CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM

Size: px
Start display at page:

Download "CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM"

Transcription

1 !!

2 CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of electromagnetic radiation are described by two independent variables: (ν, Greek mu) is the number of waves you have per second and is expressed in units of or. (λ, Greek lambda) is the distance from one crest of a wave to the other and is expressed in units of. Relationship between frequency & wavelength Page 2

3 PRACTICE: THE NATURE OF LIGHT A. Based on the images of different electromagnetic waves, answer each of the following questions. I. II. III. a) Which electromagnetic wave has the longest wavelength? b) Which electromagnetic wave has the greatest energy? c) Which electromagnetic wave has the lowest frequency? d) Which electromagnetic wave has the largest amplitude? Page 3

4 CONCEPT: INTERCONVERSION OF LIGHT UNITS The speed of a wave, is the product of ν and λ. In a vacuum, all forms of electromagnetic radiation travel at 3.00 x 10 8, which is a physical constant called the (c). c = ν λ EXAMPLE: Even the music we listen to deals with how energy travels to get to our car radio. If Power 96 broadcasts its music at 96.5 MHz (megahertz, or 10 6 Hertz) find the wavelength in μm and A o of the radio waves. PRACTICE: Calculate the frequency of the red light emitted by a neon sign with a wavelength of nm. Page 4

5 CONCEPT: ENERGY AND MATTER Light travels at different speeds as it passes through different media in a phenomenon known as. Light passing through the opening of a slit creates a semicircular wave in a phenomenon known as. If the light wave passes through two adjacent slits then the semicircular waves can interact with one another. inteference amplitude. inteference amplitude. Page 5

6 CONCEPT: THE PARTICLE NATURE OF LIGHT The physicists Max Planck and Albert Einstein theorized that light was made of small packets of electromagnetic energy. Each packet of energy referred to as a. The energy could be expressed with the following equation: E = hv constant is represented by the variable of h and is equal to x J s. EXAMPLE: After a night out last Halloween dressed up as Charlie Sheen I came home and microwaved some day old pizza. If the microwave I used emitted a wavelength of 3.25 cm, answer the following questions. a) What is the energy of one photon of this microwave radiation? b) What is the energy of one mole of this photon? PRACTICE: Rank the following in terms of decreasing energy: Gamma energy, visible light 1 ( E = 4.39 x J), microwave and visible light 2 (λ = 595 nm). Page 6

7 CONCEPT: THE PHOTOELECTRIC EFFECT Albert Einstein theorized that light was quantized into small packets or bundles of energy. A single particle of this quantized packet of electromagnetic energy was later named a. According to the Photoelectric effect, when photons with enough energy hit the surface of a metal electrons are emitted. Energy is directly proportional to rather than its. The Photoelectric Effect only happens with photons over a certain frequency. EXAMPLE: Illustrate what happens when a photon of sufficient energy strike the surface of a metal. Real-life Application: Page 7

8 CONCEPT: THE WAVE NATURE OF LIGHT Up to this point we have discussed light as packets or particles of energy that travel through a given space, now we will look at light as it travels as a uniform wave through a given space. According to the equation matter behaves as though it moves in a wave. To calculate the wavelength of matter we simply use the following equation: λ = λ = h mν h = m = ν = EXAMPLE: Find the wavelength (in nm) of a proton with a speed of 7.33 x (Mass of an proton = 1.67 x kg) PRACTICE: What is the speed of an electron that has a wavelength of 895 μm? (Mass of a electron = 9.11 x kg) Page 8

9 CONCEPT: HEISENBERG S UNCERTAINTY PRINCIPLE The nature of an electron is both unique and difficult to understand because it can behave as both a(n) and a(n). The of an electron is related to its wave nature, while its is related to its particle nature. Weiner Heisenberg introduced the term of to describe how an electron could be observed as either a particle or wave, but not both. By extension we also couldn t know both the or of an electron. To illustrated this dual nature of an electron Heisenberg created his Uncertainty or Indeterminacy Principle and its associated formula: Δx Δp h 4π h = Δx = Δp = EXAMPLE: An electron has an uncertainty in its position of 630 pm. What is the uncertainty in its velocity? Page 9

