Perception of brightness. Perception of Brightness. Physical measures 1. Light Ray. Physical measures 2. Light Source

Size: px
Start display at page:

Download "Perception of brightness. Perception of Brightness. Physical measures 1. Light Ray. Physical measures 2. Light Source"

Transcription

1 Perception of Brightness The physics and psychophysics Perception of brightness psychophysics: relate psychological measures to physical ones perception of brightness is one of the simplest aspects of vision to study what is the relationship between psychological perception of brightness physical parameters of light intensity January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Physical measures 1. Light Ray Physical measures 2. Light Source Amp Property: intensity = (amplitude) 2 = energy/sec Property: radiance = total energy / sec (all light produced) l = power Units: watts Units: watts, lumens (1 lumen 1mW) 120 volt, 100 watt "standard" bulb produces ~1750 lumens January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

2 Physical measures 3. Light Received Property: irradiance = power / area (total falling on surface from all directions) Units: watts/m 2, lumens/m 2 Physical measures 4. Light Reflected Property: reflectance (albedo) = outgoing light incoming light Units: fraction (between 0 and 1) - 0 = total absorption (black) - 1 = total reflection (white) January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Psychological measures Brightness subjective estimate of intensity? radiance? irradiance? reflectance? of light from a light source or from a reflecting surface Psychological measures Lightness subjective estimate of the whiteness of a surface: intensity? radiance? irradiance? reflectance? January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

3 Relating physical and psychological measures 1. brightness versus intensity 2. brightness versus wavelength 3. brightness depends on surroundings 4. lightness depends on illumination Relating physical and psychological measures 1. brightness versus intensity 2. brightness versus wavelength 3. brightness depends on surroundings 4. lightness depends on illumination January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Brightness versus intensity standard light at fixed intensity test light with adjustable intensity adjust power of test until just begins to differ just noticeable difference: JND Brightness versus intensity Intensity = 10 W Intensity = 12 W Light 1 Light 2 Standard Test A just noticeable difference (JND) at 11W 1 W above standard January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

4 Forced-choice Response Forced-choice Response January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Forced-choice Response Forced-choice Response Intensity = 13 W Intensity = 10 W January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

5 Forced-choice Response Forced-choice Response January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Forced-choice Response Psychometric function accuracy (probability correct) as a function of intensity of test light Standard = 10W Analyse accuracy of response versus intensity of lights Probability of correct response 100% Probability of rrect response 50% Intensity of test light January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

6 Psychometric function accuracy (probability correct) as a function of intensity of test light Psychometric function accuracy (probability correct) as a function of intensity of test light January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Weber s Law for a large range of intensities: DI / I = constant For I = 10 W, jnd DI = 0.8W For I = 30 W, jnd DI = 2.5W For I = 50 W, jnd DI = 4.0W DI / I =.08 DI / I =.08 DI / I =.08 Weber s Law for a large range of intensities: DI / I = k k = Weber constant different value of k for different senses light intensity: k = 0.08 sound intensity: k = 0.05 January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

7 Relating physical and psychological measures 1. brightness versus intensity 2. brightness versus wavelength 3. brightness depends on surroundings Brightness depends on wavelength Light 1: at one wavelength Light 2: at different wavelength Adjust power of second light until its brightness is the same as the first January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Brightness depends on wavelength Light 1: at one wavelength Light 2: at different wavelength Brightness depends on wavelength Light 1: at one wavelength Light 2: at different wavelength Adjust power of second light until its brightness is the same as the first Adjust power of second light until its brightness is the same as the first January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

8 Brightness depends on wavelength Light 1: at one wavelength Light 2: at different wavelength Result: Luminosity Curve different wavelengths have different luminosities some wavelengths are brighter than others Power = 10 W Power = 3 W Light 1 Light 2 Adjust power of second light until its brightness is the same as the first January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Luminosity Curve Luminosity Curve in daylight at night in daylight Luminosity Luminosity wavelength (nm) wavelength (nm) January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

