Fundamentals of Rendering - Radiometry / Photometry

Size: px
Start display at page:

Download "Fundamentals of Rendering - Radiometry / Photometry"

Transcription

1 Fundamentals of Rendering - Radiometry / Photometry CMPT 461/761 Image Synthesis Torsten Möller

2 Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2

3 Reading Chapter 5 of Physically Based Rendering by Pharr&Humphreys Chapter 2 (by Hanrahan) Radiosity and Realistic Image Synthesis, in Cohen and Wallace. pp and Chapter 13 in Principles of Digital Image Synthesis, by Glassner. Radiometry FAQ rpfaq.htm

4 The physics of light 4

5 Realistic Rendering Determination of Intensity Mechanisms Emittance (+) Absorption (-) Scattering (+) (single vs. multiple) Cameras or retinas record quantity of light

6 Pertinent Questions Nature of light and how it is: Measured Characterized / recorded (local) reflection of light (global) spatial distribution of light Steady state light transport?

7 What Is Light? Light - particle model (Newton) Light travels in straight lines Light can travel through a vacuum (waves need a medium to travel) Light wave model (Huygens): electromagnetic radiation: sinusoidal wave formed coupled electric (E) and magnetic (H) fields Dispersion / Polarization Transmitted/reflected components Pink Floyd

8 Electromagnetic spectrum

9 Optics Geometrical or ray Traditional graphics Reflection, refraction Optical system design Physical or wave Diffraction, interference Interaction of objects of size comparable to wavelength Quantum or photon optics Interaction of light with atoms and molecules

10 Nature of Light Wave-particle duality Wave packets which emulate particle transport. Explain quantum phenomena. Incoherent as opposed to laser. Waves are multiple frequencies, and random in phase. Polarization Ignore. Un-polarized light has many waves summed all with random orientation

11 Today The physics of light Radiometric quantities Photometry vs/ Radiometry 11

12 Radiometric quantities 12

13 Radiometry Science of measuring light Analogous science called photometry is based on human perception.

14 Radiometric Quantities Function of wavelength, time, position, direction, polarization. g(, t, r,, ) Assume wavelength independence No phosphorescence, fluorescence g(t, r,, ) Incident wavelength λ 1 exit λ 1 Steady State Light travels fast No luminescence phenomena - Ignore it g(r,, )

15 Result five dimensions Adieu Polarization Would likely need wave optics to simulate Two quantities Position (3 components) Direction (2 components) g(r, )

16 Radiometry - Quantities Energy Q Power Φ - J/s or W Energy per time (radiant power or flux) Irradiance E and Radiosity B - W/m 2 Power per area Intensity I - W/sr Power per solid angle Radiance L - W/sr/m 2 Power per projected area and solid angle

17 Radiant Energy - Q Think of photon as carrying quantum of energy hc/λ = hf (photoelectric effect) c is speed of light h is Planck s constant f is frequency of radiation Wave packets Total energy, Q, is then energy of the total number of photons Units - joules or ev

18 Radiation Blackbody Tungsten

19 Consequence

20 Fluorescent Lamps

21 Power / Flux - Φ Flow of energy (important for transport) Also - radiant power or flux. Energy per unit time (joules/s = ev/s) Unit: W - watts Φ = dq/dt

22 Intensity I Flux density per unit solid angle I = dφ dω Units watts per steradian intensity is heavily overloaded. Why? Power of light source Perceived brightness

23 Solid Angle Size of a patch, da, is Solid angle is dω = da r 2 da = (rsinθ dφ)(r dθ) = sinθdθdφ Compare with 2D - angle θ r l θ = l r φ - azimuth angle θ - polar angle

24 Solid Angle (contd.) Solid angle generalizes angle! Steradian Sphere has 4π steradians! Why? Dodecahedron 12 faces, each pentagon. One steradian approx equal to solid angle subtended by a single face of dodecahedron Wikipedia

25 Isotropic Point Source I = dφ dω = Φ 4π Even distribution over sphere How do you get this? Quiz: Warn s spot-light? Determine flux

26 Warns Spot Light θ S I(θ) = (S A) s = cos s θ A Quiz: Determine flux

27 Other Lights

28 Other kinds of lights

29 Radiant Flux Area Density Area density of flux (W/m 2 ) u = Energy arriving/leaving a surface per unit time interval per unit area da can be any 2D surface in space u = dφ da da

