An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the

Size: px
Start display at page:

Download "An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the"

Transcription

1

2 An air conditioner is able to cool a building because it removes heat from the indoor air and transfers it outdoors. A chemical refrigerant in the system absorbs the unwanted heat and pumps it through a system of piping to the outside coil.... Most central air conditioning units operate by means of a split system.

3

4

5 Fuses The fuse or circuit breaker protects the airconditioning and heating components including wiring, and usually has a rating of 20 to 30 A. Two types of fuses are currently being used in domestic automobiles. One type consists of a thin ribbon of flat wire, which is enclosed in a glass tube with metal ends The other type is also a thin ribbon of flat wire, but is enclosed in a plastic case and has metal ends. One type is not replaceable with other.

6 Master Control The master control generally includes provisions for the blower speed control, and a rheostat. A variable resistor is used for speed control. A four-speed control circuit uses three internal resistors to control motor speed. Greatest resistance in the circuit results in a low speed and no resistance results in a high speed.

7 Thermostat Thermostat, a means of temperature control, is used for the control of the electromagnetic clutch of the compressor. It is basically an electrical switch, which is actuated by a change in temperature. It senses either evaporator core temperature or the temperature of the refrigerant as it enters or leaves the evaporator.

8 Blower Motor Many types of blower motors are in use, depending upon the application. They may be flange mounted and may have provisions for internal cooling. The blower motor drives one or two squirrel-cage blowers (Fig ) to move air across the evaporator and/or heater core

9

10 Your air conditioner has three primary parts that are responsible for changing the state of refrigerant in order to cool your home The evaporator, condenser and compressor. The compressor plays a critical role in the cooling process because it is the middle-man between the evaporator inside your home and the condenser outside your home.

11

12 The job of the compressor is to convert the lowpressure, gaseous refrigerant from the evaporator into a high-pressure, hightemperature gas before it enters the condenser.

13 condenser is a device or unit used to condense a substance from its gaseous to its liquid state, by cooling it. In so doing, the latent heat is given up by the substance and transferred to the surrounding environment. Condensers can be made according to numerous designs

14

15 An Electric Locomotive is a railway vehicle that can move along rails and push or pull a train attached to it using electric power drawn from an external source, usually from overhead cables or a third rail. Electric Locomotives do not have a conventional engine in them, but use the electricity collected from the outside source to power traction motors which turn the wheels.

16

17 A Diesel Locomotive is a self-powered railway vehicle that moves along the rails and pulls or pushes a train attached to it using a huge internal combustion engine running on Diesel fuel as the prime mover or the primary supplier of power..

18

19 Unlike conventional automobiles, modern diesel locomotives have no direct mechanical connection between the engine and the wheels, hence the power generated by the engine does not really turn the wheels. Instead, the diesel engine is used to turn a huge electricity generator /alternator which produces electric current (earlier Direct Current, nowadays Alternating Current), which is then transmitted to traction motors which then produce the actual (rotational) torque that turns the wheels of the locomotive

20

21 All objects are emitting and absorbing EM radia-tion. Consider a iron rod placed in a fire. As heating occurs, the emitted EM waves have higher energy and eventually become visible. First red... then white Light may be defined as electromagnetic radiation that is capable of affecting the sense of sight.

22 E B c 3 x 10 8 m/s Wave Properties: 1. Waves travel at the speed of light c. 2. Perpendicular electric and magnetic fields. 3. Require no medium for propagation. Electric E Magnetic B For a complete review of the electromagnetic properties, you should study module 32C.

