Chapter 5 Electrons In Atoms

Size: px
Start display at page:

Download "Chapter 5 Electrons In Atoms"

Transcription

1 Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 CHEMISTRY & YOU What makes the electron configuration of an atom stable? Energy and stability play an important role in determining how electrons are configured in an atom. 2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

3 Electron Configurations Electron Configurations What are the three rules for writing the electron configurations of elements? Three rules the aufbau principle, the Pauli exclusion principle, and Hund s rule tell you how to find the electron configurations of atoms. 3 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

4 Electron Configurations The ways in which electrons are arranged in various orbitals around the nuclei of atoms are called electron configurations. 4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

5 Increasing energy 5.2 Electron Arrangement in Atoms > Electron Configurations Aufbau Principle 6s 5s 4s 6p 5p 4p 5d 4d 3d 4f 3p 3s 2s 1s 2p According to the aufbau principle, electrons occupy the orbitals of lowest energy first. In the aufbau diagram, each box represents an atomic orbital. 5 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

6 Increasing energy 5.2 Electron Arrangement in Atoms > Electron Configurations Aufbau Principle 6s 5s 4s 6p 5p 4p 5d 4d 3d 4f 3p 3s 2p 2s 1s The aufbau diagram shows the relative energy levels of the various atomic orbitals. Orbitals of greater energy are higher on the diagram. 6 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

7 Increasing energy 5.2 Electron Arrangement in Atoms > Electron Configurations Aufbau Principle 6s 5s 4s 6p 5p 4p 5d 4d 3d 4f 3p 3s 2p 2s 1s The range of energy levels within a principal energy level can overlap the energy levels of another principal level. 7 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

8 Electron Configurations Pauli Exclusion Principle According to the Pauli exclusion principle, an atomic orbital may describe at most two electrons. To occupy the same orbital, two electrons must have opposite spins; that is, the electron spins must be paired. 8 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

9 Electron Configurations Pauli Exclusion Principle Spin is a quantum mechanical property of electrons and may be thought of as clockwise or counterclockwise. A vertical arrow indicates an electron and its direction of spin ( or ). An orbital containing paired electrons is written as. 9 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

10 Electron Configurations Hund s Rule According to Hund s rule, electrons occupy orbitals of the same energy in a way that makes the number of electrons with the same spin direction as large as possible. 10 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

11 Electron Configurations Hund s Rule Three electrons would occupy three orbitals of equal energy as follows. Electrons then occupy each orbital so that their spins are paired with the first electron in the orbital. 11 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

12 Electron Configurations Look at the orbital filling diagram of the oxygen atom. An oxygen atom contains eight electrons. Electron Configurations of Selected Elements Element 1s 2s 2p x 2p y 2p z 3s H 1s 1 He 1s 2 Electron configuration Li 1s 2 2s 1 C 1s 2 2s 2 2p 2 N 1s 2 2s 2 2p 3 O 1s 2 2s 2 2p 4 F 1s 2 2s 2 2p 5 Ne 1s 2 2s 2 2p 6 Na 1s 2 2s 2 2p 6 3s 1 12 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

13 Electron Configurations Look at the orbital filling diagram of the oxygen atom. The 1s orbital has two electrons of opposite spin. Electron Configurations of Selected Elements Element 1s 2s 2p x 2p y 2p z 3s H 1s 1 He 1s 2 Li 1s 2 2s 1 Electron configuration C 1s 2 2s 2 2p 2 N 1s 2 2s 2 2p 3 O 1s 2 2s 2 2p 4 F 1s 2 2s 2 2p 5 Ne 1s 2 2s 2 2p 6 Na 1s 2 2s 2 2p 6 3s 1 13 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

14 Electron Configurations Look at the orbital filling diagram of the oxygen atom. The 1s orbital has two electrons of opposite spin. The 2s orbital also has two electrons of opposite spin. Electron Configurations of Selected Elements Element 1s 2s 2p x 2p y 2p z 3s H 1s 1 He 1s 2 Li 1s 2 2s 1 Electron configuration C 1s 2 2s 2 2p 2 N 1s 2 2s 2 2p 3 O 1s 2 2s 2 2p 4 F 1s 2 2s 2 2p 5 Ne 1s 2 2s 2 2p 6 Na 1s 2 2s 2 2p 6 3s 1 14 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