30 Radiant Flux Area Density E.g. sphere / point light source: u = dφ da = Φ 4πr 2 Flux falls off with square of the distance Bouguer s classic experiment: Compare a light source and a candle Intensity is proportional to ratio of distances squared

31 Irradiance E Power per unit area incident on a surface E = dφ da

32 Radiosity or Radiant Exitance B Power per unit area leaving surface Also known as Radiosity Same unit as irradiance, just direction changes B = dφ da

33 Irradiance on Differential Patch from a Point Light Source x Inverse square law Key observation: x s θ x x s 2dω = cosθda

34 Hemispherical Projection Use a hemisphere Η over surface to measure incoming/outgoing flux Replace objects and points with their hemispherical projection ω r

35 Radiance L Power per unit projected area per unit solid angle. L = d 2 Φ Units watts per (steradian m 2 ) da p dω We have now introduced projected area, a cosine term. L = d 2 Φ dacosθdω

36 Why the Cosine Term? projected into the solid angle! Foreshortening is by cosine of angle. Radiance gives energy by effective surface area. θ d cosθ d

37 Incident and Exitant Radiance Incident Radiance: L i (p, ω) Exitant Radiance: L o (p, ω) In general: L ( i p,ω) L ( o p,ω) At a point p - no surface, no participating media: p,ω L i ( ) = L ( o p, ω ) L i p p,ω ( ) L o p,ω ( ) p

38 Irradiance from Radiance Ω E p,n ( ) = L i p,ω ( )cosθ dω cosθ dω is projection of a differential area We take cosθ in order to integrate over the whole sphere L i ( p,ω) n p r

39 Radiance Fundamental quantity, everything else derived from it. Law 1: Radiance is invariant along a ray Law 2: Sensor response is proportional to radiance

40 Law1: Conservation Law! dω 1 dω 2 Total flux leaving one side = flux arriving other side, so L 1 dω 1 da 1 = L 2 dω 2 da 2

41 Conservation Law! dω 1 dω 2 therefore dω 1 = da 2 /r 2 and dω 2 = da 1 /r 2

42 Conservation Law! dω 1 dω 2 so Radiance doesn t change with distance!

43 Radiance at a sensor Sensor of a fixed area sees more of a surface that is farther away. However, the solid angle is inversely proportional to distance. dω = da /r 2 Response of a sensor is proportional to radiance. Ω A

44 Radiance at a sensor Response of a sensor is proportional to radiance. Φ = T = A A LdωdA T depends on geometry of sensor Ω Ω dωda = LT Ω A

45 Thus Radiance doesn t change with distance Therefore it s the quantity we want to measure in a ray tracer. Radiance proportional to what a sensor (camera, eye) measures. Therefore it s what we want to output.

46 Radiometry vs. Photometry 46

47 Photometry and Radiometry Photometry (begun 1700s by Bouguer) deals with how humans perceive light. Bouguer compared every light with respect to candles and formulated the inverse square law! All measurements relative to perception of illumination Units different from radiometric units but conversion is scale factor -- weighted by spectral response of eye (over about 360 to 800 nm).

48 CIE curve Response is integral over all wavelengths Violet Green Red CIE, 1924, many more curves available, see

49 Radiometric Quantities Physical description Definition Symbol Units Radiometric quantity (also spectral * [*/m]) Energy Q e [J=Ws] Joule Radiant energy Power / flux dq/dt Φ e [W=J/s] Radiant power / flux Flux density dq/dadt E e [W/m 2 ] Irradiance Flux density dq/dadt M e = B e [W/m 2 ] Radiosity Angular flux density dq/dadωdt L v [W/m 2 sr] Radiance Intensity dq/dωdt I v [W/sr] Radiant intensity 49

50 Photometric Quantities Physical description Definition Symbol Units Photometric quantity (also spectral * [*/m]) Energy Q v [talbot] Luminous energy Power / flux dq/dt Φ v [lm (lumens) = talbot/s] Luminous power / flux Flux density dq/dadt E v [lux= lm/m 2 ] Illuminance Flux density dq/dadt [M v =] B v [lux] Luminosity Angular flux density dq/da Φ dωdt L v [lm/m 2 sr] Luminance Intensity dq/dωdt I v [cd (candela) = lm/sr] Quantities weighted by luminous efficiency function Radiant / luminous intensity 50

51 Typical Values of Illuminance Solar constant: 1,37 kw/m 2 Light source Illuminance[lux] Direct sun light 25, ,000 Day light 2,000 27,000 Sun set Moon light Stars TV studio 5,000 10,000 Lighting in shops/stores 1,000 5,500 Office illumination Home illumination Street lighting