10 CONCEPT: THE ATOMIC MODEL An atom is composed of subatomic particles. In the center of an atom there is the. It contains the subatomic particles: and. Spinning around it we find the third subatomic particle: the. PROTONS are charged subatomic particles. ELECTRONS are charged subatomic particles. NEUTRONS are charged subatomic particles.! Model helped to explain what happened when an electron absorbed or released energy within a hydrogen atom. After the hydrogen electron absorbed sufficient energy and becomes it would jump to a higher energy level. Eventually it would return to its and release the energy it absorbed as heat or light. Page 10

11 PRACTICE: THE ATOMIC MODEL EXAMPLE: Calculate the energy of the 4 th electron found in the n = 2 state of the boron atom in kilojoules per mole. PRACTICE 1: Which of the following transitions (in a hydrogen atom) represents emission of the longest wavelength? a) n = 4 to n = 2 b) n = 3 to n= 4 c) n = 1 to n = 2 d) n = 6 to n = 5 e) n = 2 to n = 5 PRACTICE 2: Which of the following transitions represents absorption of a photon with the largest energy? a) n = 3 to n = 1 b) n = 2 to n = 4 c) n = 1 to n = 2 d) n = 6 to n = 3 e) n = 1 to n = 4 Page 11

12 CONCEPT: ATOMIC EMISSION When an electron absorbs enough energy it goes from a numbered shell to a numbered shell. The electron eventually releases or emits the energy it took in and goes from a numbered shell to a numbered shell. If the electron goes from a higher numbered shell to the 1 st shell it is referred to as a Series. 1 If the electron goes from a higher numbered shell to the 2 nd shell it is referred to as a Series. 2 If the electron goes from a higher numbered shell to the 3 rd shell it is referred to as a Series. 3 Page 12

13 PRACTICE: ATOMIC EMISSION EXAMPLE: What is the wavelength of a photon (in nanometers) emitted during a transition from n = 4 to n = 2 state in the hydrogen atom? PRACTICE: Classify each of the following transitions as either a Lyman, Balmer or Paschen series. a) n = 3 to n = 1 b) n = 6 to n = 1 c) n = 3 to n = 2 d) n = 6 to n = 3 e) n = 4 to n = 2 Page 13

14 CONCEPT: QUANTUM MECHANICAL PICTURE OF THE ATOM The main atomic sub-levels are the s, p, d and f. Each atomic sub-level has a set number of atomic or electron orbitals. Each electron orbital can hold up electrons. The s sub-level contains one electron orbital The p sub-level contains three electron orbitals The d sub-level contains five electron orbitals The f sub-level contains seven electron orbitals Page 14

15 CONCEPT: QUANTUM NUMBERS OF AN ATOMIC MODEL An atomic orbital is characterized by three quantum numbers. The quantum number deals with the atomic orbital s size and energy. It tells us the relative distance of the electron from the nucleus. It uses the variable and provides the shell number of the electron. EXAMPLE: Calculate the principal quantum number of each atomic sublevel. a. 7p b. 5s c. 3d d. 4f The electron capacity of each shell can be determined by using the formula:. Electron Shell (n) Maximum Number of Electrons The quantum number deals with the shape of the atomic orbital. Each atomic orbital has a specific shape. It uses the variable and formula. Each atomic sub-level has an L value associated with it. Sublevel s p d f g L value The quantum number deals with the orientation of the orbital in the space around the nucleus. It is a range of the previous quantum number: -l to +l. It uses the variable. Sublevel s p d f L value ML value! Page 15

