and the atmospheric constituents. The interaction

More information

LAUNCH Concept. Lindenberg Observatory

LAUNCH Concept. Lindenberg Observatory Concept Lindenberg Observatory LAUNCH-2005 International Lindenberg Campaign for Assessment of Humidity- and Cloud- Profiling Systems and its Impact on High-Resolution Modelling Objectives Basic Techniques

More information

Satellite techniques for timely detection and near real-time monitoring of volcanic ash clouds for aviation safety

Satellite techniques for timely detection and near real-time monitoring of volcanic ash clouds for aviation safety Satellite techniques for timely detection and near real-time monitoring of volcanic ash clouds for aviation safety N. Pergola A. Falconieri F. Marchese V. Tramutoli Consiglio Nazionale delle Ricerche Istituto

More information

VALIDATION OF GOMOS HIGH RESOLUTION TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JANUARY AND FEBRUARY 2003

VALIDATION OF GOMOS HIGH RESOLUTION TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JANUARY AND FEBRUARY 2003 VALIDATION OF GOMOS HIGH RESOLUTION TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JANUARY AND FEBRUARY 03 U. Blum and K. H. Fricke Physikalisches Institut der Universität Bonn, D-53115

More information

D. Cimini*, V. Cuomo*, S. Laviola*, T. Maestri, P. Mazzetti*, S. Nativi*, J. M. Palmer*, R. Rizzi and F. Romano*

D. Cimini*, V. Cuomo*, S. Laviola*, T. Maestri, P. Mazzetti*, S. Nativi*, J. M. Palmer*, R. Rizzi and F. Romano* D. Cimini*, V. Cuomo*, S. Laviola*, T. Maestri, P. Mazzetti*, S. Nativi*, J. M. Palmer*, R. Rizzi and F. Romano* * Istituto di Metodologie per l Analisi Ambientale, IMAA/CNR, Potenza, Italy ADGB - Dip.

More information

WLS70: A NEW COMPACT DOPPLER WIND LIDAR FOR BOUNDARY LAYER DYNAMIC STUDIES.

WLS70: A NEW COMPACT DOPPLER WIND LIDAR FOR BOUNDARY LAYER DYNAMIC STUDIES. WLS70: A NEW COMPACT DOPPLER WIND LIDAR FOR BOUNDARY LAYER DYNAMIC STUDIES. VALIDATION RESULTS AND INTERCOMPARISON IN THE FRAME OF THE 8TH CIMO-WMO CAMPAIGN. S. Lolli 1, L.Sauvage 1, M. Boquet 1, 1 Leosphere,

More information

25 TH INTERNATIONAL LASER RADAR CONFERENCE

25 TH INTERNATIONAL LASER RADAR CONFERENCE PROCEEDINGS OF THE TH INTERNATIONAL LASER RADAR CONFERENCE St.-Petersburg 9 July Volume II Proceedings of the th International Laser Radar Conference, 9 July, St.-Petersburg, Russia [Electronic source].

More information

VALIDATION OF MIPAS WATER VAPOR PRODUCTS BY GROUND BASED MEASUREMENTS

VALIDATION OF MIPAS WATER VAPOR PRODUCTS BY GROUND BASED MEASUREMENTS VALIDATION OF MIPAS WATER VAPOR PRODUCTS BY GROUND BASED MEASUREMENTS Gelsomina Pappalardo (1), Tiziana Colavitto (2), Fernando Congeduti (2), Vincenzo Cuomo (1), Beat Deuber (3), Niklaus Kämpfer (3),

More information

Remote sensing of meteorological conditions at airports for air quality issues

Remote sensing of meteorological conditions at airports for air quality issues Remote sensing of meteorological conditions at airports for air quality issues Stefan Emeis, Klaus Schäfer Institute for Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU) Forschungszentrum

More information

Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers

Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers Estimating extinction coefficient and aerosol concentration profiles in the atmospheric surface boundary layer with commercial lidar ceilometers Christoph Münkel Senior Scientist Vaisala GmbH, Hamburg,

More information

Advanced characterization of aerosol properties through the combination of active/ passive ground-based remote sensing (and in situ measurements)