Fundamentals of Rendering - Radiometry / Photometry

Fundamentals of Rendering - Radiometry / Photometry Fundamentals of Rendering - Radiometry / Photometry Image Synthesis Torsten Möller Today The physics of light Radiometric quantities Photometry vs/ Radiometry 2 Reading Chapter 5 of Physically Based Rendering

More information

Fundametals of Rendering - Radiometry / Photometry

Fundametals of Rendering - Radiometry / Photometry Fundametals of Rendering - Radiometry / Photometry Physically Based Rendering by Pharr & Humphreys Chapter 5: Color and Radiometry Chapter 6: Camera Models - we won t cover this in class Realistic Rendering

More information

Radiometry and Photometry

Radiometry and Photometry Light Visible electromagnetic radiation Power spectrum Polarization Photon (quantum effects) Wave (interference, diffraction) From London and Upton Radiometry and Photometry Measuring spatial properties

More information

Radiometry and Photometry

Radiometry and Photometry Radiometry and Photometry Measuring spatial properties of light Radiant power Radiant intensity Irradiance Inverse square law and cosine law Radiance Radiant exitance (radiosity) From London and Upton

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

OPAC 101 Introduction to Optics

OPAC 101 Introduction to Optics OPAC 101 Introduction to Optics Topic 3 Introductory Photometry Department of http://www1.gantep.edu.tr/~bingul/opac101 Optical & Acustical Engineering Gaziantep University Sep 017 Sayfa 1 Introduction

More information

VI. Terminology for Display

VI. Terminology for Display Special Topics in Display Technology 1 st semester, 2015 VI. Terminology for Display * Reference books: [Light Measurement Handbook] (http://www.intl-light.com) [ 응용광학 ] ( 두양사 ) 21 장 Radiometry and Photometry

More information

Section 22. Radiative Transfer

Section 22. Radiative Transfer OPTI-01/0 Geometrical and Instrumental Optics Copyright 018 John E. Greivenkamp -1 Section Radiative Transfer Radiometry Radiometry characterizes the propagation of radiant energy through an optical system.

More information

Mathieu Hébert, Thierry Lépine

Mathieu Hébert, Thierry Lépine 1 Introduction to Radiometry Mathieu Hébert, Thierry Lépine Program 2 Radiometry and Color science IOGS CIMET MINASP 3DMT Introduction to radiometry Advanced radiometry (2 nd semester) x x x x x o o Color

More information

Section 10. Radiative Transfer

Section 10. Radiative Transfer Section 10 Radiative Transfer 10-1 OPTI-50 Optical Design and Instrumentation I Copyright 017 John E. Greivenkamp Radiometry Radiometry characterizes the propagation of radiant energy through an optical

More information

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK

Computer Graphics III Radiometry. Jaroslav Křivánek, MFF UK Computer Graphics III Radiometry Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Direction, solid angle, spherical integrals Direction in 3D Direction = unit vector in 3D Cartesian coordinates

More information

Light Sources and Illumination. Blackbody. Page 1

Light Sources and Illumination. Blackbody. Page 1 Light Sources and Illumination Properties of light sources Power Spectrum Radiant and luminous intensity Directional distribution goniometric diagram Shape Illumination Irradiance and illuminance Area

More information

Introduction to Computer Vision Radiometry

Introduction to Computer Vision Radiometry Radiometry Image: two-dimensional array of 'brightness' values. Geometry: where in an image a point will project. Radiometry: what the brightness of the point will be. Brightness: informal notion used

More information

Radiometry. Energy & Power

Radiometry. Energy & Power Radiometry Radiometry is the measurement of optical radiation, corresponding to wavelengths between 0.01 and 1000 μm, and includes the regions commonly called the ultraviolet, the visible and the infrared.