15 Electron Configurations Look at the orbital filling diagram of the oxygen atom. Each of the three 2p orbitals has one electron. The remaining electron now pairs with an electron occupying one of the 2p orbitals. Electron Configurations of Selected Elements Element 1s 2s 2p x 2p y 2p z 3s H 1s 1 He 1s 2 Li 1s 2 2s 1 Electron configuration C 1s 2 2s 2 2p 2 N 1s 2 2s 2 2p 3 O 1s 2 2s 2 2p 4 F 1s 2 2s 2 2p 5 Ne 1s 2 2s 2 2p 6 Na 1s 2 2s 2 2p 6 3s 1 15 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

16 Electron Configurations A convenient shorthand method for showing the electron configuration of an atom involves writing the energy level and the symbol for every sublevel occupied by an electron. You indicate the number of electrons occupying that sublevel with a superscript. 16 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

17 Electron Configurations For hydrogen, with one electron in a 1s orbital, the electron configuration is written 1s 1. For oxygen, with two electrons in a 1s orbital, two electrons in a 2s orbital, and four electrons in 2p orbitals, the electron configuration is 1s 2 2s 2 2p 4. Note that the sum of the superscripts equals the number of electrons in the atom. 17 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

18 CHEMISTRY & YOU Explain why the correct electron configuration of oxygen is 1s 2 2s 2 2p 4 and not 1s 2 2s 2 2p 3 3s Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

19 Sample Problem 5.1 Writing Electron Configurations The atomic number of phosphorus is 15. Write the electron configuration of a phosphorus atom. 19 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

20 Electron Configurations Exceptional Electron Configurations You can obtain correct electron configurations for the elements up to vanadium (atomic number 23) by following the aufbau diagram for orbital filling. If you were to continue in that fashion, however, you would assign chromium and copper the following incorrect configurations. Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 20 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

21 Electron Configurations Exceptional Electron Configurations The correct electron configurations are as follows: Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 These arrangements give chromium a half-filled d sublevel and copper a filled d sublevel. 21 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

22 Electron Configurations Exceptional Electron Configurations Some actual electron configurations differ from those assigned using the aufbau principle because although half-filled sublevels are not as stable as filled sublevels, they are more stable than other configurations. 22 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

23 What is the correct electron configuration of a sulfur atom? A. 1s 2 2s 2 2p 4 3s 2 3p 6 B. 1s 2 2s 2 2p 6 3s 2 3p 3 C. 1s 2 2s 2 2p 6 3s 2 3p 4 D. 1s 2 2s 2 2p 6 3s 6 3p 2 23 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

24 Key Concept Three rules the aufbau principle, the Pauli exclusion principle, and Hund s rule tell you how to find the electron configurations of atoms. 24 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

25 Glossary Terms electron configuration: the arrangement of electrons of an atom in its ground state into various orbitals around the nuclei of atoms aufbau principle: the rule that electrons occupy the orbitals of lowest energy first Pauli exclusion principle: an atomic orbital may describe at most two electrons, each with opposite spin direction spin: a quantum mechanical property of electrons; it may be thought of as clockwise or counterclockwise Hund s rule: electrons occupy orbitals of the same energy in a way that makes the number of electrons with the same spin direction as large as possible 25 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

26 Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 26 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

27 CHEMISTRY & YOU What gives gas-filled lights their colors? An electric current passing through the gas in each glass tube makes the gas glow with its own characteristic color. 27 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

28 Light and Atomic Emission Spectra Light and Atomic Emission Spectra What causes atomic emission spectra? 28 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

29 Light and Atomic Emission Spectra The Nature of Light By the year 1900, there was enough experimental evidence to convince scientists that light consisted of waves. The amplitude of a wave is the wave s height from zero to the crest. The wavelength, represented by (the Greek letter lambda), is the distance between the crests. 29 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