9 Luminosity Curve Luminosity Curve Purkinje shift at night in daylight at night in daylight Luminosity Scotopic vision (rods) Photopic vision (cones) Luminosity 0.6 Luminosity 0.4 Scotopic vision (rods) Photopic vision (cones) wavelength (nm) wavelength (nm) January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Pulfrich Effect Relating physical and psychological measures 1. brightness versus intensity 2. brightness versus wavelength 3. brightness depends on surroundings 4. lightness depends on illumination January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

10 Simultaneous brightness contrast: two squares of the same intensity Simultaneous brightness contrast: left one looks brighter January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Simultaneous brightness contrast: pattern increases difference Recall structuralism perception of each patch = atom atoms are independent perception of patch should not be influenced by surroundings but it is Visual system always takes context into account visual intelligence January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

11 Is this lateral inhibition? reduction of signal when neighboring areas are active Context matters! simultaneous brightness contrast affected by immediate surrounding and context further away the right context can make this effect even stronger January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison The snake illusion (Adelson) Relating physical and psychological measures 1. brightness versus intensity 2. brightness versus wavelength 3. brightness depends on surroundings 4. lightness depends on illumination January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

12 Lightness depends on illumination one patch (on a simple background) estimate lightness of patch when different illumination is used Result? Lightness unaffected by illumination lightness constancy Visual system computes lightness as a ratio = intensity of light from square intensity of light from background January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison Lightness is invariant under illumination level Thus, obtain an estimate that is a property of the world (object surface) doesn t change with lighting Finally What was the purpose of this presentation? Which question remains unanswered? rather than the image (light on retina) does change with lighting January 22, 2002 Psyc , Term 2, Copyright Jason Harrison January 22, 2002 Psyc , Term 2, Copyright Jason Harrison

Introduction to Colorimetry

Introduction to Colorimetry IES NY Issues in Color Seminar February 26, 2011 Introduction to Colorimetry Jean Paul Freyssinier Lighting Research Center, Rensselaer Polytechnic Institute Troy, New York, U.S.A. sponsored by www.lrc.rpi.edu/programs/solidstate/assist

More information

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1 Simple model: simple reflectance/illumination model Eye illumination source i(n 1,n 2 ) image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) reflectance term r(n 1,n 2 ) where 0 < i(n 1,n 2 ) < 0 < r(n 1,n 2 )

More information

Detectability measures the difference between the means of the noisy ``signal'' distribution and the ``noise-only'' distribution.

Detectability measures the difference between the means of the noisy ``signal'' distribution and the ``noise-only'' distribution. VISUAL PERCEPTION Here is the Visual Perception Video Outline. Visual Perception is another subject where a conceptual understanding of the big picture is critical. When there are equations, pay particular

More information

The Visual Perception of Images

The Visual Perception of Images C. A. Bouman: Digital Image Processing - January 8, 2018 1 The Visual Perception of Images In order to understand images you must understand how humans perceive visual stimulus. Objectives: Understand

More information

BASIC VISUAL SCIENCE CORE

BASIC VISUAL SCIENCE CORE BASIC VISUAL SCIENCE CORE Absolute and Increment Thresholds Ronald S. Harwerth Fall, 2016 1. Psychophysics of Vision 2. Light and Dark Adaptation Michael Kalloniatis and Charles Luu 1 The Neuron Doctrine

More information

Section 22. Radiative Transfer

Section 22. Radiative Transfer OPTI-01/0 Geometrical and Instrumental Optics Copyright 018 John E. Greivenkamp -1 Section Radiative Transfer Radiometry Radiometry characterizes the propagation of radiant energy through an optical system.

More information

Section 10. Radiative Transfer

Section 10. Radiative Transfer Section 10 Radiative Transfer 10-1 OPTI-50 Optical Design and Instrumentation I Copyright 017 John E. Greivenkamp Radiometry Radiometry characterizes the propagation of radiant energy through an optical

More information

Radiometry. Energy & Power

Radiometry. Energy & Power Radiometry Radiometry is the measurement of optical radiation, corresponding to wavelengths between 0.01 and 1000 μm, and includes the regions commonly called the ultraviolet, the visible and the infrared.