23 The electromagnetic spectrum spreads over a tremendous range of frequencies or wavelengths. The wavelength l is related to the frequency f: c = fl c = 3 x 10 8 m/s Those EM waves that are visible (light) have wave-lengths that range from to cm. Red, l cm Violet, l cm

24 Frequency wavelength f (Hz) l ( nm) Gamma rays X-rays Ultraviolet Infrared rays Short Radio waves Broadcast Radio Long Radio waves A wavelength of one nanometer 1 nm is: 1 nm = 1 x 10-9 m Red 700 nm Violet 400 nm c = fl Visible Spectrum 400 nm 700 nm c = 3 x 10 8 m/s

25 The Helium Neon Laser Laser Wavelength l = 632 nm c c f l f l 8 3 x 10 m/s x 10 m f = 4.75 x Hz Red light

26 Any study of the nature of light must explain the following observed properties: Rectilinear propagation: Light travels in straight lines. Reflection: Light striking a smooth surface turns back into the original medium. Refraction: Light bends when entering a transparent medium.

27 Physicists have studied light for centuries, finding that it sometimes behaves as a particle and sometimes as a wave. Actually, both are correct! Reflection and rectilinear propagation (straight line path) Dispersion of white light into colors.

28 Light may be thought of as little bundles of waves emitted in discrete packets called photons. photons The wave treatment uses rays to show the direction of advancing wave fronts. Light ray Light rays are convenient for describing how light behaves.

29 A geometric analysis may be made of shadows by tracing light rays from a point light source: Point source shadow screen The dimensions of the shadow can be found by using geometry and known distances.

30 h 80cm 4cm 20cm The ratio of shadow to the source is same as that of ball to source. Therefore: 4 cm h 20 cm 80 cm h (4 cm)(80 cm) 20 cm h = 16 cm

31 penumbra Extended source umbra The umbra The umbra is the is region the region where where no light no reaches light reaches the screen. the screen. The penumbra is the outer area where only part of the light reaches the screen.

32 Sensitivity Human eyes are not equally sensitive to all colors. Sensitivity curve 555 nm Eyes are most sensi- tive in the mid-range near l = 555 nm. 400 nm 700 nm Wavelength l 40 W 40 W Yellow light appears brighter to the eye than does red light.

33 Luminous flux is the portion of total radiant power that is capable of affecting the sense of sight. Typically only about 10% of the power (flux) emitted from a light bulb falls in the visible region. The unit for luminous flux is the lumen which will be given a quantitative definition later.

34 Working with luminous flux requires the use of a solid angle measure called the steradian (sr). A solid angle of one steradian (1 sr) is subtended at the center of a sphere by an area A equal to the square of its radius ( R 2 ). R A The Steradian W W A R 2

35 R 5 m W The Steradian W A 1.6 m 2 A R 2 W W A R W = sr m (5.00 m) 2

36 One lumen (lm) is the luminous flux emitted from a 1/60 cm 2 opening in a standard source and included in a solid angle of one steradian (1 sr). In practice, sources of light are usually rated by comparison to a commercially prepared standard light source. A typical 100-W incandescent light bulb emits a total radiant power of about 1750 lm. This is for light emitted in all directions.

37 Recalling that luminous flux is really radiant power allows us to define the lumen as follows: One lumen is equal to 1/680 W of yellow-green light of wavelength 555 nm. A disadvantage of this approach is the need to refer to sensitivity curves to determine the flux for different colors of light. Sensitivity curve Wavelength l

38 The luminous intensity I for a light source is the luminous flux per unit solid angle. Luminous intensity: W F I W F I W Unit is the candela (cd) A source having an intensity of one candela emits a flux of one lumen per steradian.

39 An isotropic source emits in all directions; i.e., over a solid angle of 4p steradians. W = 4p sr Thus, for such a source, the intensity is: I F W F 4p Total flux: F = 4pI The flux confined to area A is: F = I A W R 3 m

40 Total flux: F = 4pI F T = 4p(30 cd) = 377 lm The luminous intensity of the beam depends on W. W R 3 m A W W R (3 m) m 2 2 ; sr I F W 754 lm sr Beam Intensity: I = 8490 cd

41 The illumination E of a surface A is defined as the luminous flux per unit area (F/A) in lumens per square meter which is renamed a lux (lx). An illumination of one lux occurs when a flux of one lumen falls on an area of one square meter. Illumination, E W R E F A Unit: lux (lx) Area A