30 Light and Atomic Emission Spectra The Nature of Light The frequency, represented by (the Greek letter nu), is the number of wave cycles to pass a given point per unit of time. The SI unit of cycles per second is called the hertz (Hz). 30 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

31 Light and Atomic Emission Spectra The Nature of Light The product of frequency and wavelength equals a constant (c), the speed of light. c = 31 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

32 Light and Atomic Emission Spectra The frequency ( ) and wavelength ( ) of light are inversely proportional to each other. As the wavelength increases, the frequency decreases. 32 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

33 Light and Atomic Emission Spectra The Nature of Light According to the wave model, light consists of electromagnetic waves. Electromagnetic radiation includes radio waves, microwaves, infrared waves, visible light, ultraviolet waves, X-rays, and gamma rays. All electromagnetic waves travel in a vacuum at a speed of m/s. 33 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

34 Light and Atomic Emission Spectra The Nature of Light The sun and incandescent light bulbs emit white light, which consists of light with a continuous range of wavelengths and frequencies. When sunlight passes through a prism, the different wavelengths separate into a spectrum of colors. In the visible spectrum, red light has the longest wavelength and the lowest frequency. 34 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

35 Light and Atomic Emission Spectra The electromagnetic spectrum consists of radiation over a broad range of wavelengths. Low energy ( = 700 nm) High energy ( = 380 nm) Frequency (s -1 ) 3 x x x Wavelength (m) 35 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

36 Light and Atomic Emission Spectra Atomic Emission Spectra When atoms absorb energy, their electrons move to higher energy levels. These electrons lose energy by emitting light when they return to lower energy levels. 36 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

37 Light and Atomic Emission Spectra Atomic Emission Spectra A prism separates light into the colors it contains. White light produces a rainbow of colors. Light bulb Screen Slit Prism 37 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

38 Light and Atomic Emission Spectra Atomic Emission Spectra Light from a helium lamp produces discrete lines. Helium lamp Screen Slit Prism 38 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

39 Light and Atomic Emission Spectra Atomic Emission Spectra The energy absorbed by an electron for it to move from its current energy level to a higher energy level is identical to the energy of the light emitted by the electron as it drops back to its original energy level. The wavelengths of the spectral lines are characteristic of the element, and they make up the atomic emission spectrum of the element. No two elements have the same emission spectrum. 39 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

40 Sample Problem 5.2 Calculating the Wavelength of Light Calculate the wavelength of the yellow light emitted by a sodium lamp if the frequency of the radiation is Hz ( /s). 40 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

41 Sample Problem Analyze List the knowns and the unknown. Use the equation c = to solve for the unknown wavelength. KNOWNS frequency ( ) = /s c = m/s UNKNOWN wavelength ( ) =? m 41 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

42 Sample Problem Calculate Solve for the unknown. Write the expression that relates the frequency and wavelength of light. c = 42 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

43 Sample Problem Calculate Solve for the unknown. Rearrange the equation to solve for. c = c = Solve for by dividing both sides by : c = 43 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

44 Sample Problem Calculate Solve for the unknown. Substitute the known values for and c into the equation and solve. c = = 8 m/s = m /s 44 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

45 Sample Problem Evaluate Does the answer make sense? The magnitude of the frequency is much larger than the numerical value of the speed of light, so the answer should be much less than 1. The answer should have 3 significant figures. 45 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

46 The Quantum Concept and Photons The Quantum Concept and Photons How did Einstein explain the photoelectric effect? 46 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

47 The Quantum Concept and Photons The Quantization of Energy German physicist Max Planck ( ) showed mathematically that the amount of radiant energy (E) of a single quantum absorbed or emitted by a body is proportional to the frequency of radiation ( ). E or E = h 47 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

48 The Quantum Concept and Photons The Quantization of Energy The constant (h), which has a value of J s (J is the joule, the SI unit of energy), is called Planck s constant. E or E = h 48 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

49 The Quantum Concept and Photons The Photoelectric Effect Albert Einstein used Planck s quantum theory to explain the photoelectric effect. In the photoelectric effect, electrons are ejected when light shines on a metal. 49 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