16 PRACTICE: QUANTUM NUMBERS OF AN ATOMIC MODEL EXAMPLE 1: What l or ml values are allowed if n = 2? How many orbitals exist for n = 2? EXAMPLE 2: How many electrons can have the following quantum sets? a) n = 4 b) n = 3, l = 1 c) n = 4, ml = -2 d) n = 5, l = 2, ml = -2 PRACTICE 1: Provide the n, l and ml value for each of the given orbitals. a. 6p n = l = ml = b. 4d n = l = ml = c. 5f n = l = ml = PRACTICE 2: State all the l and mlvalues possible if the principle quantum number is equal to 3.! Page 16

17 CONCEPT: THE FOURTH QUANTUM NUMBER An electron in an atom is described completely by a set of four quantum numbers. The first three describe its and the fourth describes its. The quantum number (ms) helps to discuss the rotational spin of the electron and has values of either and.!! According to the : no two electrons in the same atom can have the same four quantum numbers. EXAMPLE: State the electron configuration of boron and list the four quantum numbers of the 1 st and the 5 th electron. Page 17

18 CONCEPT: ATOMIC ORBITAL SHAPE The quantum number deals with the shape of the atomic orbital. Each atomic orbital has a specific shape. It uses the variable and formula. Each atomic sub-level has an L value associated with it. Sublevel s p d f g L value EXAMPLE: Based on the following atomic orbital shape, which of the following set of quantum numbers is correct: a) n = 8, l = 1, ml = 1 2 b) n = 8, l = 2, ml = -2 c) n = 8, l = 0, ml = 1 d) n = 8, l = 0, ml = 0 PRACTICE: Based on the following atomic orbital shape, which of the following set of quantum numbers is correct: a) n = 2, l = 1, ml = +1, ms = - 1 b) n = 4, l = 1, ml = - 2, ms = c) n = 3, l = 1, ml = - 1, ms = 0 d) n = 2, l = 1, ml = + 1, ms = 1 2 Page 18

19 8. Which of the following transitions (in a hydrogen atom) represent emission of the smallest or shortest wavelength? a. n = 4 to n = 2 b. n = 3 to n= 4 c. n = 1 to n = 2 d. n = 7 to n = 5 e. n = 2 to n = 5 Page 19

20 9. Which of the following transitions represent absorption of a photon with the highest frequency? a. n = 3 to n = 1 b. n = 2 to n = 4 c. n = 1 to n =2 d. n = 6 to n = 3 e. n = 1 to n = 3 Page 20

21 10. Provide the n, l and ml value for each of the given orbitals. a) 7s n = b) 5d n = l = l = ml = ml = c) 2p n = d) 4f n = l = l = ml = ml = Page 21

22 11. Which statement about the four quantum numbers is false? a. n = principal quantum number, n = 1 to b. l = azimuthal quantum number, l = 0,1,2,..., (n+1) c. ml = magnetic quantum number, ml = (-l),...,0,..., (+l) d. ms = spin quantum number, ms = or 1 2 e. The first three quantum numbers deal with the atomic orbitals except for the ms quantum number, which deals with the electrons in the atomic orbitals. Page 22

23 12. Each of the following sets of quantum numbers gives information on a specific orbital. Find the error in each. a. n = 4, l = 0, ml = 1, ms = 1 2 b. n = 5, l = 2, ml = - 1, ms = 1 c. n = 7, l = 7, ml = - 5, ms = 1 2 d. n = 0, l = 5, ml = - 3, ms = 1 2 Page 23

24 14. How many electrons can have the following quantum sets? a) n = 4, ml = -1 b) n = 5, ml = 0, ms = 1 2 c) n = 9, l = 4, ms = 1 2 d) n = 2, ms = 1 2 Page 24

25 19. For n = 2, what are the possible sublevels? a) 0 b) 0, 1 c) 0, 1, 2 d) 0, 1,2, 3 Page 25

26 16. Based on the following atomic orbital shape, which of the following set of quantum numbers is correct: a) n = 2, l = 1, ml = 0 b) n = 3, l = 2, ml = 1 c) n = 4, l = 0, ml = +1 d) n = 1, l = 1, ml = 0 Page 26

