Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Size: px
Start display at page:

Download "Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3"

Transcription

1 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building

2 Physics 201 p. 2/3 What are electromagnetic waves? Electromagnetic waves consist of electric fields and magnetic fields which are mutually perpendicular and also perpendicular to the direction of propagation Electromagnetic waves are transverse waves.

3 Physics 201 p. 2/3 What are electromagnetic waves? Electromagnetic waves consist of electric fields and magnetic fields which are mutually perpendicular and also perpendicular to the direction of propagation Electromagnetic waves are transverse waves. Electromagnetic waves can travel in vacuum or in a material.

4 Physics 201 p. 2/3 What are electromagnetic waves? Electromagnetic waves consist of electric fields and magnetic fields which are mutually perpendicular and also perpendicular to the direction of propagation Electromagnetic waves are transverse waves. Electromagnetic waves can travel in vacuum or in a material. The speed of electromagnetic waves in vacuum is the speed of light in vacuum: c = m/s.

5 Physics 201 p. 3/3 What are electromagnetic waves? Electromagnetic waves can be created by oscillating charges Frequency of electromagnetic waves = frequency of charge oscillation. For example, oscillating electrons in an antenna. More on this below.

6 What are electromagnetic waves? Physics 201 p. 4/3

7 What are electromagnetic waves? Physics 201 p. 5/3

8 What are electromagnetic waves? Physics 201 p. 6/3

9 What are electromagnetic waves? Physics 201 p. 7/3

10 Physics 201 p. 8/3 Maxwell s contribution Recall Faraday s law of induction: changing magnetic flux electric field that changes with time Can a magnetic field be created by a changing electric flux?

11 Physics 201 p. 8/3 Maxwell s contribution Recall Faraday s law of induction: changing magnetic flux electric field that changes with time Can a magnetic field be created by a changing electric flux? Maxwell: Ampere s law is good only for a continuous current. What happens between the two plates of a capacitor? If one were to measure the magnetic field around the gap, one would find out that the magnetic field is non-zero! But where is the current between the gap?

12 Physics 201 p. 9/3 Maxwell s contribution Gauss law: EA = q/ɛ 0 q = ɛ 0 AE I = q t = ɛ 0A E t

13 Physics 201 p. 9/3 Maxwell s contribution Gauss law: EA = q/ɛ 0 q = ɛ 0 AE I = q t = ɛ 0A E t There is a uniform electric field between the plates and assume the surface area of each plate is A. The electric flux through an area A is Φ E = EA.

14 Physics 201 p. 10/3 Maxwell s contribution Maxwell: Imagine a fictitious current which he called a displacement current: Φ I d = ɛ E 0 t = ɛ 0 A E t = I. Add that displacement current to the right-hand-side of Ampere s law changing electric field magnetic field that changes with time. That s Maxwell s contribution Maxwell s equations. Why is it so important?

15 Physics 201 p. 11/3 Maxwell s contribution The solution to Maxwell s equations Electromagnetic waves Speed of the waves in vacuum: c = 1 ɛ0 µ 0 = m/s

16 Physics 201 p. 11/3 Maxwell s contribution The solution to Maxwell s equations Electromagnetic waves Speed of the waves in vacuum: c = 1 ɛ0 µ 0 = m/s Light is an electromagnetic wave!

17 Physics 201 p. 12/3 What is the electromagnetic spectru Accelerating charges Radiation.

18 Physics 201 p. 12/3 What is the electromagnetic spectru Accelerating charges Radiation. Like any wave, there is a relationship between the speed of the wave and the frequency and wavelength. Here v = c in vacuum. c = fλ

19 Physics 201 p. 12/3 What is the electromagnetic spectru Accelerating charges Radiation. Like any wave, there is a relationship between the speed of the wave and the frequency and wavelength. Here v = c in vacuum. c = fλ High frequency Short wavelength and vice versa.