50 The Quantum Concept and Photons The Photoelectric Effect Not just any frequency of light will cause the photoelectric effect. Red light will not cause potassium to eject electrons, no matter how intense the light. Yet a very weak yellow light shining on potassium begins the effect. 50 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

51 The Quantum Concept and Photons The Photoelectric Effect The photoelectric effect could not be explained by classical physics. Classical physics correctly described light as a form of energy. But, it assumed that under weak light of any wavelength, an electron in a metal should eventually collect enough energy to be ejected. 51 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

52 The Quantum Concept and Photons The Photoelectric Effect To explain the photoelectric effect, Einstein proposed that light could be described as quanta of energy that behave as if they were particles. 52 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

53 The Quantum Concept and Photons The Photoelectric Effect These light quanta are called photons. Einstein s theory that light behaves as a stream of particles explains the photoelectric effect and many other observations. Light behaves as waves in other situations; we must consider that light possesses both wavelike and particle-like properties. 53 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

54 The Quantum Concept and Photons The Photoelectric Effect No electrons are ejected because the frequency of the light is below the threshold frequency. If the light is at or above the threshold frequency, electrons are ejected. If the frequency is increased, the ejected electrons will travel faster. 54 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

55 Sample Problem 5.3 Calculating the Energy of a Photon What is the energy of a photon of microwave radiation with a frequency of /s? 55 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

56 Sample Problem Analyze List the knowns and the unknown. Use the equation E = h to calculate the energy of the photon. KNOWNS frequency ( ) = /s h = J s UNKNOWN energy (E) =? J 56 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

57 Sample Problem Calculate Solve for the unknown. Write the expression that relates the energy of a photon of radiation and the frequency of the radiation. E = h 57 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

58 Sample Problem Calculate Solve for the unknown. Substitute the known values for and h into the equation and solve. E = h = ( J s) ( /s) = J 58 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

59 Sample Problem Evaluate Does the result make sense? Individual photons have very small energies, so the answer seems reasonable. 59 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

60 What is the frequency of a photon whose energy is J? E = h = h E E = = 34 J h J s = Hz 60 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

61 An Explanation of Atomic Spectra An Explanation of Atomic Spectra How are the frequencies of light emitted by an atom related to changes of electron energies? 61 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

62 An Explanation of Atomic Spectra When an electron has its lowest possible energy, the atom is in its ground state. In the ground state, the principal quantum number (n) is 1. Excitation of the electron by absorbing energy raises the atom to an excited state with n = 2, 3, 4, 5, or 6, and so forth. A quantum of energy in the form of light is emitted when the electron drops back to a lower energy level. 62 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

63 An Explanation of Atomic Spectra The light emitted by an electron moving from a higher to a lower energy level has a frequency directly proportional to the energy change of the electron. 63 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

64 An Explanation of Atomic Spectra The three groups of lines in the hydrogen spectrum correspond to the transition of electrons from higher energy levels to lower energy levels. 64 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

65 CHEMISTRY & YOU The glass tubes in lighted signs contain helium, neon, argon, krypton, or xenon gas, or a mixture of these gases. Why do the colors of the light depend on the gases that are used? Each different gas has its own characteristic emission spectrum, creating different colors of light when excited electrons return to the ground state. 65 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

66 In the hydrogen spectrum, which of the following transitions produces a spectral line of the greatest energy? A. n = 2 to n = 1 B. n = 3 to n = 2 C. n = 4 to n = 3 66 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

67 Quantum Mechanics Quantum Mechanics How does quantum mechanics differ from classical mechanics? 67 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

68 Quantum Mechanics Given that light behaves as waves and particles, can particles of matter behave as waves? Louis de Broglie referred to the wavelike behavior of particles as matter waves. His reasoning led him to a mathematical expression for the wavelength of a moving particle. 68 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

69 Quantum Mechanics The Wavelike Nature of Matter Today, the wavelike properties of beams of electrons are useful in viewing objects that cannot be viewed with an optical microscope. The electrons in an electron microscope have much smaller wavelengths than visible light. These smaller wavelengths allow a much clearer enlarged image of a very small object, such as this pollen grain, than is possible with an ordinary microscope. 69 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