More information

Color perception SINA 08/09

Color perception SINA 08/09 Color perception Color adds another dimension to visual perception Enhances our visual experience Increase contrast between objects of similar lightness Helps recognizing objects However, it is clear that

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 3 Introductory Photometry Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 017 Sayfa 1 Introduction

More information

Color and compositing

Color and compositing Color and compositing 2D Computer Graphics: Diego Nehab Summer 208. Radiometry Measurement of radiant energy in terms of absolute power Wave vs. particle Wavelength (λ), frequency (ν = c λ ), and amplitude

More information

Color vision and colorimetry

Color vision and colorimetry Color vision and colorimetry Photoreceptor types Rods Scotopic vision (low illumination) Do not mediate color perception High density in the periphery to capture many quanta Low spatial resolution Many-to-one

More information

Color Image Correction

Color Image Correction FLDE. p. 1/48 Color Image Correction Benasque, September 2007 Vicent Caselles Departament de Tecnologia Universitat Pompeu Fabra joint work with M.Bertalmío, R. Palma, E. Provenzi FLDE. p. 2/48 Overview

More information

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Course Philosophy" Rendering! Computer graphics! Estimation! Computer vision! Robot vision" Remote sensing! lhm

More information

Theory of colour measurement Contemporary wool dyeing and finishing

Theory of colour measurement Contemporary wool dyeing and finishing Theory of colour measurement Contemporary wool dyeing and finishing Dr Rex Brady Deakin University Colour measurement theory Topics 1. How we see colour 2. Generation of colours 3. Measurement of colour

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

Lighting fundamentals

Lighting fundamentals Lighting fundamentals About light and photometrics Generation of light Human vision Black body Colour Basic principles of lighting Light sources Light Vision Colour What is light? Light is electromagnetic

More information

Mesopic Photometry for SSL. Teresa Goodman Metrology for SSL Meeting 24 th April 2013

Mesopic Photometry for SSL. Teresa Goodman Metrology for SSL Meeting 24 th April 2013 Mesopic Photometry for SSL Teresa Goodman Metrology for SSL Meeting 24 th April 2013 Outline Brief overview of CIE system for mesopic photometry Relevance of mesopic photometry for SSL Is mesopic photometry

More information

12H The Observability of Offshore Wind Turbine Lighting

12H The Observability of Offshore Wind Turbine Lighting HUMAN ENVIRONMENT The Observability of Offshore Wind Turbine Lighting Appendix 12H 12H The Observability of Offshore Wind Turbine Lighting PREFACE 1 This technical report has been produced to accompany

More information

Introduction to Computer Vision Radiometry

Introduction to Computer Vision Radiometry Radiometry Image: two-dimensional array of 'brightness' values. Geometry: where in an image a point will project. Radiometry: what the brightness of the point will be. Brightness: informal notion used

More information

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh

CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh CLINICAL VISUAL OPTICS (OPTO 223) Weeks XII & XIII Dr Salwa Alsaleh OUTLINE OF WEEKS XII & XIII Temporal resolution Temporal Summation. Broca-Sulzer effect. Critical flicker frequency (CFF). Temporal Contrast

More information

Fundametals of Rendering - Radiometry / Photometry

Fundametals of Rendering - Radiometry / Photometry Fundametals of Rendering - Radiometry / Photometry Physically Based Rendering by Pharr & Humphreys Chapter 5: Color and Radiometry Chapter 6: Camera Models - we won t cover this in class Realistic Rendering

More information

Light: Transverse WAVE

Light: Transverse WAVE Light Longitudinal WAVES Light: Transverse WAVE Light: Particle or wave Photon The Wave Nature of Light 1. Unlike other branches of science, astronomers cannot touch or do field work on their samples.

More information

PH104 Lab 5 Stellar Classification Pre-Lab

PH104 Lab 5 Stellar Classification Pre-Lab Name: Lab Time: 1 PH104 Lab 5 Stellar Classification Pre-Lab 5.1 Goals This is a series of labs designed to help is in understanding the nature and lives of stars. There are 3 total labs in this sequence.