20 Physics 201 p. 13/3 Spectrum Radio waves: λ 10 4 m 0.1m. Generated by electronic devices like an LC oscillator. Used in radio and television communication systems. AM radio waves have λ 10 4 m while FM radio waves have λ few m. Easier to diffract long wave lengths than short ones AM waves can bend around buildings much more easily than FM waves.

21 Physics 201 p. 13/3 Spectrum Radio waves: λ 10 4 m 0.1m. Generated by electronic devices like an LC oscillator. Used in radio and television communication systems. AM radio waves have λ 10 4 m while FM radio waves have λ few m. Easier to diffract long wave lengths than short ones AM waves can bend around buildings much more easily than FM waves. Microwaves: λ 0.5m 10 4 m. Generated by electronic devices. Short wavelenghts. Suited for radars, atomic and molecular studies, etc... Microwave oven: λ = 0.122m.

22 Physics 201 p. 14/3 Spectrum Infrared waves: λ 10 3 m m. Generated by molecules and room-temperature objects. Readily absorbed by many materials. Applications: physical therapy, vibrational spectroscopy, etc.

23 Physics 201 p. 14/3 Spectrum Infrared waves: λ 10 3 m m. Generated by molecules and room-temperature objects. Readily absorbed by many materials. Applications: physical therapy, vibrational spectroscopy, etc. Visible light: λ = m (red) to λ m (violet). Maximum sensitivity of human eye at λ = m (yellow-green) Color of tennis balls.

24 Spectrum Ultraviolet waves: λ m m. Sun: big source of UV light sunburn. Sun screen: the higher the number the better the blocking of UV light becomes. Danger of cheap sun glasses: They do not block UV light and since the pupils are dilated there is more of UV light striking the lenses potential damage. Better not having those sun glasses because at bright sun light, the pupils are contracted less UV light striking the lenses. Most of UV light from the sun is absorbed by the ozone (O 3 ) layer. Very important layer in Physics 201 p. 15/3

25 Physics 201 p. 16/3 Spectrum X-rays: λ 10 8 m m. Generated by high-energy electrons bombarding metal targets. Used in medicine, and studies of crystal structure.

26 Physics 201 p. 16/3 Spectrum X-rays: λ 10 8 m m. Generated by high-energy electrons bombarding metal targets. Used in medicine, and studies of crystal structure. Gamma rays: λ m m. Emitted by radioactive nuclei such as 60 Co and 137 Cs. Also by high-energy cosmic rays entering the Earth s atmosphere.

27 Spectrum Physics 201 p. 17/3

28 Physics 201 p. 18/3 Energy in electromagnetic waves Energy density carried by the electric field: u E = 1 2 ɛ 0E 2.

29 Physics 201 p. 18/3 Energy in electromagnetic waves Energy density carried by the electric field: u E = 1 2 ɛ 0E 2. Energy density carried by the magnetic field: u B = 1 2µ 0 B 2.

30 Physics 201 p. 18/3 Energy in electromagnetic waves Energy density carried by the electric field: u E = 1 2 ɛ 0E 2. Energy density carried by the magnetic field: u B = 1 2µ 0 B 2. In an electromagnetic wave in vacuum or air: u E = u B. Total energy density: u = u E + u B = ɛ 0 E 2 = 1 µ 0 B 2

31 Physics 201 p. 19/3 Energy in electromagnetic waves Since c = 1 ɛ0 µ 0, u E = u B gives E = cb

32 Physics 201 p. 19/3 Energy in electromagnetic waves Since c = 1 ɛ0 µ 0, u E = u B gives E = cb Also: E rms = E max 2 B rms = B max 2

33 Energy in electromagnetic waves Physics 201 p. 20/3

34 Physics 201 p. 21/3 Energy in electromagnetic waves: Ex Sunlight enters the top of the Earth s atmosphere with an electric field whose rms value is 720 N/C. Find (a) the average total energy density of this electromagnetic wave and (b) the rms value of the sunlight s magnetic field. Solution: ū = ɛ 0 E 2 rms = ( C 2 /(N.m 2 ))(720 N/C) 2 = J/m 3.