70 Quantum Mechanics Classical mechanics adequately describes the motions of bodies much larger than atoms, while quantum mechanics describes the motions of subatomic particles and atoms as waves. 70 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

71 Quantum Mechanics The Heisenberg Uncertainty Principle The Heisenberg uncertainty principle states that it is impossible to know both the velocity and the position of a particle at the same time. 71 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

72 Quantum Mechanics The Heisenberg Uncertainty Principle The Heisenberg uncertainty principle states that it is impossible to know both the velocity and the position of a particle at the same time. This limitation is critical when dealing with small particles such as electrons. But it does not matter for ordinary-sized objects such as cars or airplanes. 72 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

73 Quantum Mechanics To locate an electron, you might strike it with a photon. The electron has such a small mass that striking it with a photon affects its motion in a way that cannot be predicted accurately. The very act of measuring the position of the electron changes its velocity, making its velocity uncertain. Before collision: A photon strikes an electron during an attempt to observe the electron s position. After collision: The impact changes the electron s velocity, making it uncertain. 73 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

74 The Heisenberg uncertainty principle states that it is impossible to simultaneously know which two attributes of a particle? velocity and position 74 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

75 Key Concepts and Key Equations When atoms absorb energy, their electrons move to higher energy levels. These electrons lose energy by emitting light when they return to lower energy levels. To explain the photoelectric effect, Einstein proposed that light could be described as quanta of energy that behave as if they were particles. The light emitted by an electron moving from a higher to a lower energy level has a frequency directly proportional to the energy change of the electron. 75 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

76 Key Concepts and Key Equations Classical mechanics adequately describes the motions of bodies much larger than atoms, while quantum mechanics describes the motions of subatomic particles and atoms as waves. C = E = h 76 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

77 Glossary Terms amplitude: the height of a wave s crest wavelength: the distance between adjacent crests of a wave frequency: the number of wave cycles that pass a given point per unit of time; frequency and wavelength are inversely proportional to each other hertz: the unit of frequency, equal to one cycle per second 77 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

78 Glossary Terms electromagnetic radiation: energy waves that travel in a vacuum at a speed of m/s; includes radio waves, microwaves, infrared waves, visible light, ultraviolet waves, X-rays, and gamma rays spectrum: wavelengths of visible light that are separated when a beam of light passes through a prism; range of wavelengths of electromagnetic radiation 78 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

79 Glossary Terms atomic emission spectrum: the pattern formed when light passes through a prism or diffraction grating to separate it into the different frequencies of light it contains Planck s constant: the constant (h) by which the amount of radiant energy (E) is proportional to the frequency of the radiation ( ) photoelectric effect: the phenomenon in which electrons are ejected when light shines on a metal 79 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

80 Glossary Terms photon: a quantum of light; a discrete bundle of electromagnetic energy that interacts with matter similarly to particles ground state: the lowest possible energy of an atom described by quantum mechanics Heisenberg uncertainty principle: it is impossible to know both the velocity and the position of a particle at the same time 80 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

81 BIG IDEA Electrons and the Structure of Atoms Electrons can absorb energy to move from one energy level to a higher energy level. When an electron moves from a higher energy level back down to a lower energy level, light is emitted. 81 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

5.2 Electron Arrangement in Atoms > Happy Thursday!

5.2 Electron Arrangement in Atoms > Happy Thursday! Happy Thursday! Please take out your homework problems for me to check for a grade. Keep them out since we will be going over them. Also, take out your notes packet! 1 Chapter 5 Electrons In Atoms 5.1

More information

Name Date Class ELECTRONS IN ATOMS

Name Date Class ELECTRONS IN ATOMS Name _ Date Class 5 ELECTRONS IN ATOMS SECTION 5.1 MODELS OF THE ATOM (pages 127 132) This section summarizes the development of atomic theory. It also explains the significance of quantized energies of

More information

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and positions of electrons

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Chapter 5 Models of the Atom

Chapter 5 Models of the Atom Chapter 5 Models of the Atom Atomic Models Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus. However, Rutherford s atomic model