42 The illumination E of a surface is directly proportional to the intensity I and inversely proportional to the square of the distance R. F F E ; I ; F IW A W IW A E but W so that 2 A R Illumination, E I R 2 W Area A This equation applies for perpendicular surfaces. R

43 E I R 400 cd (2.40 m) 2 2 W R Illumination: E = 69.4 lx Now, recalling that E = F/A, we find F from: F = EA = (69.4 lx)(1.20 m 2 ) F = 93.3 lm

44 E I R 2 E/4 E/9 9 m 2 E 4 m 2 1 m 1 m 2 2 m 3 m If the intensity is 36 lx at 1 m, it will be 9 lx at 2 m and only 4 lx at 3 m.

45 Light may be defined as electromagnetic radiation that is capable of affecting the sense of sight. General Properties of Light: Rectilinear propagation Reflection Refraction c = fl c = 3 x 10 8 m/s Red, l 700 nm Violet, l 400 nm

46 The formation of shadows: penumbra Extended source umbra Luminous flux is the portion of total radiant power that is capable of affecting the sense of sight.

47 R W A Luminous intensity: F I W The Steradian Total flux: F = 4pI W A R 2 Unit is the candela (cd) F E Unit: lux (lx) A

48 Illumination, E I R 2 Illumination, E 9 m 2 E/9 E/4 W R 4 m 2 E 3 m 2 m 1 m 2 1 m Area A

49 Thank You

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye.

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye. Nature of Light What is light? an electromagnetic radiation capable of stimulating the retina of the eye. electrons Nucleus Electron gains energy When it moves to a higher level Photon bundle (quantum)

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles Newton Used this particle model to explain reflection and refraction Huygens 1678 Explained

More information

Light.notebook May 03, 2016

Light.notebook May 03, 2016 Unit 4 Light LIGHT.1 Describe the ray model of light. 16.1 LIGHT.2 Predict the effect of distance on light s illuminance. 16.1 LIGHT.3 Explain polarization and the Doppler effect. 16.2 LIGHT.4 Describe

More information

E-JUST s Sample Entrance Exam Faculty of Engineering

E-JUST s Sample Entrance Exam Faculty of Engineering E-JUST s Sample Entrance Exam Faculty of Engineering PHYSICS Time: 1 hr Choose the right answer: 1. Three equal resistors connected in series across a source e.m.f. together dissipate 10 watt. If the same

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION ELECTROMAGNETIC RADIATION 1. Types of electromagnetic radiation Use different resources to sort the types of electromagnetic radiation according to rising wavelength, find sources, uses and mention if

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Light. E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums

Light. E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums Light E.M. waves electromagnetic both electric and magnetic characteristics travels at 3.0 x 10 8 m/s in a vacuum slower in material mediums 1) requires no medium but can travel through them 2) is energy

More information

EXPERIMENT 17: Atomic Emission

EXPERIMENT 17: Atomic Emission EXPERIMENT 17: Atomic Emission PURPOSE: To construct an energy level diagram of the hydrogen atom To identify an element from its line spectrum. PRINCIPLES: White light, such as emitted by the sun or an

More information

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges would yield

More information

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton)

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton) Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton) Electrons and protons in atoms/molecules Ions: atoms/molecules with excess of charge Ions

More information

GCSE PHYSICS REVISION LIST

GCSE PHYSICS REVISION LIST GCSE PHYSICS REVISION LIST OCR Gateway Physics (J249) from 2016 Topic P1: Matter P1.1 Describe how and why the atomic model has changed over time Describe the structure of the atom and discuss the charges

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L What Is Light? (P ) What Is Light? What Is Light?