35 Physics 201 p. 21/3 Energy in electromagnetic waves: Ex Sunlight enters the top of the Earth s atmosphere with an electric field whose rms value is 720 N/C. Find (a) the average total energy density of this electromagnetic wave and (b) the rms value of the sunlight s magnetic field. Solution: ū = ɛ 0 E 2 rms = ( C 2 /(N.m 2 ))(720 N/C) 2 = J/m 3. B rms = E rms c = T.

36 Physics 201 p. 22/3 Intensity of electromagnetic waves Intensity = Power/Area. After a time t, the waves travel a distance ct, passing through a surface of area A. Total energy = (Total energy density) x (Volume) = u(cta).

37 Physics 201 p. 22/3 Intensity of electromagnetic waves Intensity = Power/Area. After a time t, the waves travel a distance ct, passing through a surface of area A. Total energy = (Total energy density) x (Volume) = u(cta). Intensity: S = P A = U ta = u(cta) ta S = uc = cɛ 0 E 2 = c µ 0 B 2 = uc.

38 Physics 201 p. 23/3 Intensity of electromagnetic waves A nyodenium-glass laser emits short pulses of high-intensity electromagnetic waves. The electric field has an rms value of N/C. Find the average power of each pulse that passes through a m 2 surface that is perpendicular to the laser beam. Solution: P = A S

39 Physics 201 p. 23/3 Intensity of electromagnetic waves A nyodenium-glass laser emits short pulses of high-intensity electromagnetic waves. The electric field has an rms value of N/C. Find the average power of each pulse that passes through a m 2 surface that is perpendicular to the laser beam. Solution: P = A S S = cɛ 0 E 2 rms P = Acɛ 0 E 2 rms = W.

40 Doppler effects For a source moving with a speed very much smaller than the speed of light, the shift in frequency between source and observer is given by: f O = f S (1 ± v rel c ) f O : frequency observed by the observer. f S : frequency emitted by the source. v rel : speed of the source and observer relative to one another. +: source approaching the observer : source receding from the observer Applications: radar guns for example. Important application in astronomy: redshift Physics 201 p. 24/3

41 Physics 201 p. 25/3 Polarization Electromagnetic wave: Transverse wave oscillation of a field (e.g. the electric field) occurs along one direction linear polarization (taken by convention to be the direction of the electric field).

42 Physics 201 p. 25/3 Polarization Electromagnetic wave: Transverse wave oscillation of a field (e.g. the electric field) occurs along one direction linear polarization (taken by convention to be the direction of the electric field). Visible light: The electric field oscillates in a random direction light is unpolarized.

43 Physics 201 p. 25/3 Polarization Electromagnetic wave: Transverse wave oscillation of a field (e.g. the electric field) occurs along one direction linear polarization (taken by convention to be the direction of the electric field). Visible light: The electric field oscillates in a random direction light is unpolarized. How do we get polarized light from an unpolarized light?

44 Physics 201 p. 26/3 Polarization Polarizer: material such as a Polaroid that has a transmission axis Only the electric field which is parallel to that axis can pass through polarization.

45 Physics 201 p. 26/3 Polarization Polarizer: material such as a Polaroid that has a transmission axis Only the electric field which is parallel to that axis can pass through polarization. Analyzer: the second polarizer with an axis rotated by θ with respect to the first axis reduction in intensity.

46 Physics 201 p. 26/3 Polarization Polarizer: material such as a Polaroid that has a transmission axis Only the electric field which is parallel to that axis can pass through polarization. Analyzer: the second polarizer with an axis rotated by θ with respect to the first axis reduction in intensity. Malus law: S = S 0 cos 2 θ When θ = 90 0, no light passes through. Explain the IMAX 3D.