More information

Radiometry, photometry, measuring color

Radiometry, photometry, measuring color Radiometry, photometry, measuring color Lecture notes are done by Géza Várady, based on the lecture notes of Prof. János Schanda varady.geza@mik.pte.hu University of Pécs, Faculty of Engineering and Information

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed?

What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed? What is a receptive field? Why a sensory neuron has such particular RF How a RF was developed? x 1 x 2 x 3 y f w 1 w 2 w 3 T x y = f (wx i i T ) i y The receptive field of a receptor is simply

More information

POST-PROCESSING OF RADIANCE IMAGES: VIRTUAL LIGHTING LABORATORY

POST-PROCESSING OF RADIANCE IMAGES: VIRTUAL LIGHTING LABORATORY Scientific Applications Using Radiance University of Applied Sciences of Fribourg Sep. 30 -- Oct. 1, 2002. POST-PROCESSING OF RADIANCE IMAGES: VIRTUAL LIGHTING LABORATORY Mehlika Inanici University of

More information

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Spatial Vision: Primary Visual Cortex (Chapter 3, part 1) Lecture 6 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Chapter 2 remnants 2 Receptive field:

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically Based Rendering

More information

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry CMPT 461/761 Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically

More information

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels Energy What makes the color pink? Black and white TV summary Picture made from a grid of dots (pixels) Dots illuminated when electron beam hits phosphor Beam scanned across entire screen ~ 50 times a second

More information

Basic Optical Concepts. Oliver Dross, LPI Europe

Basic Optical Concepts. Oliver Dross, LPI Europe Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell s Law: Sin( φi ) Sin( φ ) f = n n f i n i Media Boundary φ i n f φ φ f angle of exitance 90 80 70 60 50 40 30 20 10 0 internal

More information

Facts of light. Sanjay Joshi. PDF version by Baldasso, L. F.

Facts of light. Sanjay Joshi. PDF version by Baldasso, L. F. Facts of light Sanjay Joshi PDF version by Baldasso, L. F. Introduction: Part I: What is Light? The choice of lighting is one the most important decisions to make when setting up a reef tank. The light

More information

Friday 8 September, :00-4:00 Class#05

Friday 8 September, :00-4:00 Class#05 Friday 8 September, 2017 3:00-4:00 Class#05 Topics for the hour Global Energy Budget, schematic view Solar Radiation Blackbody Radiation http://www2.gi.alaska.edu/~bhatt/teaching/atm694.fall2017/ notes.html

More information

Brightness induction: Unequal spatial integration with increments and decrements

Brightness induction: Unequal spatial integration with increments and decrements Visual Neuroscience (2004), 21, 353 357. Printed in the USA. Copyright 2004 Cambridge University Press 0952-5238004 $16.00 DOI: 10.10170S0952523804213037 Brightness induction: Unequal spatial integration

More information

Radiometry. Nuno Vasconcelos UCSD

Radiometry. Nuno Vasconcelos UCSD Radiometry Nuno Vasconcelos UCSD Light Last class: geometry of image formation pinhole camera: point (x,y,z) in 3D scene projected into image pixel of coordinates (x, y ) according to the perspective projection

More information

2. Lighting Terms. Contents

2. Lighting Terms. Contents Contents 2. Lighting Terms 2.1 Vision 2.2 Spectral sensitivity of the eye 2.3 Radiometric quantities 2.4 Photometric quantities 2.5 Energy and light efficiency 2.6 Colour coordinates 2.7 Colour temperature

More information

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0. Name: Date: 1. How far away is the nearest star beyond the Sun, in parsecs? A) between 1 and 2 pc B) about 12 pc C) about 4 pc D) between 1/2 and 1 pc 2. Parallax of a nearby star is used to estimate its

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

An Experimental Approach to a Definition of the Mesopic Adaptation Field

An Experimental Approach to a Definition of the Mesopic Adaptation Field May 29 June 1, 2012 NRC Ottawa, Ontario CORM 2012 Annual Conference and Business Meeting An Experimental Approach to a Definition of the Mesopic Adaptation Field Tatsukiyo Uchida*, Yoshi Ohno** *Panasonic