Advanced characterization of aerosol properties through the combination of active/ passive ground-based remote sensing (and in situ measurements) Advanced characterization of aerosol properties through the combination of active/ passive ground-based remote sensing (and in situ measurements) Test of new approaches to retrieve aerosol properties from

More information

STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE

STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE STATISTICS OF OPTICAL AND GEOMETRICAL PROPERTIES OF CIRRUS CLOUD OVER TIBETAN PLATEAU MEASURED BY LIDAR AND RADIOSONDE Guangyao Dai 1, 2*, Songhua Wu 1, 3, Xiaoquan Song 1, 3, Xiaochun Zhai 1 1 Ocean University

More information

Lecture 11: Doppler wind lidar

Lecture 11: Doppler wind lidar Lecture 11: Doppler wind lidar Why do we study winds? v Winds are the most important variable studying dynamics and transport in the atmosphere. v Wind measurements are critical to improvement of numerical

More information

EARLINET observations of the May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling

EARLINET observations of the May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2009), 61B, 325 339 Printed in Singapore. All rights reserved C 2008 The Authors

More information

LAUNCH Concept. Lindenberg Observatory

LAUNCH Concept. Lindenberg Observatory Concept Lindenberg Observatory LAUNCH-2005 International Lindenberg Campaign for Assessment of Humidity- and Cloud- Profiling Systems and its Impact on High-Resolution Modelling Objectives Basic Techniques

More information

Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea

Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea Coordinated lidar observations of Saharan dust over Europe in the frame of EARLINET-ASOS project during CALIPSO overpasses: a strong dust case study analysis with modeling support A. Papayannis a,*, V.

More information

l-- 0 Daytime Raman Lidar Measurements of Water Vapor During the ARM 1997 Water Vapor Intensive Observation Period D.D. Turner' and J.E.M.

l-- 0 Daytime Raman Lidar Measurements of Water Vapor During the ARM 1997 Water Vapor Intensive Observation Period D.D. Turner' and J.E.M. l-- e3 Daytime Raman Lidar Measurements of Water Vapor During the ARM 1997 Water Vapor Intensive Observation Period D.D. Turner' and J.E.M. Goldsmith2 'Pacific Northwest National Laboratory, P.O. Box 999,

More information

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system R. E. Mamouri (1,*), A. Papayannis (1), G. Tsaknakis (1), V. Amiridis (2) and M. Koukouli

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

NASA/GSFC Raman Lidar Instrumentation Available for COPS

NASA/GSFC Raman Lidar Instrumentation Available for COPS NASA/GSFC Raman Lidar Instrumentation Available for COPS David Whiteman, Belay Demoz, NASA/GSFC Zhien Wang, UMBC Paolo Di Girolamo, Univ. of Basillicata Eugenia Kalnay, Univ. of Maryland Zhao Xia Pu, Univ.

More information

VALIDATION OF MIPAS TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JULY AND AUGUST 2002

VALIDATION OF MIPAS TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JULY AND AUGUST 2002 VALIDATION OF MIPAS TEMPERATURE DATA WITH THE U. BONN LIDAR AT THE ESRANGE DURING JULY AND AUGUST 2002 U. Blum and K. H. Fricke Physikalisches Institut der Universität Bonn, D-53115 Bonn, Germany blum@physik.uni-bonn.de

More information

Intercomparison of Mobility Particle Size Spectrometers

Intercomparison of Mobility Particle Size Spectrometers Intercomparison of Mobility Particle Size Spectrometers Project No.: MPSS- 01-3- Basic information: Location of the quality assurance:, lab: 11 Delivery date: April 1, 01 Setup in the laboratory: April

More information

ACTRIS TNA Activity Report

ACTRIS TNA Activity Report ACTRIS TNA Activity Report Quality Assurance Training for Lidar operation at University of Warsaw (QAT4LUW) Project leader: Iwona Stachlewska Participants: Iwona Stachlewska and Montserrat Costa-Surós

More information

Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser

Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser Optic Detectors Calibration for Measuring Ultra-High Energy Extensive Air Showers Cherenkov Radiation by 532 nm Laser S. P. Knurenko 1, a, Yu. A. Egorov 1, b, I. S. Petrov 1, c Yu.G. Shafer Institute of

More information

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( )

Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project ( ) 10 th Anniversary Systematic coordinated Saharan dust profiling over Europe in the frame of the EARLINET project (2000-2010) 2010) Alex PAPAYANNIS (Coordinator) and the EARLINET Team Outline Role of aerosols

More information

A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer

A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer M. Froidevaux 1, I. Serikov 2, S. Burgos 3, P. Ristori 1, V. Simeonov 1, H. Van den Bergh 1, and M.B. Parlange

More information

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system.