More information

Key objectives in Lighting design

Key objectives in Lighting design Key objectives in Lighting design Visual performance Physiological conditions Visual quality no strong "contrasts" good "color rendering" adequate "light levels" no "disturbing reflections" no direct "glare"

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis Radiometry Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput Radiometry Terms Note: Power is sometimes in units of Lumens. This is the same as power in watts (J/s) except

More information

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION ELECTROMAGNETIC RADIATION 1. Types of electromagnetic radiation Use different resources to sort the types of electromagnetic radiation according to rising wavelength, find sources, uses and mention if

More information

Radiometry, photometry, measuring color

Radiometry, photometry, measuring color Radiometry, photometry, measuring color Lecture notes are done by Géza Várady, based on the lecture notes of Prof. János Schanda varady.geza@mik.pte.hu University of Pécs, Faculty of Engineering and Information

More information

LUMINOUS MEASUREMENTS

LUMINOUS MEASUREMENTS Chapter 5. LUMINOUS MEASUREMENTS 5.. Luminous flux (luminous output)............................ 47 5.2. Amount of light (luminous energy)........................... 48 5.3. Luminous intensity.......................................

More information

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing! Course Philosophy" Rendering! Computer graphics! Estimation! Computer vision! Robot vision" Remote sensing! lhm

More information

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye.

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye. Nature of Light What is light? an electromagnetic radiation capable of stimulating the retina of the eye. electrons Nucleus Electron gains energy When it moves to a higher level Photon bundle (quantum)

More information

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre

A*STAR Seminar on LED and Solid State Lighting. Standards and Technologies. Measurements. 05 August LIU Yuanjie National Metrology Centre A*STAR Seminar on LED and Solid State Lighting Standards and Technologies available at NMC for LED Measurements 05 August 2011 LIU Yuanjie National Metrology Centre Outline NMC overview Basic optical quantities

More information

INFRAMET. 2.1 Basic laws

INFRAMET. 2.1 Basic laws tel: 048 60844873, fax 48 6668780. Basic laws.. Planck law All objects above the temperature of absolute zero emit thermal radiation due to thermal motion of the atoms and the molecules. The hotter they

More information

AT622 Section 2 Elementary Concepts of Radiometry

AT622 Section 2 Elementary Concepts of Radiometry AT6 Section Elementary Concepts of Radiometry The object of this section is to introduce the student to two radiometric concepts intensity (radiance) and flux (irradiance). These concepts are largely geometrical

More information

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors.

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors. CHAPTER 0 Light and opto-semiconductors - -2 Light Opto-semiconductors P. 0 P. 3 2 Opto-semiconductor lineup P. 5 3 Manufacturing process of opto-semiconductors P. 6 9 CHAPTER 0. Light and opto-semiconductors

More information

Basic Optical Concepts. Oliver Dross, LPI Europe

Basic Optical Concepts. Oliver Dross, LPI Europe Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell s Law: Sin( φi ) Sin( φ ) f = n n f i n i Media Boundary φ i n f φ φ f angle of exitance 90 80 70 60 50 40 30 20 10 0 internal

More information

Dr. Linlin Ge The University of New South Wales

Dr. Linlin Ge  The University of New South Wales GMAT 9600 Principles of Remote Sensing Week2 Electromagnetic Radiation: Definition & Physics Dr. Linlin Ge www.gmat.unsw.edu.au/linlinge Basic radiation quantities Outline Wave and quantum properties Polarization

More information

= (fundamental constants c 0, h, k ). (1) k

= (fundamental constants c 0, h, k ). (1) k Introductory Physics Laboratory, Faculty of Physics and Geosciences, University of Leipzig W 12e Radiation Thermometers Tasks 1 Measure the black temperature T s of a glowing resistance wire at eight different

More information

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell 9.2 The Blackbody as the Ideal Radiator A material that absorbs 100 percent of the energy incident on it from all directions

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Light. E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums

Light. E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums Light E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums 1) requires no medium but can travel through them 2) is energy

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Optical Theory Basics - 1 Radiative transfer

Optical Theory Basics - 1 Radiative transfer Optical Theory Basics - 1 Radiative transfer Jose Moreno 3 September 2007, Lecture D1Lb1 OPTICAL THEORY-FUNDAMENTALS (1) Radiation laws: definitions and nomenclature Sources of radiation in natural environment

More information

ASSESSMENT OF NON-COHERENT LIGHT SOURCES

ASSESSMENT OF NON-COHERENT LIGHT SOURCES ASSESSMENT OF NON-COHERENT LIGHT SOURCES David Egan Snr Team Leader Laser Science Support Orion Laser Facility AWE, UK Page 1 Introduction Laser safety is accepted However there is a certain reticence

More information

A Guide to Integrating Sphere Theory and Applications

A Guide to Integrating Sphere Theory and Applications A Guide to Integrating Sphere Theory and Applications Leadership in Reflectance Technology T E C H G U I D E TABLE OF CONTENTS 1.0 Integrating Sphere Theory...2-5 1.1 Radiation Exchange Within a Spherical

More information

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision After the mid-17th century, scientists were divided into two sides. One side, including Isaac Newton, believed in the

More information

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p.