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

University of California, Berkeley, California, U.S.A. (Received 14 June 1965)

University of California, Berkeley, California, U.S.A. (Received 14 June 1965) J. Phy8iol. (1965), 181, pp. 881-894 881 With 8 text-ftgure8 Printed in Great Britain SPATIAL INTERACTION IN THE HUMAN RETINA DURING SCOTOPIC VISION BY G. WESTHEIMER From the Neurosensory Laboratory, School

More information

M10/4/PHYSI/SP3/ENG/TZ2/XX/M+ MARKSCHEME. May 2010 PHYSICS. Standard Level. Paper pages

M10/4/PHYSI/SP3/ENG/TZ2/XX/M+ MARKSCHEME. May 2010 PHYSICS. Standard Level. Paper pages M10/4/PHYSI/SP/ENG/TZ2/XX/M+ MARKSCHEME May 2010 PHYSICS Standard Level Paper 17 pages 2 M10/4/PHYSI/SP/ENG/TZ2/XX/M+ This markscheme is confidential and for the exclusive use of examiners in this examination

More information

ENVIRONMENTAL SYSTEMS

ENVIRONMENTAL SYSTEMS LIGHT http://map.gsfc.nasa.gov/media/ Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 study carrel in Phillips Exeter Library; a celebration of light and of material (by L. Kahn) Kahn on Light

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing VI. Retinal fundamentals A. Retinal fundamentals and cone photopigments B. Properties of cone

More information

Color Basics. Lecture 2. Electromagnetic Radiation - Spectrum. Spectral Power Distribution

Color Basics. Lecture 2. Electromagnetic Radiation - Spectrum. Spectral Power Distribution ectur Color Basics Wavelength Encoding Trichromatic Color Theory Color Matching Experiments -2-8 -4 4 8 Wavelength in meters (m) Newton s Experiment Visible light 4nm 5nm 6nm 7nm Wavelength 665, Cambridge

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 6, 2016 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

Simultaneous lightness contrast with double increments

Simultaneous lightness contrast with double increments Perception, 2001, volume 30, pages 889 ^ 897 DOI:10.1068/p3103 Simultaneous lightness contrast with double increments Paola Bressan, Rossana Actis-Grosso Dipartimento di Psicologia Generale, Universita

More information

Announcements. Office hours this Tuesday will be 1-2 pm.

Announcements. Office hours this Tuesday will be 1-2 pm. Announcements Scores for first exam on ICON The average was 53.4 or 67%. The curve is A:80-68, B:64-56, C:52-40, D:36-32, F < 30. Material for problem about Kepler satellite was not adequately covered,

More information

March 26, Title: TEMPO 21 Report. Prepared for: Sviazinvest, OJSC. Prepared by: Cree Durham Technology Center (DTC) Ticket Number: T

March 26, Title: TEMPO 21 Report. Prepared for: Sviazinvest, OJSC. Prepared by: Cree Durham Technology Center (DTC) Ticket Number: T March 26, 2012 Title: TEMPO 21 Report Prepared for: Sviazinvest, OJSC Prepared by: Cree Durham Technology Center (DTC) Ticket Number: 10806-T Co NVLAP lab code 500070-0 The accreditation of the Cree Durham

More information

Colour Part One. Energy Density CPSC 553 P Wavelength 700 nm

Colour Part One. Energy Density CPSC 553 P Wavelength 700 nm Colour Part One Energy Density 400 Wavelength 700 nm CPSC 553 P 1 Human Perception An Active Organising Process Many illusions experiments from psychology Colour not just a matter of measuring wavelength

More information

Properties of Stars (continued) Some Properties of Stars. What is brightness?