First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system. First water vapor measurements over Athens, Greece, obtained by a combined Raman-elastic backscatter lidar system. R.E. MAMOURI 1, A. PAPAYANNIS 1, G. TSAKNAKIS 1, V. AMIRIDIS 2 and M. KOUKOULI 3 1 National

More information

Scanning Raman Lidar Measurements During IHOP

Scanning Raman Lidar Measurements During IHOP Scanning Raman Lidar Measurements During IHOP David N. Whiteman/NASA-GSFC, Belay Demoz/UMBC Paolo Di Girolamo/Univ. of Basilicata, Igor Veselovskii/General Physics Institute, Keith Evans/UMBC, Zhien Wang/UMBC,

More information

MODEL LIDAR COMPARISON OF DUST VERTICAL DISTRIBUTIONS OVER ROME (ITALY) DURING

MODEL LIDAR COMPARISON OF DUST VERTICAL DISTRIBUTIONS OVER ROME (ITALY) DURING MODEL LIDAR COMPARISON OF DUST VERTICAL DISTRIBUTIONS OVER ROME (ITALY) DURING - Pavel Kishcha (), Francesca Barnaba (), Giant P. Gobbi (), Pinhas Alpert (), Alon Shtivelman (), Simon Kricha (), and Joachin

More information

Study on the rainfall dependence structure using radar and rain gauge data

Study on the rainfall dependence structure using radar and rain gauge data International Workshop Advances in Statistical hydrology, May 23-25 2010, Taormina, Italy Study on the rainfall dependence structure using radar and rain gauge data V. Montesarchio, F. Russo, F. Napolitano

More information

SPECIAL PROJECT FINAL REPORT

SPECIAL PROJECT FINAL REPORT SPECIAL PROJECT FINAL REPORT All the following mandatory information needs to be provided. Project Title: A general-purpose data assimilation and forecasting system Computer Project Account: spitfede Start

More information

PoS(ICRC2015)568. An Estimate of the Live Time of Optical Measurements of Air Showers at the South Pole

PoS(ICRC2015)568. An Estimate of the Live Time of Optical Measurements of Air Showers at the South Pole An Estimate of the Live Time of Optical Measurements of Air Showers at the South Pole a and Stephen Drury a a Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA Email: sybenzvi@pas.rochester.edu

More information

EARLINET Observations of Saharan Dust Outbreaks over Europe

EARLINET Observations of Saharan Dust Outbreaks over Europe EARLINET Observations of Saharan Dust Outbreaks over Europe Ulla Wandinger Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany with contributions from the TROPOS Ground Based Remote

More information

EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology

EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology Report No. 348 35û û 1û 2û 3û 4û 6û 6û 5û 5û 4û 4û 3û 35û û 1û 2û 3û 4û 3û EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology by.. Jens Bösenberg Volker Matthias et

More information

ACTRIS TNA Activity Report

ACTRIS TNA Activity Report ACTRIS TNA Activity Report Characterization of Aerosol mixtures of Dust And MArine origin by synergy of lidar, sunphotometer and surface/airborne in situ, ADAMA Natalia Kouremeti Introduction and motivation

More information

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications

ABB Remote Sensing Atmospheric Emitted Radiance Interferometer AERI system overview. Applications The ABB Atmospheric Emitted Radiance Interferometer AERI provides thermodynamic profiling, trace gas detection, atmospheric cloud aerosol study, air quality monitoring, and more. AERI high level overview

More information

Detailed studies of atmospheric calibration in Imaging Cherenkov astronomy. Sam Nolan, Cameron Rulten

Detailed studies of atmospheric calibration in Imaging Cherenkov astronomy. Sam Nolan, Cameron Rulten Detailed studies of atmospheric calibration in Imaging Cherenkov astronomy Sam Nolan, Cameron Rulten http://arxiv.org/abs/1009.0517 (Early Attempts at) Atmospheric Correction With H.E.S.S. (Phase 1) Sam

More information

Interactive comment on A new method for nocturnal aerosol measurements with a lunar photometer prototype by A. Barreto et al.