47 Polarization Physics 201 p. 27/3

48 Polarization Physics 201 p. 28/3

49 Polarization Physics 201 p. 29/3

50 Polarization Physics 201 p. 30/3

51 Polarization Physics 201 p. 31/3

52 Polarization Physics 201 p. 32/3

53 Polarization Physics 201 p. 33/3

54 Polarization Physics 201 p. 34/3

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves

Announcements Self-inductance. Self-inductance. RL Circuit. RL Circuit, cont 3/11/2011. Chapter (not.9-.10) τ = R. Electromagnetic Waves Chapter 21.8-13(not.9-.10) Electromagnetic Announcements Clicker quizzes NO LONGER GRADED! WebAssign HW Set 8 due this Friday Problems cover material from Chapters 21-22 Office hours: My office hours today

More information

UNIVERSITY OF TECHNOLOGY Laser & Opto-Electronic Eng. Dept rd YEAR. The Electromagnetic Waves

UNIVERSITY OF TECHNOLOGY Laser & Opto-Electronic Eng. Dept rd YEAR. The Electromagnetic Waves Spectroscopy Interaction of electromagnetic radiation with matter yields that energy is absorbed or emitted by matter in discrete quantities (quanta). Measurement of the frequency or (wave length) of the

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

Chapter 22. Induction

Chapter 22. Induction Chapter 22 Induction Induced emf A current can be produced by a changing magnetic field First shown in an experiment by Michael Faraday A primary coil is connected to a battery A secondary coil is connected

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles Newton Used this particle model to explain reflection and refraction Huygens 1678 Explained

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves Waves If we wish to talk about electromagnetism or light we must first understand wave motion. If you drop a rock into the water small ripples are seen on the surface of

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES VERY SHORT ANSWER QUESTIONS Q-1. Light of uniform intensity shines perpendicularly on a totally absorbing surface, fully illuminating the surface. If the area of the surface is decreased,

More information

E.M.WAVES 1. Taller the antenna longer is the coverage of television broadcast. Justify this statement with the help of a figure. 2.If v g, v x v m represents the speed of gamma rays, X-rays microwaves

More information

Chapter 4 - Light. Name: Block:

Chapter 4 - Light. Name: Block: Chapter 4 Notes: Light Name: Block: Properties of Waves Waves are a repeating disturbance or movement that energy through matter or space without causing any displacement of material Features of a wave:

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 12 Electricity and Magnetism 1. AC circuits and EM waves The Electromagnetic Spectrum The Doppler Effect 6/20/2007 Modern Physics 1. Relativity Galilean Relativity Speed

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep EP11 Optics TOPIC 1 LIGHT Department of Engineering Physics University of Gaziantep July 2011 Sayfa 1 Content 1. History of Light 2. Wave Nature of Light 3. Quantum Theory of Light 4. Elecromagnetic Wave

More information

Electromagnetic Waves

Electromagnetic Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 23 Electromagnetic Waves Marilyn Akins, PhD Broome Community College Electromagnetic Theory Theoretical understanding of electricity and magnetism

More information

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1 Chapter 29: Maxwell s Equation and EM Waves Slide 29-1 Equations of electromagnetism: a review We ve now seen the four fundamental equations of electromagnetism, here listed together for the first time.

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Chapter 25. Electromagnetic Waves

Chapter 25. Electromagnetic Waves Chapter 25 Electromagnetic Waves EXAM # 3 Nov. 20-21 Chapter 23 Chapter 25 Powerpoint Nov. 4 Problems from previous exams Physics in Perspective (pg. 836 837) Units of Chapter 25 The Production of Electromagnetic

More information

4.2 Properties of Visible Light Date: (pages )

4.2 Properties of Visible Light Date: (pages ) 4.2 Properties of Visible Light Date: (pages 144-149) Visible light is a mixture of all the colours of the rainbow. A prism refracts light separating the colours. A second prism can recombine the colours

More information

Light is an electromagnetic wave (EM)

Light is an electromagnetic wave (EM) What is light? Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Producing EMR All EMR is produced by accelerating charges Consists of changing electric and magnetic fields Speed of all EMR in vacuum is 3.00 x 10 8 m/s EMR is made up electric