Properties of Stars (continued) Some Properties of Stars. What is brightness? Properties of Stars (continued) Some Properties of Stars Luminosity Temperature of the star s surface Mass Physical size 2 Chemical makeup 3 What is brightness? Apparent brightness is the energy flux (watts/m

More information

Radiometry and Photometry

Radiometry and Photometry Radiometry and Photometry Measuring spatial properties of light Radiant power Radiant intensity Irradiance Inverse square law and cosine law Radiance Radiant exitance (radiosity) From London and Upton

More information

Color vision and colorimetry

Color vision and colorimetry Color vision and colorimetry Photoreceptor types Rods Scotopic vision (low illumination) Do not mediate color perception High density in the periphery to capture many quanta Low spatial resolution Many-to-one

More information

Perez All-Weather Sky Model Analysis

Perez All-Weather Sky Model Analysis Perez All-Weather Sky Model Analysis Author: Ian Ashdown, byheart Consultants Limited Date: March 8 th, 29 The Radiance extension utility gendaylit implements the Perez All-Weather Sky model. There are

More information

05/02/2018. The human eye. Vision: the human eye. The human eye. The human eye

05/02/2018. The human eye. Vision: the human eye. The human eye. The human eye Vision: the human eye The human eye 6-7*10^6 75-150*10^6 Note: optical nerve has ~ 1*10^6 fibers Subsystems: Optical Mechanical Transduction Signal processing Data compression Fovea:1.5x1.5mm The human

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux When you compare gamma ray photons with photons of radio waves, which of the following is true? Gamma rays have a shorter wavelength and less energy Gamma rays have a shorter wavelength and same energy

More information

HEATING THE ATMOSPHERE

HEATING THE ATMOSPHERE HEATING THE ATMOSPHERE Earth and Sun 99.9% of Earth s heat comes from Sun But

More information

Screen-space processing Further Graphics

Screen-space processing Further Graphics Screen-space processing Rafał Mantiuk Computer Laboratory, University of Cambridge Cornell Box and tone-mapping Rendering Photograph 2 Real-world scenes are more challenging } The match could not be achieved

More information

Notes: Ohm s Law and Electric Power

Notes: Ohm s Law and Electric Power Name: Date: / / 644 Intro Physics Notes: Ohm s Law and Electric Power Ohm s Law: Important Terms Term Symbol Units Definition 1. current I amps flow of electric charges through a conductor 2. voltage V

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 8, 2015 Prof. Donald P. Greenberg What is Color Science? Quantifying the physical energy which

More information

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p.

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. Preface p. xiii Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. 4 Fundamental Definitions p. 7 Lambertian Radiators

More information

ASSESSMENT OF NON-COHERENT LIGHT SOURCES

ASSESSMENT OF NON-COHERENT LIGHT SOURCES ASSESSMENT OF NON-COHERENT LIGHT SOURCES David Egan Snr Team Leader Laser Science Support Orion Laser Facility AWE, UK Page 1 Introduction Laser safety is accepted However there is a certain reticence

More information

Spectral and photopic studies for high intensity discharge (HID) lamps

Spectral and photopic studies for high intensity discharge (HID) lamps Int. J. Metrol. Qual. Eng. 6, 105 (2015) c EDP Sciences 2015 DOI: 10.1051/ijmqe/2015005 Spectral and photopic studies for high intensity discharge (HID) lamps A.-E.A. Abd-Elmageed and E.M. El-Moghazy National

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Sources, Surfaces and Scatter

Sources, Surfaces and Scatter Sources, Surfaces and Scatter An investigation into the interaction of light sources, surfaces, eyes & the scattering of light by the atmosphere David M. Keith, FIES Jefferey F. Knox IESNA Roadway Lighting

More information

Combining Visual and Photoelectric Observations of Semiregular Red Variables

Combining Visual and Photoelectric Observations of Semiregular Red Variables Moon et al., JAAVSO Volume 36, 2008 77 Combining Visual and Photoelectric Observations of Semiregular Red Variables Terry T. Moon Astronomical Society of South Australia (ASSA), GPO Box 199, Adelaide,

More information

Note on Posted Slides. History of Light. History of Light

Note on Posted Slides. History of Light. History of Light Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 27, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008)

DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008) DEA 350: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Spring 2008) NAME: HOMEWORK II Due Date: 24 th April in class (NOTE: You will need to consult the readings as well as your class notes to complete the homework.