Interactive comment on A new method for nocturnal aerosol measurements with a lunar photometer prototype by A. Barreto et al. Atmos. Meas. Tech. Discuss., 5, C2450 C2459, 2012 www.atmos-meas-tech-discuss.net/5/c2450/2012/ Author(s) 2012. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric Measurement

More information

E-PROFILE: Glossary of lidar and ceilometer variables. compiled by: I. Mattis and F. Wagner

E-PROFILE: Glossary of lidar and ceilometer variables. compiled by: I. Mattis and F. Wagner E-PROFILE: Glossary of lidar and ceilometer variables compiled by: I. Mattis and F. Wagner March 14 th, 2014 Contents 1 Introduction 4 2 Glossary 5 Theoretical background............................ 5

More information

Lecture 32. Lidar Error and Sensitivity Analysis

Lecture 32. Lidar Error and Sensitivity Analysis Lecture 3. Lidar Error and Sensitivity Analysis Introduction Accuracy in lidar measurements Precision in lidar measurements Error analysis for Na Doppler lidar Sensitivity analysis Summary 1 Errors vs.

More information

Intercomparison of Mobility Particle Size Spectrometers

Intercomparison of Mobility Particle Size Spectrometers Intercomparison of Mobility Particle Size Spectrometers Project No.: MPSS- 201- - 1 Basic information: Principal Investigator: Home Institution: Participant: Instrument No.1: Eija Asmi Finnish Meteorological

More information

LIDAR AND ROBOTIZED TOTAL STATIONS DATA INTEGRATED FOR A 3-D 3 REPRESENTATION: THE MONTAGUTO EARTHFLOW STUDY

LIDAR AND ROBOTIZED TOTAL STATIONS DATA INTEGRATED FOR A 3-D 3 REPRESENTATION: THE MONTAGUTO EARTHFLOW STUDY IRPI Consiglio Nazionale delle Ricerche PROTEZIONE ISTITUTO DI RICERCA PER LA PROTEZIONE IDROGEOLOGICA GEOHAZARD MONITORING GROUP - TORINO LIDAR AND ROBOTIZED TOTAL STATIONS DATA INTEGRATED FOR A 3-D 3

More information

Dense water plumes SW off Spitsbergen Archipelago (Arctic) in

Dense water plumes SW off Spitsbergen Archipelago (Arctic) in Dense water plumes SW off Spitsbergen Archipelago (Arctic) in 2014-2017 Bensi Manuel 1, Langone L. 2, Kovacevic V. 1, Ursella L. 1, Goszczko I. 5, Rebesco M. 1, De Vittor C. 1, Aliani S. 2, Miserocchi

More information

Optical properties of single-layer, double-layer, and bulk MoS2

Optical properties of single-layer, double-layer, and bulk MoS2 Optical properties of single-layer, double-layer, and bulk MoS Alejandro Molina-Sánchez, Ludger Wirtz, Davide Sangalli, Andrea Marini, Kerstin Hummer Single-layer semiconductors From graphene to a new

More information

RESULTS OF MID-LATITUDE MIPAS VALIDATION MEASUREMENTS OBTAINED BY THE SAFIRE-A AIRBORNE SPECTROMETER

RESULTS OF MID-LATITUDE MIPAS VALIDATION MEASUREMENTS OBTAINED BY THE SAFIRE-A AIRBORNE SPECTROMETER (3) RESULTS OF MID-LATITUDE MIPAS VALIDATION MEASUREMENTS OBTAINED BY THE SAFIRE-A AIRBORNE SPECTROMETER U. Cortesi (1), G. Bianchini (1), L. Palchetti (1), E. Castelli (2), B.M. Dinelli (2), G. Redaelli

More information

5.3 INVESTIGATION OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER USING A NOVEL ROBUST ALGORITHM. Christoph Münkel * Vaisala GmbH, Hamburg, Germany