More information

f= = s = Hz m Thus (B) is the correct answer.

f= = s = Hz m Thus (B) is the correct answer. MCAT Physics Problem Solving Drill 17: Electromagnetic Radiation Question No. 1 of 10 Question 1. Violet light has a wavelength of 700 nm. What is the frequency of this radiation? Question #01 (A) 2.3

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

Nature of Light. Objectives. What is light What are the different forms

Nature of Light. Objectives. What is light What are the different forms Nature of Light Objectives What is light What are the different forms Light s Importance Light contributes 99% of all observations in Astronomy Light is a form of energy Light is electromagnetic radiation

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Chapter Two: Waves CHAPTER OUTLINE. 2.1 Vibrations and Waves 2.2 Waves 2.3 Transverse Waves. 2.4 Wave Front and The Ray

Chapter Two: Waves CHAPTER OUTLINE. 2.1 Vibrations and Waves 2.2 Waves 2.3 Transverse Waves. 2.4 Wave Front and The Ray Chapter Two Waves CHAPTER OUTLINE 2.1 Vibrations and Waves 2.2 Waves 2.3 Transverse Waves 2.4 Wave Front and The Ray 2.5 Examples of Waves 2.6 The Spectrum of Electromagnetic Waves 2.7 Characteristics

More information

progressive electromagnetic wave

progressive electromagnetic wave LECTURE 11 Ch17 A progressive electromagnetic wave is a self-supporting, energy-carrying disturbance that travels free of its source. The light from the Sun travels through space (no medium) for only 8.3

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

AC Circuits and Electromagnetic Waves

AC Circuits and Electromagnetic Waves AC Circuits and Electromagnetic Waves Physics 102 Lecture 5 7 March 2002 MIDTERM Wednesday, March 13, 7:30-9:00 pm, this room Material: through next week AC circuits Next week: no lecture, no labs, no

More information

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium

Sound Waves. Sound waves are caused by vibrations and carry energy through a medium Chapter 16 Sound Waves Sound waves are caused by vibrations and carry energy through a medium An example of a compressional wave Waves can spread out in all directions Their speed depends on its medium

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

1 Maxwell s Equations

1 Maxwell s Equations PHYS 280 Lecture problems outline Spring 2015 Electricity and Magnetism We previously hinted a links between electricity and magnetism, finding that one can induce electric fields by changing the flux

More information

Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light

Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light Key Terms: Microscope, telescope, amplitude, crest, energy, force, frequency, hertz, medium, transverse wave, trough, wave, wavelength, reflection,

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from the one crest of a wave to the next. I. Electromagnetic

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Electromagnetic Waves Properties. The electric and the magnetic field, associated with an electromagnetic wave, propagating along the z=axis. Can be represented by E = E kˆ, = iˆ E = E ˆj, = ˆj b) E =

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Which type of electromagnetic wave has a wavelength longer than that of yellow light? A. Infrared radiation C. X-rays B. Gamma Rays D.

Which type of electromagnetic wave has a wavelength longer than that of yellow light? A. Infrared radiation C. X-rays B. Gamma Rays D. Which type of electromagnetic wave has a wavelength longer than that of yellow light? A. Infrared radiation C. X-rays B. Gamma Rays D. UV Rays Science Starter! 10.14-15.13! THE UNIVERSE AND ELECTROMAGNETIC

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES UNIT V ELECTROMAGNETIC WAVES Weightage Marks : 03 Displacement current, electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves. Electromagnetic

More information

ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES ELECTROMAGNETIC SPECTRUM When white light passes through a prism, it spreads out into a rainbow of colours, with red at one end and

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 34! The speed of an electromagnetic wave can be expressed in terms of two fundamental constants related to electric fields and magnetic

More information

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction

Revision checklist SP4 5. SP4 Waves. SP4a Describing waves. SP4b Wave speeds. SP4c Refraction SP4 Waves SP4a Describing waves Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency, wavelength, amplitude, period and velocity. Describe

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION Instructor: Kazumi Tolich Lecture 11 2 25.5 Electromagnetic waves Induced fields Properties of electromagnetic waves Polarization Energy of electromagnetic

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

Chapter 27: Light. What is light?