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM Name Date Class 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Electrons in Atoms ELECTRONS AND THE STRUCTURE OF ATOMS 5.1 Revising the Atomic Model Essential Understanding of an atom. An electron s energy depends on its location around the nucleus Reading Strategy

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom Arrangement of Electrons in Atoms Table of Contents Section 1 The Development of a New Atomic Model Section 2 The Quantum Model of the Atom Section 3 Electron Configurations Section 1 The Development of

More information

Bellwork: Calculate the atomic mass of potassium and magnesium

Bellwork: Calculate the atomic mass of potassium and magnesium Bellwork: Calculate the atomic mass of potassium and magnesium Chapter 5 - electrons in atoms Section 5.1: Revising the atomic model What did Ernest Rutherford think about electrons? In Rutherford s model,

More information

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day Calendar Sunday Monday Tuesday Wednesday Thursday Friday Saturday 13 14 Waves vocab waves ws 20 PSAT make notecards 7th 15 21 22 quiz 16 23 17 24 27 28 29 30 31 elements test demo day Blank 1 The Nature

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates Name Period CRHS Academic Chemistry Unit 4 Electrons Notes Key Dates Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 1 Chapter 13 Electrons in Atoms We need to further develop our understanding of atomic structure to help us understand how atoms bond to

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Electrons in Atoms Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Click a hyperlink or folder tab to view the corresponding slides. Exit

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea Electrons in Atoms Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element Greek Idea Thomson s Model Discovered electrons Atoms were made of positive

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation. Preview Objectives Properties of Light Wavelength and Frequency The Photoelectric Effect The Hydrogen-Atom Line-Emission Spectrum Bohr Model of the Hydrogen Atom Photon Emission and Absorption Section

More information

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents Chapter 4 Arrangement of Electrons in Atoms Table of Contents Section 1 Section 2 Section 3 The Development of a New Atomic Model The Quantum Model of the Atom Electron Configurations Sodium Yellow Strontium

More information

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space.

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space. Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through space. What are the 7 forms of electromagnetic radiation, in order of INCREASING wavelength? gamma rays

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

Chapter 4 Electron Configurations

Chapter 4 Electron Configurations Chapter 4 Electron Configurations Waves Today scientists recognize light has properties of waves and particles Waves: light is electromagnetic radiation and travels in electromagnetic waves. 4 Characteristics

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Atomic Structure Part II. Electrons in Atoms

Atomic Structure Part II. Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Electromagnetic radiation Amplitude Wavelength Frequency Speed of light Visible spectrum Quantum (Planck)

More information

The Electron Cloud. Here is what we know about the electron cloud:

The Electron Cloud. Here is what we know about the electron cloud: The Electron Cloud Here is what we know about the electron cloud: It contains the subatomic particles called electrons This area accounts for most of the volume of the atom ( empty space) These electrons

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

Arrangement of Electrons. Chapter 4

Arrangement of Electrons. Chapter 4 Arrangement of Electrons Chapter 4 Properties of Light -Light s interaction with matter helps to understand how electrons behave in atoms -Light travels through space & is a form of electromagnetic radiation

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Unit 3: Electron configuration and periodicity

Unit 3: Electron configuration and periodicity Unit 3: Electron configuration and periodicity Group 1 BOHR MODELS Group 18 H Group 2 Group 13 Group 14 Group 15 Group 16 Group 17 He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca His theory couldn t

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Introduction. Electromagnetic Waves. Electromagnetic Waves

Introduction. Electromagnetic Waves. Electromagnetic Waves Introduction Much of the information we know about electrons comes from studies of interactions of light and matter. In the early 1900 s, scientists discovered that light has properties of both a wave

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

The Atom & Unanswered Questions:

The Atom & Unanswered Questions: The Atom & Unanswered Questions: 1) Recall-Rutherford s model, that atom s mass is concentrated in the nucleus & electrons move around it. a) Doesn t explain how the electrons were arranged around the

More information

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity p. 99 p. 98 p. 98 Electromagnetic Spectrum Image Atomic Structure and Periodicity Chemistry Zumdahl Chapter 7 Properties of Light Electromagnetic Radiation: a form of energy that exhibits wavelike behavior

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry Electronic Structure and the Periodic Table Unit 6 Honors Chemistry Wave Theory of Light James Clerk Maxwell Electromagnetic waves a form of energy that exhibits wavelike behavior as it travels through

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

Electrons hold the key to understanding why substances behave as they do. When atoms react it is their outer pars, their electrons, that interact.