SNC2D PHYSICS 4/27/2013. LIGHT & GEOMETRIC OPTICS L What Is Light? (P ) What Is Light? What Is Light? SNC2D PHYSICS LIGHT & GEOMETRIC OPTICS L What Is Light? (P.380-391) What Is Light? For centuries, scientists have tried to understand the nature of light and its properties. Some of these properties are

More information

The Nature of Light. Early Greece to 20 th Century

The Nature of Light. Early Greece to 20 th Century The Nature of Light For centuries there has been debate about whether the properties of light could best be explained using a particle model of light or a wave model. This lesson will focus primarily on

More information

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS

STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS STUDY OVER LUMINOUS CHARACTERISTICS OF THE TRACER COMPOSITIONS BOGDAN GABRIEL LUCIAN, ENG. S. C. UZINA MECANICA SADU S. A. e-mail: lucianbog@yahoo.com ABSTRACT: The study of the evolution of the luminous

More information

BLUE-PRINT II XII Physics

BLUE-PRINT II XII Physics BLUE-PRINT II XII Physics S.No. UNIT VSA SA I SA II LA Total (1 Mark) (2 Marks) (3Marks) (5 Marks) 1. Electrostatics 1(1) 4(2) 3(1) - 8(4) 2. Current Electricity - 2(1) - 5(1) 7(2) 3. Magnetic Effect of

More information

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 40 Fall 003: Final Exam Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

Matter mass space atoms solid, a liquid, a gas, or plasm elements compounds mixtures atoms Compounds chemically combined Mixtures not chemically

Matter mass space atoms solid, a liquid, a gas, or plasm elements compounds mixtures atoms Compounds chemically combined Mixtures not chemically SOL PS.2 THE NATURE OF MATTER Matter is anything that has mass and occupies space. All matter is made up of small particles called atoms. Matter can exist as a solid, a liquid, a gas, or plasma. Matter

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics

GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. GCSE OCR Revision Physics. Journeys. GCSE OCR Revision Physics Matter, Models and Density What is a typical size of an atom? Choose from the following. 10 15 m 10 12 m 10 10 m Matter, Models and Density The size of an atom is of the order of 10 10 m. 1 1 Temperature

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

Exam 2--PHYS 202--Spring 2011

Exam 2--PHYS 202--Spring 2011 ame: Exam 2--PHYS 202--Spring 2011 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Which of the following equations for this circuit is correct? a -6-8I

More information

Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity.

Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity. Middle School Curriculum Standards: Chemistry and Physics Key Idea 3: Matter is made up of particles whose properties determine the observable characteristics of matter and its reactivity. Objects in the

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

Chapter 17, Electromagnetic Waves Physical Science, McDougal-Littell, 2008

Chapter 17, Electromagnetic Waves Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 553-558): ELECTROMAGNETIC WAVES HAVE UNIQUE TRAITS. Georgia Standards: S8P4a Identify the characteristics of electromagnetic and mechanical waves; S8P4d Describe how the behavior of waves

More information

Unit 3: Optics Chapter 4. Properties of Light

Unit 3: Optics Chapter 4. Properties of Light Unit 3: Optics Chapter 4 Properties of Light There are many types of light sources... Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion The Nature of Light Pythagoras A Greek

More information

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope

Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope Experiment #4 Nature of Light: Telescope and Microscope and Spectroscope In this experiment, we are going to learn the basic principles of the telescope and the microscope that make it possible for us

More information

AQA Physics Checklist

AQA Physics Checklist Topic 1. Energy Video: Energy changes in a system To understand the ways in which energy can be stored in a system and can be transferred from one energy store to another within a system To understand

More information

IDS 102: Electromagnetic Radiation and the Nature of Light

IDS 102: Electromagnetic Radiation and the Nature of Light IDS 102: Electromagnetic Radiation and the Nature of Light Major concepts we will cover in this module are: electromagnetic spectrum; wave intensity vs. wavelength, and the difference between light reflection,

More information

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion Pythagoras A Greek philosopher Believed light was beams of tiny particles The eyes could detect these particles and see

More information

Being a Chemist. Summary Sheets. Gleniffer High School

Being a Chemist. Summary Sheets. Gleniffer High School Being a Chemist Summary Sheets Gleniffer High School 0 State that the light year is a measure of astronomical distance State the speed at which light travels Give examples of the relative distance between