Chapter 27: Light. What is light? Chapter 27: Light What is light? Scientists first theorized light was a wave as it behaved with a wave properties, i.e. diffraction and interference. In 1905, Einstein realized that light was behaving

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

Chapter 34. Electromagnetic Waves

Chapter 34. Electromagnetic Waves Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell s Equations: Maxwell s Equations James Clerk Maxwell 1831 1879 Scottish theoretical physicist Developed the electromagnetic theory

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 of 19 Boardworks Ltd 2016 The Electromagnetic Spectrum 2 of 19 Boardworks Ltd 2016 Detecting waves beyond the visible spectrum 3 of 19 Boardworks Ltd 2016 Invisible light

More information

Unit 3: Optics Chapter 4. Properties of Light

Unit 3: Optics Chapter 4. Properties of Light Unit 3: Optics Chapter 4 Properties of Light There are many types of light sources... Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion The Nature of Light Pythagoras A Greek

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Step Learning outcome Had a look Nearly there Nailed it! SP4 Waves SP4a Describing waves Step Learning outcome Had a look Nearly there Nailed it Recall that waves transfer energy and information but do not transfer matter. Describe waves using the terms frequency,

More information

Chapter 17 Practice Questions KEY

Chapter 17 Practice Questions KEY Chapter 17 Practice Questions KEY 1. Long wavelength Medium wavelength Short wavelength 1. Long wavelength Radio, Microwave Medium wavelength Infrared, Visible, Ultraviolet Short wavelength X ray, gamma

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

Light demonstrates the characteristics of A. particles, only B. waves, only C. both particles and waves D. neither particles nor waves

Light demonstrates the characteristics of A. particles, only B. waves, only C. both particles and waves D. neither particles nor waves Which pair of terms best describes light waves traveling from the Sun to Earth? A. electromagnetic and transverse B. electromagnetic and longitudinal C. mechanical and transverse D. mechanical and longitudinal

More information

Electromagnetic spectra

Electromagnetic spectra Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Polarization and diffraction Reading foci: pp 175-185, 191-199 not responsible

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 32 Electromagnetic Waves Assignment is due at 2:00am on Wednesday, March 28, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference

Science 30 Unit C Review Outline GCCHS. Negatively charged Positively charged Coulomb Conductor Electric potential difference Science 30 Unit C Review Outline GCCHS Negatively charged Positively charged Coulomb Conductor Electric potential difference volt voltage Insulator Test body Gravitational field Field lines Solar wind

More information

Electromagnetic Radiation. Physical Principles of Remote Sensing

Electromagnetic Radiation. Physical Principles of Remote Sensing Electromagnetic Radiation Physical Principles of Remote Sensing Outline for 4/3/2003 Properties of electromagnetic radiation The electromagnetic spectrum Spectral emissivity Radiant temperature vs. kinematic

More information

National 3 Waves and Radiation

National 3 Waves and Radiation What is a wave? National 3 Waves and Radiation 1. Wave Properties The basic definition Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Electromagnetic Radiation (EMR)

Electromagnetic Radiation (EMR) Electromagnetic Radiation (EMR) It is kind of energy with wave character ( exactly as sea waves ) that can be characterized by : Wavelength ( ) : The distance between two identical points on the wave.

More information

Atoms and Radiation electromagnetic radiation Radiation electromagnetic

Atoms and Radiation electromagnetic radiation Radiation electromagnetic Atoms and Radiation The information about astronomical objects (planets, stars, galaxies) can be obtained by studying the electromagnetic radiation emitted by those objects. Astronomers use the laws of

More information

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc.