27 17. Based on the following atomic orbital shape, which of the following set of quantum numbers is correct: a) n = 3, l = 2, ml = 0, ms = 1 2 b) n = 3, l = 1, ml = - 3, ms = 1 c) n = 4, l = 0, ml = 0, ms = 1 2 d) n = 4, l = 2, ml = - 3, ms = 1 2 Page 27

28 18. Based on the following atomic orbital shape, which of the following set of quantum numbers is correct: a) n = 3, l = 3, ml = 0, ms = 1 2 b) n = 1, l = 3, ml = -3, ms = 1 c) n = 7, l = 3, ml = - 4, ms = 1 2 d) n = 6, l = 3, ml = -3, ms = 1 2 Page 28

29 25. Give the electron configuration for the following element and its ion. For the ion, state if it is paramagnetic or diamagnetic: a. Ag Ag + Page 29

30 26. Give the electron configuration for the following element and its ion. For the ion, state if it is paramagnetic or diamagnetic: a. Cl Cl + Page 30

31 27. Which of the following represents an excited state? a) Cl: 1s 2 2s 2 2p 6 3s 2 3p 5 b) Be: 1s 2 2s 2 c) Na: 1s 2 2s 2-2p 6 3p 1 d) N: 1s 2 2s 2 2p 3 Page 31

32 28. Give the set of four quantum numbers that represent the indicated electron in the following element: a. Br (33 rd electron) n =, l =, ml =, ms = Page 32

33 29. Give the set of four quantum numbers that represent the indicated electron in the following element: a. Ca (19 th electron) n =, l =, ml =, ms = Page 33

34 30. Give the set of four quantum numbers that represent the indicated electron in the following element: a. Cu (27 th electron) n =, l =, ml =, ms = Page 34

35 31. Give the set of four quantum numbers that represent the indicated electron in the following element: a. Mo 3+ (38 th electron) n =, l =, ml =, ms = Page 35

36 32. For a multi-electron atom, arrange the electron subshells of the following listing in order of increasing energy: 6s, 4f, 2p, 5d. Page 36

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY.

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY. !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and positions of electrons

More information

November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM

November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM CHAPTER 7 Atomic Structure ATOMIC STRUCTURE 1 The Wave Nature of Light Most subatomic particles behave as PARTICLES and obey the physics of waves. Visible light Ultravioletlight Wavelength Frequency (Hertz

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Atomic Structure 11/21/2011

Atomic Structure 11/21/2011 Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz) The Development of Quantum Mechanics Early physicists used the properties of electromagnetic radiation to develop fundamental ideas about the structure of the atom. A fundamental assumption for their work

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Electrons in Atoms Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Click a hyperlink or folder tab to view the corresponding slides. Exit

More information

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE 1 7.1 The Nature of Light 2 Most subatomic particles behave as PARTICLES and obey the physics of waves. Light is a type of electromagnetic radiation Light consists

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model Unit 3 Chapter 4 Electrons in the Atom Electrons in the Atom (Chapter 4) & The Periodic Table/Trends (Chapter 5) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the electrons

More information

Arrangement of Electrons. Chapter 4

Arrangement of Electrons. Chapter 4 Arrangement of Electrons Chapter 4 Properties of Light -Light s interaction with matter helps to understand how electrons behave in atoms -Light travels through space & is a form of electromagnetic radiation

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM Name Date Class 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information

10/4/2011. Tells you the number of protons

10/4/2011. Tells you the number of protons Atomic Structure The arrangement of the subatomic particles within the atom determines the chemical properties of the elements How they interact with one another The types of ions and structures that they

More information

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms?