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

Photometric, geometric and perceptual factors in illumination-independent lightness constancy

Photometric, geometric and perceptual factors in illumination-independent lightness constancy Photometric, geometric and perceptual factors in illumination-independent lightness constancy SORANZO, Alessandro and AGOSTINI, Tiziano Available from Sheffield Hallam University Research Archive (SHURA)

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

Effect of luminance on suprathreshold contrast perception

Effect of luminance on suprathreshold contrast perception 1352 J. Opt. Soc. Am. A/Vol. 8, No. 8/August 1991 Peli et al. Effect of luminance on suprathreshold contrast perception Eli Peli Physiological Optics nit, Eye Research Institute, Boston, Massachusetts

More information

OBSERVATIONAL ASTROPHYSICS AND DATA ANALYSIS. Vitaly Neustroev

OBSERVATIONAL ASTROPHYSICS AND DATA ANALYSIS. Vitaly Neustroev OBSERVATIONAL ASTROPHYSICS AND DATA ANALYSIS Vitaly Neustroev Contact details Location: FY 272 Telephone: 5531930 Email: vitaly.neustroev@oulu.fi Web: http://cc.oulu.fi/~vneustro/ Content Observational

More information

JNDs, adaptation, and ambient illumination

JNDs, adaptation, and ambient illumination JNDs, adaptation, and ambient illumination Giovanni Ramponi IPL, University of Trieste, Italy Rev. Jul 2012 The observations we make are based on: some properties of the Human Visual System (HVS), the

More information

ATMS 321 Problem Set 1 30 March 2012 due Friday 6 April. 1. Using the radii of Earth and Sun, calculate the ratio of Sun s volume to Earth s volume.

ATMS 321 Problem Set 1 30 March 2012 due Friday 6 April. 1. Using the radii of Earth and Sun, calculate the ratio of Sun s volume to Earth s volume. ATMS 321 Problem Set 1 30 March 2012 due Friday 6 April 1. Using the radii of Earth and Sun, calculate the ratio of Sun s volume to Earth s volume. 2. The Earth-Sun distance varies from its mean by ±1.75%

More information

N14/4/PHYSI/SP3/ENG/TZ0/XX/M MARKSCHEME. November 2014 PHYSICS. Standard Level. Paper pages

N14/4/PHYSI/SP3/ENG/TZ0/XX/M MARKSCHEME. November 2014 PHYSICS. Standard Level. Paper pages N14/4/PHYSI/SP3/ENG/TZ0/XX/M MARKSCHEME November 014 PHYSICS Standard Level Paper 3 16 pages N14/4/PHYSI/SP3/ENG/TZ0/XX/M This markscheme is the property of the International Baccalaureate and must not

More information

A Study of Mesopic Adaptation conditions for Night Drivers using an approximation for Oncoming headlight glare

A Study of Mesopic Adaptation conditions for Night Drivers using an approximation for Oncoming headlight glare A Study of Mesopic Adaptation conditions for Night Drivers using an approximation for Oncoming headlight glare Robert L. Donofrio www.displayconsultants.com 1 This presentation is in part a review of our

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017)

DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017) DEA 3500: HUMAN FACTORS: THE AMBIENT ENVIRONMENT (Fall 2017) NAME: HOMEWORK 3 Due Date: November 21st in class (NOTE: You will need to consult the readings as well as your class notes to complete the homework)

More information

VI. Terminology for Display

VI. Terminology for Display Special Topics in Display Technology 1 st semester, 2015 VI. Terminology for Display * Reference books: [Light Measurement Handbook] (http://www.intl-light.com) [ 응용광학 ] ( 두양사 ) 21 장 Radiometry and Photometry

More information

Radiometry HW Problems 1

Radiometry HW Problems 1 Emmett J. Ientilucci, Ph.D. Digital Imaging and Remote Sensing Laboratory Rochester Institute of Technology March 7, 007 Radiometry HW Problems 1 Problem 1. Your night light has a radiant flux of 10 watts,