Chapter 31 Maxwell s Equations and Electromagnetic Waves. Copyright 2009 Pearson Education, Inc. Chapter 31 Maxwell s Equations and Electromagnetic Waves Units of Chapter 31 Changing Electric Fields Produce Magnetic Fields; Ampère s Law and Displacement Current Gauss s Law for Magnetism Maxwell s

More information

Lecture Sound Waves EM Waves. Physics Help Q&A: tutor.leiacademy.org. The Doppler Effect 11/11/2014

Lecture Sound Waves EM Waves. Physics Help Q&A: tutor.leiacademy.org. The Doppler Effect 11/11/2014 Lecture 1102 Sound Waves EM Waves Physics Help Q&A: tutor.leiacademy.org The Doppler Effect The Doppler effect (or Doppler shift) is the change in frequency (or wavelength) of a wave for an observer moving

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE- ANSWER KEY Name HR Date

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE- ANSWER KEY Name HR Date 1. How are different types of radiation arranged along the electromagnetic spectrum? A. By how fast they travel incorrect answer B. By their sources incorrect answer C. By the amount of energy they carry

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves). Sometimes it behaves like billiard balls (particles).

More information

Light The EM Spectrum

Light The EM Spectrum Light The EM Spectrum 1 Spectrum of Electromagnetic Radiation Region Wavelength (Angstroms) Wavelength (centimeters) Frequency (Hz) Energy (ev) Radio > 10 9 > 10 < 3 x 10 9 < 10-5 Microwave 10 9-10 6 10-0.01

More information

The Doppler Effect ASTR1001 ASTR1001

The Doppler Effect ASTR1001 ASTR1001 The Doppler Effect Spectroscopy When the media covers astronomy, they nearly always show pretty pictures. This gives a biassed view of what astronomers actually do: well over 70% of all observations are

More information

Electromagnetic Waves

Electromagnetic Waves Physics 102: Lecture 15 Electromagnetic Waves Energy & Polarization Physics 102: Lecture 15, Slide 1 Checkpoint 1.1, 1.2 y E x loop in xy plane loop in xz plane A B C Physics 102: Lecture 15, Slide 2 Propagation

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion

Fluorescence. Incandescence. Electric. Bioluminescence Chemiluminescence. Combustion Fluorescence Incandescence Electric Bioluminescence Chemiluminescence Combustion Pythagoras A Greek philosopher Believed light was beams of tiny particles The eyes could detect these particles and see

More information

Electromagnetic Waves

Electromagnetic Waves Lecture 20 Chapter 34 Physics II Electromagnetic Waves Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish climbing our EM mountain. Maxwell s equations Let s revisit

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE Name HR Date 1. How are different types of radiation arranged along the electromagnetic spectrum? A. By how fast they travel incorrect answer B. By their sources incorrect answer C. By the amount of energy they carry

More information

EM radiation: wave nature and particle nature (Grade 12) *

EM radiation: wave nature and particle nature (Grade 12) * OpenStax-CNX module: m39511 1 EM radiation: wave nature and particle nature (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

PHYS 1444 Section 003 Lecture #23

PHYS 1444 Section 003 Lecture #23 PHYS 1444 Section 3 Lecture #3 Monday, Nov. 8, 5 EM Waves from Maxwell s Equations Speed of EM Waves Light as EM Wave Electromagnetic Spectrum Energy in EM Waves Energy Transport The epilogue Today s homework

More information

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Electromagnetic Waves Lectures Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Electromagnetic Waves Lectures 21-22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information

wave Electromagnetic Waves

wave Electromagnetic Waves What is a wave? A wave is a periodic disturbance in a solid, liquid or gas as energy is transmitted. A wave is characterized by its wavelength, frequency, and amplitude Light waves don t require a medium

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Physics 30: Chapter 5 Exam Wave Nature of Light

Physics 30: Chapter 5 Exam Wave Nature of Light Physics 30: Chapter 5 Exam Wave Nature of Light Name: Date: Mark: /33 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark