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms? Chapter 7 The Quantum Mechanical Atom 1 Characteristics of Atoms Atoms: possess mass contain positive nuclei contain electrons occupy volume have various properties attract one another combine to form

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Quantum Theory and the Electronic Structure of Atoms

Quantum Theory and the Electronic Structure of Atoms Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of Waves Wavelength ( ) is the distance

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education Chapter 6 Laser: step-like energy transition 6.1 The Wave Nature of Light 6.2 Quantized Energy and Photons 6.3 Line Spectra and the Bohr Model 6.4 The Wave Behavior of Matter 6.5 Quantum Mechanics and

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

The Electron Cloud. Here is what we know about the electron cloud:

The Electron Cloud. Here is what we know about the electron cloud: The Electron Cloud Here is what we know about the electron cloud: It contains the subatomic particles called electrons This area accounts for most of the volume of the atom ( empty space) These electrons

More information

WAVE NATURE OF LIGHT

WAVE NATURE OF LIGHT WAVE NATURE OF LIGHT Light is electromagnetic radiation, a type of energy composed of oscillating electric and magnetic fields. The fields oscillate perpendicular to each other. In vacuum, these waves

More information

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median.

2) The number of cycles that pass through a stationary point is called A) wavelength. B) amplitude. C) frequency. D) area. E) median. Chemistry Structure and Properties 2nd Edition Tro Test Bank Full Download: http://testbanklive.com/download/chemistry-structure-and-properties-2nd-edition-tro-test-bank/ Chemistry: Structure & Properties,

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

The ELECTRON: Wave Particle Duality. chapter 4

The ELECTRON: Wave Particle Duality. chapter 4 The ELECTRON: Wave Particle Duality chapter 4 What do we know about light? Before 1900 s scientists thought light behaved as a wave. This belief changed when it was discovered that light also has particle

More information

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell?

Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? AP Chemistry Ms. Ye Name Date Block Bohr Diagram, Lewis Structures, Valence Electrons Review 1. What is the maximum number of electrons you can fit in each energy level or shell? 1 st shell 2 nd shell

More information

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day Calendar Sunday Monday Tuesday Wednesday Thursday Friday Saturday 13 14 Waves vocab waves ws 20 PSAT make notecards 7th 15 21 22 quiz 16 23 17 24 27 28 29 30 31 elements test demo day Blank 1 The Nature

More information

SCH4U: History of the Quantum Theory

SCH4U: History of the Quantum Theory SCH4U: History of the Quantum Theory Black Body Radiation When an object is heated, it initially glows red hot and at higher temperatures becomes white hot. This white light must consist of all of the

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Ex: N has 5 valence electrons, so it s Lewis structure would look like: N

Ex: N has 5 valence electrons, so it s Lewis structure would look like: N Chemistry Ms. Ye Review: Bohr Model of the Atom Name Date Block Electrons are shown in concentric shells or energy levels around the nucleus o The first shell can hold up to o The second shell can hold

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6. Electronic Structure of Atoms NOTE: Review your notes from Honors or regular Chemistry for the sequence of atomic models and the evidence that allowed scientists to change the model. If you

More information

AP Chemistry. Chapter 6 Electronic Structure of Atoms

AP Chemistry. Chapter 6 Electronic Structure of Atoms AP Chemistry Chapter 6 Electronic Structure of Atoms Section 6.1 Wave Nature of Light When we say "light," we generally are referring to visible light a type of electromagnetic radiation But actually Visible

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

AP Chapter 6 Study Questions

AP Chapter 6 Study Questions Class: Date: AP Chapter 6 Study Questions True/False Indicate whether the statement is true or false. 1. The wavelength of radio waves can be longer than a football field. 2. Black body radiation is the

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36 CHEM 1411. Chapter 6. Basic Quantum Chemistry (Homework). WL36 1. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect. A) True B) False 2. A

More information

Introduction. Electromagnetic Waves. Electromagnetic Waves

Introduction. Electromagnetic Waves. Electromagnetic Waves Introduction Much of the information we know about electrons comes from studies of interactions of light and matter. In the early 1900 s, scientists discovered that light has properties of both a wave