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. Preface p. xiii Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p. 4 Fundamental Definitions p. 7 Lambertian Radiators

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

Lighting fundamentals

Lighting fundamentals Lighting fundamentals About light and photometrics Generation of light Human vision Black body Colour Basic principles of lighting Light sources Light Vision Colour What is light? Light is electromagnetic

More information

Optics for Engineers Chapter 12

Optics for Engineers Chapter 12 Optics for Engineers Chapter 12 Charles A. DiMarzio Northeastern University Apr. 214 Radiometry Power is Proportional to Area of Aperture Stop Area of Field Stop Brightness of the Source (Radiance) Apr.

More information

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005

ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 ElectroMagnetic Radiation (EMR) Lecture 2-3 August 29 and 31, 2005 Jensen, Jensen, Ways of of Energy Transfer Energy is is the the ability to to do do work. In In the the process of of doing work, energy

More information

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Chapter 2 Electromagnetic Radiation Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves Electromagnetic waves do not need a medium to

More information

Introduction to Colorimetry

Introduction to Colorimetry IES NY Issues in Color Seminar February 26, 2011 Introduction to Colorimetry Jean Paul Freyssinier Lighting Research Center, Rensselaer Polytechnic Institute Troy, New York, U.S.A. sponsored by www.lrc.rpi.edu/programs/solidstate/assist

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

General Information. Vishay Semiconductors. Explanation of Technical Data. Type Designation Code for LEDs

General Information. Vishay Semiconductors. Explanation of Technical Data. Type Designation Code for LEDs General Information Explanation of Technical Data Vishay light emitting diodes and displays are generally designated in accordance with the Vishay designation system: TL... = Light emitting diode TD...

More information

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS BOGDAN GABRIEL LUCIAN, ENG. S. C. UZINA MECANICA SADU S. A. e-mail: lucianbog@yahoo.com ABSTRACT: The study of the evolution of the luminous

More information

Higher Physics. Particles and Waves

Higher Physics. Particles and Waves Perth Academy Physics Department Higher Physics Particles and Waves Particles and Waves Homework Standard Model 1 Electric Fields and Potential Difference 2 Radioactivity 3 Fusion & Fission 4 The Photoelectric

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles Newton Used this particle model to explain reflection and refraction Huygens 1678 Explained

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

What is Remote Sensing (RS)?

What is Remote Sensing (RS)? GMAT x600 Earth Observation / Remote Sensing Topic 2: Electromagnetic Radiation A/Prof Linlin Ge Email: l.ge@unsw.edu.au http://www.gmat.unsw.edu.au/linlinge What is Remote Sensing (RS)? Remote Sensing

More information

Photobiological Safety of Luminaires: Refining the New Approach

Photobiological Safety of Luminaires: Refining the New Approach Photobiological Safety of Luminaires: Refining the New Approach Leslie Lyons Bentham Instruments Limited Reading, UK llyons@bentham.co.uk We are all familiar with the visual characteristics of lighting

More information

Radiometry HW Problems 1

Radiometry HW Problems 1 Emmett J. Ientilucci, Ph.D. Digital Imaging and Remote Sensing Laboratory Rochester Institute of Technology March 7, 007 Radiometry HW Problems 1 Problem 1. Your night light has a radiant flux of 10 watts,

More information

EBS 566/666 Lecture 8: (i) Energy flow, (ii) food webs

EBS 566/666 Lecture 8: (i) Energy flow, (ii) food webs EBS 566/666 Lecture 8: (i) Energy flow, (ii) food webs Topics Light in the aquatic environment Energy transfer and food webs Algal bloom as seen from space (NASA) Feb 1, 2010 - EBS566/666 1 Requirements

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING - II Dr. A. Bhattacharya The Radiation Framework The information about features on the Earth s surface using RS depends on measuring energy emanating from the

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

The Properties of Light. Our Window on the Universe

The Properties of Light. Our Window on the Universe The Properties of Light Chapter 11 Our Window on the Universe Light! And God said, Let there be light: and there was light. And God saw the light, that it was good Genesis 1:3-4 Standing Waves We can create