5.3 INVESTIGATION OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER USING A NOVEL ROBUST ALGORITHM. Christoph Münkel * Vaisala GmbH, Hamburg, Germany 5. INVESTIGATION OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER USING A NOVEL ROBUST ALGORITHM Christoph Münkel * Vaisala GmbH, Hamburg, Germany Reijo Roininen Vaisala Oyj, Helsinki, Finland 1. INTRODUCTION

More information

ENVISAT VALIDATION CAMPAIGN AT IMAA CNR

ENVISAT VALIDATION CAMPAIGN AT IMAA CNR ENVISAT VALIDATION CAPAIGN AT IAA CNR Vincenzo Cuomo, Aldo Amodeo, Carmela Cornacchia, Lucia ona, arco Pandolfi, Gelsomina Pappalardo Istituto di etodologie per l Analisi Ambientale, IAA-CNR, C.da S. Loja,

More information

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL)

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Title of project: Study of the atmospheric aerosols, water vapor and temperature by LIDAR Project leader and

More information

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT

AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER ABSTRACT AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER Christoph Münkel 1, Reijo Roininen 1 Vaisala GmbH, Schnackenburgallee 1d, 55 Hamburg, Germany Phone +9 89 1, Fax +9 89 11, E-mail christoph.muenkel@vaisala.com

More information

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL)

Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Name of research institute or organization: École Polytechnique Fédérale de Lausanne (EPFL) Title of project: Study of atmospheric aerosols, water, ozone, and temperature by a LIDAR Project leader and

More information

LIDAR Developments at Clermont-Ferrand France for Atmospheric Observation

LIDAR Developments at Clermont-Ferrand France for Atmospheric Observation Sensors 2015, 15, 3041-3069; doi:10.3390/s150203041 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors LIDAR Developments at Clermont-Ferrand France for Atmospheric Observation Patrick

More information

ADM-Aeolus Progressing Towards Mission Exploitation

ADM-Aeolus Progressing Towards Mission Exploitation ADM-Aeolus Progressing Towards Mission Exploitation Paul Ingmann and Anne Grete Straume Mission Science Division, ESA/ESTEC, Noordwijk, NL Herbert Nett ADM-Aeolus Project, ESA/ESTEC, Noordwijk, NL Oliver

More information

ENVISAT Data Validation with Ground-based Differential Absorption Raman Lidar (DIAL) at Toronto (73.8N, 79.5W) under A.O. ID 153

ENVISAT Data Validation with Ground-based Differential Absorption Raman Lidar (DIAL) at Toronto (73.8N, 79.5W) under A.O. ID 153 ENVISAT Data Validation with Ground-based Differential Absorption Raman Lidar (DIAL) at Toronto (73.8N, 79.5W) under A.O. ID 153 Shiv R. Pal 1, David I. Wardle 2, Hans Fast 2, Richard Berman 3, Richard

More information

Final report on the operation of a Campbell Scientific CS135 ceilometer at Chilbolton Observatory

Final report on the operation of a Campbell Scientific CS135 ceilometer at Chilbolton Observatory Final report on the operation of a Campbell Scientific ceilometer at Chilbolton Observatory Judith Agnew RAL Space 27 th March 2014 Summary A Campbell Scientific ceilometer has been operating at Chilbolton

More information

On the statistical significance of climatic trends estimated from GRUAN tropospheric time series

On the statistical significance of climatic trends estimated from GRUAN tropospheric time series On the statistical significance of climatic trends estimated from GRUAN tropospheric time series Fadwa Alshawaf, Galina Dick, Jens Wickert 1 On the statistical significance of climatic trends estimated

More information

Characterization of free-tropospheric aerosol layers from different source regions

Characterization of free-tropospheric aerosol layers from different source regions Leibniz Institute for Tropospheric Research Leipzig, Germany Characterization of free-tropospheric aerosol layers from different source regions Ina Mattis, Detlef Müller, Albert Ansmann, Ulla Wandinger,

More information

Choosing the proper technique for measuring the particle light absorption

Choosing the proper technique for measuring the particle light absorption Sino-German Symposium on Soot and its Climatic, Environmental and Health Impacts Choosing the proper technique for measuring the particle light absorption Development of an absorption reference Beijing,