More information

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms CVB102 Lecture 1 - Chemical Structure and Reactivity Contact Information: Dr. Bill Lot b.lott@qut.edu.au Electronic Structure of Atoms Text: Blackman, et al Pp. 127-147 (Pp. 148-159 recommended) The periodic

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Chapter 5. Arrangement of Electrons in Atoms

Chapter 5. Arrangement of Electrons in Atoms Chapter 5 Arrangement of Electrons in Atoms Light Dual Nature of Light: Light can act like, and as particles. Light is one type of which is a form of Energy that has wavelike behaviour Other types of em

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms Chemistry Ms. Ye Name Date Block The Evolution of the Atomic Model Since atoms are too small to see even with a very powerful microscope, scientists rely upon indirect evidence and models to help them

More information

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6 Learning Objectives Energy: Light as energy Describe the wave nature of light, wavelength, and frequency using the equation c = λν What is meant by the particle nature of light? Calculate the energy of

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37

8. Which of the following could be an isotope of chlorine? (A) 37 Cl 17 (B) 17 Cl 17 (C) 37 Cl 17 (D) 17 Cl 37.5 (E) 17 Cl 37 Electronic Structure Worksheet 1 Given the following list of atomic and ionic species, find the appropriate match for questions 1-4. (A) Fe 2+ (B) Cl (C) K + (D) Cs (E) Hg + 1. Has the electron configuration:

More information

Bohr. Electronic Structure. Spectroscope. Spectroscope

Bohr. Electronic Structure. Spectroscope. Spectroscope Bohr Electronic Structure Bohr proposed that the atom has only certain allowable energy states. Spectroscope Using a device called a it was found that gaseous elements emitted electromagnetic radiation

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

Write the electron configuration for Chromium (Cr):

Write the electron configuration for Chromium (Cr): Write the electron configuration for Chromium (Cr): Energy level Aufbau Principle Atomic orbital Quantum Hund s Rule Atomic number Electron Configuration Whole number Pauli Exlcusion Principle Quantum

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 6.1 The Wave Nature of Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency? Name: Unit 5- Light and Energy Electromagnetic Spectrum Notes Electromagnetic radiation is a form of energy that emits wave-like behavior as it travels through space. Amplitude (a)- Wavelength (λ)- Which

More information

Unit 7. Atomic Structure

Unit 7. Atomic Structure Unit 7. Atomic Structure Upon successful completion of this unit, the students should be able to: 7.1 List the eight regions of the electromagnetic spectrum in the designated order and perform calculations

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6. Electronic Structure of Atoms NOTE: Review your notes from Honors or regular Chemistry for the sequence of atomic models and the evidence that allowed scientists to change the model. If you

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 7 Lecture Lecture Presentation Chapter 7 The Quantum- Mechanical Model of the Atom Sherril Soman Grand Valley State University The Beginnings of Quantum Mechanics Until the beginning of the twentieth

More information

Chapter 5 Models of the Atom

Chapter 5 Models of the Atom Chapter 5 Models of the Atom Atomic Models Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus. However, Rutherford s atomic model

More information

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door. Quantum Theory & Electronic Structure of Atoms It s Unreal!! Check your intuition at the door. 1 Quantum Theory of the Atom Description of the atom and subatomic particles. We will focus on the electronic

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5) ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5) properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ELECTROMAGNETIC RADIATION subatomic particles (electron,

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom Quantum Mechanics The Behavior of the Very Small Electrons are incredibly small. Electron behavior determines much of the behavior of atoms. Directly

More information

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons. CHAPTER SEVEN: QUANTUM THEORY AND THE ATOM Part One: Light Waves, Photons, and Bohr Theory A. The Wave Nature of Light (Section 7.1) 1. Structure of atom had been established as cloud of electrons around

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

The Nature of Light. Chapter Five

The Nature of Light. Chapter Five The Nature of Light Chapter Five Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is the light from an

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information