More information

2. Lighting Terms. Contents

2. Lighting Terms. Contents Contents 2. Lighting Terms 2.1 Vision 2.2 Spectral sensitivity of the eye 2.3 Radiometric quantities 2.4 Photometric quantities 2.5 Energy and light efficiency 2.6 Colour coordinates 2.7 Colour temperature

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 11-Radiative Heat Transfer Fausto Arpino f.arpino@unicas.it Nature of Thermal Radiation ü Thermal radiation refers to radiation

More information

Describing the Potency of Light

Describing the Potency of Light Describing the Potency of Light Douglas A. Kerr, P.E. (Ret.) Issue 3 September 19, 2013 INTRODUCTION In many types of technical work it is necessary to quantify the potency 1 of light. The matter is complicated

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Photogrammetry: Definition & applications What are we trying to do? Data acquisition systems 3-D viewing of 2-D imagery Automation (matching problem) Necessary tools: Image formation

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo Light and Photons PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo January 16, 2014 Light What is light? Electromagnetic wave direction of the

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Describing the Strength of Visible Light

Describing the Strength of Visible Light Describing the Strength of Visible Light Douglas A. Kerr, P.E. Issue 2 August 31, 2003 INTRODUCTION In many types of technical work it is necessary to describe the strength 1 of visible light. The matter

More information

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep EP11 Optics TOPIC 1 LIGHT Department of Engineering Physics University of Gaziantep July 2011 Sayfa 1 Content 1. History of Light 2. Wave Nature of Light 3. Quantum Theory of Light 4. Elecromagnetic Wave

More information

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by. Planck s s Radiation Law Planck made two modifications to the classical theory The oscillators (of electromagnetic origin) can only have certain discrete energies determined by E n = n h ν with n is an

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3

Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 12 Sections 12.1 through 12.3 Fundamental Concepts of Radiation -Basic Principles and Definitions- Chapter 1 Sections 1.1 through 1.3 1.1 Fundamental Concepts Attention is focused on thermal radiation, whose origins are associated

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS 12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS TA: NIRAJ INAMDAR 1) Radiation Terminology. We are asked to define a number of standard terms. See also Table 1. Intensity: The amount of energy

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Remote sensing of planetary surfaces

Remote sensing of planetary surfaces Remote sensing of planetary surfaces Urs Mall, Max-Planck Institut fuer Aeronomie 18.11.2003 What is remote sensing? Intuitive definition We perceive our surrounding world through our five senses Sight

More information

ENVIRONMENTAL SYSTEMS

ENVIRONMENTAL SYSTEMS LIGHT http://map.gsfc.nasa.gov/media/ Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1 study carrel in Phillips Exeter Library; a celebration of light and of material (by L. Kahn) Kahn on Light

More information

Phys 2310 Wed. Sept. 20, 2017 Today s Topics

Phys 2310 Wed. Sept. 20, 2017 Today s Topics Phys 2310 Wed. Sept. 20, 2017 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

Lecture 3: Specific Intensity, Flux and Optical Depth

Lecture 3: Specific Intensity, Flux and Optical Depth Lecture 3: Specific Intensity, Flux and Optical Depth We begin a more detailed look at stellar atmospheres by defining the fundamental variable, which is called the Specific Intensity. It may be specified

More information

An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the

An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the system absorbs the unwanted heat and pumps it through

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22 Physics 102: Lecture 22 Single Slit Diffraction and Resolving Power Quantum Mechanics: Blackbody Radiation & Photoelectric Effect Physics 102: Lecture 22, Slide 1 Diffraction/Huygens principle Huygens:

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

21 1 INTRODUCTION. FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only.

21 1 INTRODUCTION. FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only. cen54261_ch21.qxd 1/25/4 11:32 AM Page 95 95 Vacuum chamber Hot object Radiation FIGURE 21 1 A hot object in a vacuum chamber loses heat by radiation only. Person 3 C Radiation Air 5 C Fire 9 C FIGURE

More information

Example of a Plane Wave LECTURE 22

Example of a Plane Wave LECTURE 22 Example of a Plane Wave http://www.acs.psu.edu/drussell/demos/evanescentwaves/plane-x.gif LECTURE 22 EM wave Intensity I, pressure P, energy density u av from chapter 30 Light: wave or particle? 1 Electromagnetic

More information

Analytical Spectroscopy Review

Analytical Spectroscopy Review Analytical Spectroscopy Review λ = wavelength ν = frequency V = velocity = ν x λ = 2.998 x 10 8 m/sec = c (in a vacuum) ν is determined by source and does not change as wave propogates, but V can change

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information