More information

Height correction of atmospheric motion vectors (AMVs) using lidar observations

Height correction of atmospheric motion vectors (AMVs) using lidar observations Height correction of atmospheric motion vectors (AMVs) using lidar observations Kathrin Folger and Martin Weissmann Hans-Ertel-Centre for Weather Research, Data Assimilation Branch Ludwig-Maximilians-Universität

More information

A NOVEL RADIOSONDE PAYLOAD TO STUDY UPPER TROPOSPHERIC / LOWER STRATOSPHERIC AEROSOL AND CLOUDS

A NOVEL RADIOSONDE PAYLOAD TO STUDY UPPER TROPOSPHERIC / LOWER STRATOSPHERIC AEROSOL AND CLOUDS A NOVEL RADIOSONDE PAYLOAD TO STUDY UPPER TROPOSPHERIC / LOWER STRATOSPHERIC AEROSOL AND CLOUDS Martin Brabec, Frank G. Wienhold, Marc Wüest, Ulrich Krieger, Thomas Peter Institute for Atmospheric and

More information

GLAS Atmospheric Products User Guide November, 2008

GLAS Atmospheric Products User Guide November, 2008 GLAS Atmospheric Products User Guide November, 2008 Overview The GLAS atmospheric measurements utilize a dual wavelength (532 nm and 1064 nm) transmitting laser to obtain backscattering information on

More information

Supporting information. Tin dioxide electrolyte-gated transistors working in depletion and enhancement

Supporting information. Tin dioxide electrolyte-gated transistors working in depletion and enhancement Supporting information Tin dioxide electrolyte-gated transistors working in depletion and enhancement mode Irina Valitova 1, Marta Maria Natile 2, Francesca Soavi 3, Clara Santato 4 and Fabio Cicoira 1*

More information

Analysis of PAH Mass Spectra Periodicity by Fast Fourier Transform

Analysis of PAH Mass Spectra Periodicity by Fast Fourier Transform Analysis of PAH Mass Spectra Periodicity by Fast Fourier Transform A. Bruno 1, M. Panariello 1, B. Apicella 2, N. Spinelli 1 1 CNISM and Dipartimento di Scienze Fisiche, Università degli Studi di Napoli

More information

Results from the ARM Mobile Facility

Results from the ARM Mobile Facility AMMA Workshop, Toulouse, November 2006 Results from the ARM Mobile Facility Background Anthony Slingo Environmental Systems Science Centre University of Reading, UK Selected results, including a major

More information

Intercomparison of Mobility Particle Size Spectrometers

Intercomparison of Mobility Particle Size Spectrometers Intercomparison of Mobility Particle Size Spectrometers Project No.: MPSS-2015-2-1 Basic information: Location of the quality assurance: TROPOS, lab: 118 Delivery date: - Setup in the laboratory: December

More information

Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde

Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES B CHEMICAL AND PHYSICAL METEOROLOGY Tellus (2011), 63B, 649 676 Printed in Singapore. All rights reserved C 2011 The Authors

More information

HIGH RESOLUTION SOIL MOISTURE CONTENT FROM SENTINEL-1 DATA

HIGH RESOLUTION SOIL MOISTURE CONTENT FROM SENTINEL-1 DATA HIGH RESOLUTION SOIL MOISTURE CONTENT FROM SENTINEL-1 DATA F. Mattia(1), A. Balenzano(1), G. Satalino(1), F. Lovergine(1), A. Loew (2), J. Peng(2&3), U. Wegmuller(4), M. Santoro(4), O. Cartus(4), K. Dabrowska-Zielinska(5),

More information

Spectral surface albedo derived from GOME-2/Metop measurements

Spectral surface albedo derived from GOME-2/Metop measurements Spectral surface albedo derived from GOME-2/Metop measurements Bringfried Pflug* a, Diego Loyola b a DLR, Remote Sensing Technology Institute, Rutherfordstr. 2, 12489 Berlin, Germany; b DLR, Remote Sensing

More information

Luca Fiorani, Bertrand Calpini, Laurent Jaquet, Hubert Van den Bergh, and Eric Durieux