More information

Atomic Spectra & Electron Energy Levels

Atomic Spectra & Electron Energy Levels CHM151LL: ATOMIC SPECTRA & ELECTRON ENERGY LEVELS 1 Atomic Spectra & Electron Energy Levels OBJECTIVES: To measure the wavelength of visible light emitted by excited atoms to calculate the energy of that

More information

LIGHT. A beam is made up of several rays. It maybe parallel, diverging (spreading out) or converging (getting narrower). Parallel Diverging Converging

LIGHT. A beam is made up of several rays. It maybe parallel, diverging (spreading out) or converging (getting narrower). Parallel Diverging Converging LIGHT Light is a form of energy. It stimulates the retina of the eye and produces the sensation of sight. We see an object when light leaves it and enters the eye. Objects such as flames, the sum and stars

More information

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors.

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors. CHAPTER 0 Light and opto-semiconductors - -2 Light Opto-semiconductors P. 0 P. 3 2 Opto-semiconductor lineup P. 5 3 Manufacturing process of opto-semiconductors P. 6 9 CHAPTER 0. Light and opto-semiconductors

More information

General Information. Vishay Semiconductors. Explanation of Technical Data. Type Designation Code for LEDs

General Information. Vishay Semiconductors. Explanation of Technical Data. Type Designation Code for LEDs General Information Explanation of Technical Data Vishay light emitting diodes and displays are generally designated in accordance with the Vishay designation system: TL... = Light emitting diode TD...

More information

Properties of Waves. Before You Read. What are the features of a wave?

Properties of Waves. Before You Read. What are the features of a wave? Properties of Waves Textbook pages 134 143 Before You Read Section 4.1 Summary In this section, you will find out about waves, such as water waves, sound waves, and radio waves. On the lines below, list

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

Chapter 1. THE LIGHT General remarks Wave characteristics Frequency spectrum Dual nature of light...

Chapter 1. THE LIGHT General remarks Wave characteristics Frequency spectrum Dual nature of light... Chapter 1. THE LIGHT 1.1. General remarks......................................... 15 1.2. Wave characteristics....................................... 15 1.3. Frequency spectrum......................................

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

1.4 recall and use the relationship between acceleration, velocity and time: 1.6 determine acceleration from the gradient of a velocity-time graph

1.4 recall and use the relationship between acceleration, velocity and time: 1.6 determine acceleration from the gradient of a velocity-time graph Physics Section 1: Forces and motion b) Movement and position c) Forces, movement and shape d) Astronomy 1.1 use the following units: kilogram (kg), metre (m), metre/second (m/s), metre/second 2 (m/s 2

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves). Sometimes it behaves like billiard balls (particles).

More information

f= = s = Hz m Thus (B) is the correct answer.

f= = s = Hz m Thus (B) is the correct answer. MCAT Physics Problem Solving Drill 17: Electromagnetic Radiation Question No. 1 of 10 Question 1. Violet light has a wavelength of 700 nm. What is the frequency of this radiation? Question #01 (A) 2.3

More information

Year 10 End of Year Examination Revision Checklist

Year 10 End of Year Examination Revision Checklist St Olave s Physics Department Year 10 of Year Examination Revision Checklist The following checklists include all the topics that will be included in the Year 10 of Year exam. Students should use the tickboxes

More information

REVIEW SESSION. Midterm 2

REVIEW SESSION. Midterm 2 REVIEW SESSION Midterm 2 Summary of Chapter 20 Magnets have north and south poles Like poles repel, unlike attract Unit of magnetic field: tesla Electric currents produce magnetic fields A magnetic field

More information

Understanding Sight Requires. Understanding Light Understanding the Eye-Brain

Understanding Sight Requires. Understanding Light Understanding the Eye-Brain Seeing Things Understanding Sight Requires Understanding Light Understanding the Eye-Brain The Eye & Brain (- are part of how we see.) http://www.michaelbach.de/ot/mot_adaptspiral/index.html Meet our

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Physics Curriculum Map - Norwell High School SUBJECT: Physics Grade Level: 11 or 12. Month or Unit: September