More information

Meteorology Pretest on Chapter 2

Meteorology Pretest on Chapter 2 Meteorology Pretest on Chapter 2 MULTIPLE CHOICE 1. The earth emits terrestrial radiation a) only at night b) all the time c) only during winter d) only over the continents 2. If an imbalance occurs between

More information

Sky Glow from Cities : The Army Illumination Model v2

Sky Glow from Cities : The Army Illumination Model v2 Sky Glow from Cities : The Army Illumination Model v2 Richard Shirkey Army Research Laboratory Computational & Information Sciences Directorate Battlefield Environment Division WSMR, NM richard.shirkey@us.army.mil

More information

Describing the Strength of Visible Light

Describing the Strength of Visible Light Describing the Strength of Visible Light Douglas A. Kerr, P.E. Issue 2 August 31, 2003 INTRODUCTION In many types of technical work it is necessary to describe the strength 1 of visible light. The matter

More information

Atmospheric Radiation

Atmospheric Radiation Atmospheric Radiation NASA photo gallery Introduction The major source of earth is the sun. The sun transfer energy through the earth by radiated electromagnetic wave. In vacuum, electromagnetic waves

More information

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation?

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation? 5 Radiation and Spectra 1 Radiation and Spectra What is light? According to Webster: a.something that makes vision possible b.the sensation aroused by stimulation of the visual receptors c.electromagnetic

More information

Study of the reliability of power LEDs for color mixing applications

Study of the reliability of power LEDs for color mixing applications Università degli studi di padova FACOLTÀ DI INGEGNERIA Corso di Laurea in Elettronica TESI DI LAUREA Study of the reliability of power LEDs for color mixing applications Relatore: Ch.mo Prof. Enrico Zanoni

More information

Lamp measurement report - 14 Sep 2014 QB-LLB-5W-DC Q-Bright E27 LED Bulb 2800K 5W 500LM Dimmable Clear by Eleqtron

Lamp measurement report - 14 Sep 2014 QB-LLB-5W-DC Q-Bright E27 LED Bulb 2800K 5W 500LM Dimmable Clear by Eleqtron QB-LLB-5W-DC Q-Bright E27 LED Bulb 2800K 5W 500LM Dimmable Clear by Eleqtron Page 1 of 28 Summary measurement data parameter meas result remark Color temperature 2702 K warm white Luminous intensity I_v

More information

8/13/10. Visual perception of human motion. Outline. Niko Troje BioMotionLab. Perception is. Stimulus Sensation Perception. Gestalt psychology

8/13/10. Visual perception of human motion. Outline. Niko Troje BioMotionLab. Perception is. Stimulus Sensation Perception. Gestalt psychology Visual perception of human motion Outline Niko Troje BioMotionLab! Vision from the psychologist s point of view: A bit of history and a few concepts! Biological motion: perception and analysis Department

More information

L ight color influence on obstacle recognition in road lighting. 1. Introduction

L ight color influence on obstacle recognition in road lighting. 1. Introduction Computer Applications in Electrical Engineering L ight color influence on obstacle recognition in road lighting Małgorzata Górczewska, Sandra Mroczkowska, Przemysław Skrzypczak Poznań University of Technology

More information

15 Grossberg Network 1

15 Grossberg Network 1 Grossberg Network Biological Motivation: Vision Bipolar Cell Amacrine Cell Ganglion Cell Optic Nerve Cone Light Lens Rod Horizontal Cell Retina Optic Nerve Fiber Eyeball and Retina Layers of Retina The

More information

1. Data analysis question.

1. Data analysis question. 1. Data analysis question. The photograph below shows a magnified image of a dark central disc surrounded by concentric dark rings. These rings were produced as a result of interference of monochromatic

More information

A Model of Local Adaptation supplementary information

A Model of Local Adaptation supplementary information A Model of Local Adaptation supplementary information Peter Vangorp Bangor University, UK & MPI Informatik, Germany Karol Myszkowski MPI Informatik, Germany Erich W. Graf University of Southampton, United

More information