More information

#1 - Electromagnetic Spectrum Intro

#1 - Electromagnetic Spectrum Intro Go here for text on each section https://docs.google.com/viewer?a=v&pid=sites&srcid=zgvmyxvsdgrvbwfpbnxhbxltzwxiexloc3njaw VuY2V8Z3g6NjQxNzhiMGI3ZGI5ZjQ1Yw #1 - Electromagnetic Spectrum Intro https://www.youtube.com/watch?v=lwfjpc-rsxw&index=1&list=pl09e558656ca5df76

More information

3. The very long ones are called waves, and the very short ones are called waves.

3. The very long ones are called waves, and the very short ones are called waves. NASA Mission: Science Introduction to the Electromagnetic Spectrum Web Quest Directions: Load the following website which will discuss the electromagnetic spectrum in detail. http://missionscience.nasa.gov/ems/01_intro.html

More information

RADIATION and the EM Spectrum

RADIATION and the EM Spectrum RADIATION and the EM Spectrum Radioactivity is the of high-energy particles and/or of energy from a substance as a result of of its atoms. There are several types of radiation. Radiation from the sun is

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Solution 3: A glass prism deviates the violet light most and the red light least.

Solution 3: A glass prism deviates the violet light most and the red light least. EXERCISE- 6 (A) Question 1: Name three factors on which the deviation produces by a prism depends and state how does it depend on the factors stated by you. Solution 1: The deviation produced by the prism

More information

Properties of Waves. Before You Read. What are the features of a wave?

Properties of Waves. Before You Read. What are the features of a wave? Properties of Waves Textbook pages 134 143 Before You Read Section 4.1 Summary In this section, you will find out about waves, such as water waves, sound waves, and radio waves. On the lines below, list

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 32 Electromagnetic Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 32 To learn why a light

More information

Electromagnetic Waves. Electromagnetic Spectrum. Electromagnetic Spectrum. Electromagnetic Waves. CH 27-Physics (B) Fall, 2010

Electromagnetic Waves. Electromagnetic Spectrum. Electromagnetic Spectrum. Electromagnetic Waves. CH 27-Physics (B) Fall, 2010 Electromagnetic Waves Electromagnetic Spectrum CH 27-Physics (B) Fall, 2010 Electric and magnetic fields always exist When ever one is. the other is The fields can exist in a... They are at. o to each

More information

Maxwell s Equations & Electromagnetic Waves. The Equations So Far...

Maxwell s Equations & Electromagnetic Waves. The Equations So Far... Maxwell s Equations & Electromagnetic Waves Maxwell s equations contain the wave equation Velocity of electromagnetic waves c = 2.99792458 x 1 8 m/s Relationship between E and B in an EM wave Energy in

More information

λ is a distance, so its units are m, cm, or mm, etc.

λ is a distance, so its units are m, cm, or mm, etc. Electromagnetic Radiation (How we get most of our information about the cosmos) Radiation travels as waves. Waves carry information and energy. Properties of a wave Examples of electromagnetic radiation:

More information

L1 WHAT IS LIGHT? OBJECTIVES PRE-LECTURE. Aims

L1 WHAT IS LIGHT? OBJECTIVES PRE-LECTURE. Aims 1 L1 WHAT IS LIGHT? Aims OBJECTIVES This chapter is essentially an introduction to the wave theory of light. At this stage you should get a basic understanding of the wave model of light, which involves

More information

10.1 Properties of Light

10.1 Properties of Light 10.1 Properties of Light Every time you see, you are using light. You can t see anything in complete darkness! Whether you are looking at a light bulb, or a car, or this book, light brings information

More information

The Light of Your Life. We can see the universe because atoms emit photons

The Light of Your Life. We can see the universe because atoms emit photons The Light of Your Life We can see the universe because atoms emit photons Astronomy is an observational science Our messengers are Light (electromagnetic waves) Gravitational waves Cosmic rays (particles)

More information

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Spring 2007 Electromagnetic Waves Lecture 22 Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 33 Electromagnetic Waves Today s information age is based almost

More information