Physics Curriculum Map - Norwell High School SUBJECT: Physics Grade Level: 11 or 12. Month or Unit: September SUBJECT: Physics Grade Level: 11 or 12 Month or Unit: September Scientific Inquiry Skills Scientific literacy can be achieved as students inquire about chemical phenomena. The curriculum should include

More information

EM radiation: wave nature and particle nature (Grade 12) *

EM radiation: wave nature and particle nature (Grade 12) * OpenStax-CNX module: m39511 1 EM radiation: wave nature and particle nature (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

Emission of Light & Atomic Models 1

Emission of Light & Atomic Models 1 Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 What are electromagnetic waves? Electromagnetic waves consist of electric fields and magnetic fields which

More information

Unit 3 Part 1: Quantum Physics. introduce the idea of quanta as a new way of looking at light and sub atomic physical behaviour

Unit 3 Part 1: Quantum Physics. introduce the idea of quanta as a new way of looking at light and sub atomic physical behaviour In this lesson you will Unit 3 Part 1: Quantum Physics consider and list some of the properties of light and sub atomic particles that were at odds with the classical wave theory of electromagnetic radiation

More information

An Introduction to: Light

An Introduction to: Light An Introduction to: Light Created by Anna Opitz July 2007 Why is light important? Light allows us to see. Light carries information from our surroundings to our eyes and brain. Light enables us to communicate

More information

ELECTROMAGNETIC WAVES AND CLIMATE (MODIFIED FOR ADEED)

ELECTROMAGNETIC WAVES AND CLIMATE (MODIFIED FOR ADEED) (MODIFIED FOR ADEED) Science Concept: Different frequencies of electromagnetic radiation behave differently in the atmosphere. Objectives: The student will: explain interactions between different frequencies

More information

Experiment 3 Electromagnetic Radiation and Atom Interaction

Experiment 3 Electromagnetic Radiation and Atom Interaction Experiment 3 Electromagnetic Radiation and Atom Interaction B OBJECTIVES To be familiar with the relationship between emission line spectra and the energy levels of electrons in various atoms. B INTRODUCTION

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

NATIONAL SENIOR CERTIFICATE GRADE 10. Page 1 of 11 Department of Education Limpopo Province Mid-year Examination 2014 Physical Sciences Grade 10

NATIONAL SENIOR CERTIFICATE GRADE 10. Page 1 of 11 Department of Education Limpopo Province Mid-year Examination 2014 Physical Sciences Grade 10 NATIONAL SENIOR CERTIFICATE N GRADE 10 PHYSICAL SCIENCES: PHYSICS (P1) MID-YEAR EXAMINATION 2014 MARKS: 150 TIME: 2 hrs Page 1 of 11 Department of Education Limpopo Province Mid-year Examination 2014 Physical

More information

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School Being a Physicist Unit 5 Summary Sheets Gleniffer High School 0 Experiences & Outcomes I can explain how sound vibrations are carried by waves through air, water and other materials SCN 2-11a By exploring

More information

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid

Physics: Waves, Sound/Light, Electromagnetic Waves, Magnetism, Mains Electricity and the National Grid 6.7 Describe the method to measure the speed of sound in air and the speed of ripples on the water surface 7.5 Link the properties of EM waves to their practical application 7.6 Apply knowledge of reflection,

More information

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5 Chapter 24 Photonics Data throughout this chapter: e = 1.6 10 19 C; h = 6.63 10 34 Js (or 4.14 10 15 ev s); m e = 9.1 10 31 kg; c = 3.0 10 8 m s 1 Question 1 Visible light has a range of photons with wavelengths

More information

Islamic University of Gaza - Palestine. Department of Industrial Engineering

Islamic University of Gaza - Palestine. Department of Industrial Engineering Department of Industrial Engineering Ergonomics Human Machine Work Environment Greatest Goal: Humanization of Work Design with E & E : Ease and Efficiency The Basics of Ergonomics Core courses (The Three

More information

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Name Date Grade 5 What is Light? How Light Behaves Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Today you will read two passages. Read these sources carefully to gather information

More information

Answer all questions. All working must be shown. The use of a calculator is allowed.