Electrons hold the key to understanding why substances behave as they do. When atoms react it is their outer pars, their electrons, that interact. Electronic Structure of Atoms The Wave Nature of Light Electrons hold the key to understanding why substances behave as they do. When atoms react it is their outer pars, their electrons, that interact.

More information

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4 CHAPTER 4 Arrangement of Electrons in Atoms The Development of a New Atomic Model The Rutherford model was a great improvement over the Thomson model of the atom. But, there was one major question that

More information

Modern Atomic Theory and the Periodic Table

Modern Atomic Theory and the Periodic Table Modern Atomic Theory and the Periodic Table Chapter 10 the exam would have to be given earlier Hein and Arena Version 1.1 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons,

More information

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave nature of

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Chapter 4 The Structure of the Atom

Chapter 4 The Structure of the Atom Chapter 4 The Structure of the Atom Read pg. 86-97 4.1 Early Theories of Matter The Philosophers Democritus Artistotle - Artistotle s influence so great and the science so primitive (lacking!) his denial

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory In science, often times chemical or physical behavior can not be seen with the naked eye (nor with the use of some other device). Consequently, an understanding and explanation of

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 5.1 Notes I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave

More information

Chapter 5. Arrangement of Electrons in Atoms

Chapter 5. Arrangement of Electrons in Atoms Chapter 5 Arrangement of Electrons in Atoms Light Dual Nature of Light: Light can act like, and as particles. Light is one type of which is a form of Energy that has wavelike behaviour Other types of em

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

AP Chemistry. Chapter 6 Electronic Structure of Atoms

AP Chemistry. Chapter 6 Electronic Structure of Atoms AP Chemistry Chapter 6 Electronic Structure of Atoms Section 6.1 Wave Nature of Light When we say "light," we generally are referring to visible light a type of electromagnetic radiation But actually Visible

More information

The ELECTRON: Wave Particle Duality. chapter 4

The ELECTRON: Wave Particle Duality. chapter 4 The ELECTRON: Wave Particle Duality chapter 4 What do we know about light? Before 1900 s scientists thought light behaved as a wave. This belief changed when it was discovered that light also has particle

More information

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY.

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY. !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 6.1 The Wave Nature of Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

Chapter 5: Electrons in Atoms

Chapter 5: Electrons in Atoms Chapter 5: Electrons in Atoms Models of the Atom Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus, like the planets move around

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In what way does the photoelectric effect support the particle theory

More information

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36 CHEM 1411. Chapter 6. Basic Quantum Chemistry (Homework). WL36 1. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect. A) True B) False 2. A

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

Name Period. Practice Problems

Name Period. Practice Problems Name Period CRHS Academic Chemistry Unit 4 Electrons Practice Problems Due Date Assignment On-Time (100) Late (70) 4.1 4.2 4.3 4.4 4.5 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

Light, Waves, and Electrons

Light, Waves, and Electrons Light, Waves, and Electrons Light: Travels 1. 2. Light Waves Wavelength Frequency Electromagnetic Spectrum Speed of light The product of frequency of a wave and wavelength = the speed of light Calculate

More information

Electron Configuration

Electron Configuration Electron Configuration Plumb Pudding Atomic Model Thomson s atomic model consisted of negatively charged electrons embedded in a ball of positive charge. Diagram pg 81 of chemistry text. Rutherford s Model

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Figure 2 Figure 3 The energy is released as electromagnetic radiation.

More information

Energy of Waves. What is the relationship between l, n and Energy?!

Energy of Waves. What is the relationship between l, n and Energy?! Chapter 5 Part 2 c = ln Practice! What is the wavelength of a microwave that has a frequency of 1.56 x 10 9 Hz? The red-colored light in a fireworks display might be produced when Strontium salts are heated.

More information