Luca Fiorani, Bertrand Calpini, Laurent Jaquet, Hubert Van den Bergh, and Eric Durieux Correction scheme for experimental biases in differential absorption lidar tropospheric ozone measurements based on the analysis of shot per shot data samples Luca Fiorani, Bertrand Calpini, Laurent Jaquet,

More information

Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion

Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion ESA/IDEAS Project- WP 3440-2 Preliminary testing of new approaches to retrieve aerosol properties from joint photometer-lidar inversion Q. Hu, P. Goloub, O. Dubovik, A. Lopatin, T. Povdin, T. Lopyonok,

More information

Lecture 08. Solutions of Lidar Equations

Lecture 08. Solutions of Lidar Equations Lecture 08. Solutions of Lidar Equations HWK Report #1 Solution for scattering form lidar equation Solution for fluorescence form lidar equation Solution for differential absorption lidar equation Solution

More information

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds.

Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. Lecture 14. Principles of active remote sensing: Lidars. Lidar sensing of gases, aerosols, and clouds. 1. Optical interactions of relevance to lasers. 2. General principles of lidars. 3. Lidar equation.

More information

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements

Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Lecture 28. Aerosol Lidar (4) HSRL for Aerosol Measurements Review of single- and multi-channel aerosol lidars Principle of High Spectral Resolution Lidar (HSRL) HSRL instrumentation University of Wisconsin

More information

Supplement of Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

Supplement of Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar Supplement of Atmos. Chem. Phys., 16, 4539 4554, 2016 http://www.atmos-chem-phys.net/16/4539/2016/ doi:10.5194/acp-16-4539-2016-supplement Author(s) 2016. CC Attribution 3.0 License. Supplement of Studying

More information

ADM-Aeolus ESA s Wind Lidar Mission and its spin-off aerosol profile products

ADM-Aeolus ESA s Wind Lidar Mission and its spin-off aerosol profile products ADM-Aeolus ESA s Wind Lidar Mission and its spin-off aerosol profile products A. Dehn, A.G. Straume, A. Elfving, F. de Bruin, T. Kanitz, D. Wernham, D. Schuettemeyer, F. Buscaglione, W. Lengert European

More information

Easy, Accurate Aerosol Profiling Weather forecasting Atmospheric observation Aviation safety MICRO PULSE LIDAR. Commercial.

Easy, Accurate Aerosol Profiling Weather forecasting Atmospheric observation Aviation safety MICRO PULSE LIDAR. Commercial. MICRO PULSE LIDAR Easy, Accurate Aerosol Profiling Weather forecasting Atmospheric observation Aviation safety Services Division Commercial Division Aerospace Instruments Division SIGMA SPACE CORPORATION

More information

COMPACT MICRO-PULSE BACKSCATTER LIDAR AND EXAMPLES OF MEASUREMENTS IN THE PLANETARY BOUNDARY LAYER *

COMPACT MICRO-PULSE BACKSCATTER LIDAR AND EXAMPLES OF MEASUREMENTS IN THE PLANETARY BOUNDARY LAYER * ENVIRONMENTAL PHYSICS COMPACT MICRO-PULSE BACKSCATTER LIDAR AND EXAMPLES OF MEASUREMENTS IN THE PLANETARY BOUNDARY LAYER * V. MITEV 1, R. MATTHEY 2, V. MAKAROV 3 1 CSEM, Rue de l Observatoire 58, Neuchâtel,

More information

Deriving aerosol scattering ratio using range-resolved lidar ratio

Deriving aerosol scattering ratio using range-resolved lidar ratio PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 391 395 Deriving aerosol scattering ratio using range-resolved lidar ratio REJI K DHAMAN 1, V KRISHNAKUMAR 1, V

More information

PARAFOG: a new decision support system for the airports to monitor and to predict radiation fog based on automatic LIDARceilometer

PARAFOG: a new decision support system for the airports to monitor and to predict radiation fog based on automatic LIDARceilometer PARAFOG: a new decision support system for the airports to monitor and to predict radiation fog based on automatic LIDARceilometer measurements Quentin Laffineur Royal Meteorological Institute of Belgium

More information