Answer all questions. All working must be shown. The use of a calculator is allowed. SECONDARY SCHOOLS FINAL EXAMINATIONS 2002 Educational Assessment Unit - Education Division FORM 5 PHYSICS TIME: 1 hr 45 min NAME: CLASS: Answer all questions. All working must be shown. The use of a calculator

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

Astronomy-part 3 notes Properties of Stars

Astronomy-part 3 notes Properties of Stars Astronomy-part 3 notes Properties of Stars What are Stars? Hot balls of that shine because nuclear fusion (hydrogen to helium) is happening at their cores. They create their own. Have different which allow

More information

K-5 Physical Science Overview with Activities

K-5 Physical Science Overview with Activities K-5 Physical Science Overview with Activities The physical science strand encourages the basic observations of what our physical reality is made of and how it interacts matter, energy, forces, atoms and

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Phys 2310 Wed. Sept. 20, 2017 Today s Topics

Phys 2310 Wed. Sept. 20, 2017 Today s Topics Phys 2310 Wed. Sept. 20, 2017 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

More information

Using the spectrometer

Using the spectrometer MATERIALS LIST Investigation 13.1 Stars and Spectroscopy 4 Spectrometer (also known as a spectroscope) 4 Colored pencils 4 Incandescent light source ChAPTER 13 The Universe How can we use a spectrometer

More information

St Olave s Physics Department. Year 11 Mock Revision Checklist

St Olave s Physics Department. Year 11 Mock Revision Checklist St Olave s Physics Department Year 11 Mock Revision Checklist The following checklists include all the topics that will be included in the Year 11 Mock exam. Students should use the tickboxes to check

More information

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision

Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision Module 1 LIGHT SOURCES Lecture 1. Introduction. Basic principles of Light and Vision After the mid-17th century, scientists were divided into two sides. One side, including Isaac Newton, believed in the

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Physics 240 Fall 2005: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 40 Fall 005: Final Exam Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference Science 30 Unit C Review Outline GCCHS Negatively charged Positively charged Coulomb Conductor Electric potential difference volt voltage Insulator Test body Gravitational field Field lines Solar wind

More information

Lab 2: The electromagnetic spectrum

Lab 2: The electromagnetic spectrum Astronomy 102 Name(s): Lab 2: The electromagnetic spectrum Purpose: In this lab, you will explore the phenomenon of light, and see that the electromagnetic spectrum provides a comprehensive model for understanding

More information

Sound and Light. Light

Sound and Light. Light Sound and Light Light What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Physics 11 Exam 3 Spring 2016

Physics 11 Exam 3 Spring 2016 Physics 11 Exam 3 Spring 2016 Name: Circle the BEST Answer 1 Electromagnetic waves consist of A) compressions and rarefactions of electromagnetic pulses. B) oscillating electric and magnetic fields. C)

More information

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

General Physics II Summer Session 2013 Review Ch - 16, 17, 18 95.104 General Physics II Summer Session 2013 Review Ch - 16, 17, 18 A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positivecharged rod held near the ball. The

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

What are the six common sources of light?

What are the six common sources of light? What are the six common sources of light? Common light sources include incandescent, fluorescent, laser, neon, tungsten-halogen, and sodium-vapor bulbs. Objects that give off their own light are luminous.

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

PHYSICS ORDINARY LEVEL

PHYSICS ORDINARY LEVEL *B16* PRE-LEAVING CERTIFICATE EXAMINATION, 2011 PHYSICS ORDINARY LEVEL TIME: 3 HOURS Answer three questions from section A and five questions from section B. Page 1 of 10 SECTION A (120 marks) Answer three

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Candidate No. Surname Signature Initial(s) Paper Reference(s) 4420/1F London Examinations IGCSE Physics Paper 1F Foundation Tier Monday 31 October 2005 Morning Time: 1 hour 30 minutes Examiner

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI October 3, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information