Name Date Class MODELS OF THE ATOM

Size: px
Start display at page:

Download "Name Date Class MODELS OF THE ATOM"

Transcription

1 Name Date Class 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and positions of electrons according to the quantum mechanical model Describe how the shapes of orbitals at different sublevels vary Vocabulary energy levels quantum Part A Completion quantum mechanical model atomic orbital Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. The chemical properties of atoms, ions, and molecules 1. are related to the arrangement of the 1 within them. 2. Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. The first modern atomic theory, proposed by 2, 3. portrayed the atom as a solid, indivisible mass. After the discovery 4. of the electron by 3, the atomic model was revised to 5. include them. J.J. Thomson s model is referred to as the 4 6. model. Rutherford pictured the atom as a dense 5 7. surrounded by electrons. In the Bohr model, the electrons move 8. in 6 paths. The 7 model is the modern description of the electrons in atoms. This model estimates the 8 of finding an electron within a certain volume of space surrounding the nucleus. Part B True-False Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 9. Electrons must have a certain minimum amount of energy called a quantum in order to move from one energy level to the next higher energy level. 10. The electron probability clouds for atomic orbitals are spherical in shape. Chapter 5 Electrons in Atoms 105

2 Name Class Date 11. The number of sublevels in an energy level is equal to the square of the principal quantum number of that energy level. 12. The maximum number of electrons that can occupy the fourth principal energy level of an atom is The higher the energy level occupied by an electron the more energetic it is. 14. The principal quantum number equals the number of sublevels within that principal energy level. Part C Matching Match each description in Column B to the correct term in Column A. Column A Column B 15. quantum 16. atomic orbitals 17. energy level 18. quantum mechanical model a. a region in space around the nucleus of an atom where an electron is likely to be moving b. the regions around the nucleus within which the electrons have the highest probability of being found c. the amount of energy required to move an electron from its present energy level to the next higher one d. the modern description of the behavior of electrons in atoms Part D Questions and Problems Answer the following in the space provided. 19. Summarize the development of atomic theory. 20. How many orbitals are in each of the following sublevels? a. 4p sublevel Prentice Hall, Inc. All rights reserved. b. 3d sublevel c. 4f sublevel d. 2s sublevel 106 Core Teaching Resources

3 Name Date Class 5.2 ELECTRON ARRANGEMENT IN ATOMS Section Review Objectives Describe how to write the electron configuration for an atom Explain why the actual electron configurations for some elements differ from those predicted by the Aufbau principle Vocabulary electron configurations Aufbau principle Pauli exclusion principle Hund s rule Part A Completion Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. The ways in which electrons are arranged around the nuclei 1. of atoms are called 1. The 2 describes the sequence 2. in which orbitals are filled. The various orbitals within a sublevel 3. Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. of a principle energy level are always of 3 energy. The 4. 4 principle states that a maximum of only 5 5. electrons can occupy each orbital. To occupy the same orbital, two 6. electrons must have 6 spins. Hund s rule states that the 7. electrons pair up only after each orbital in a sublevel is occupied 8. by 7. When using the shorthand method for showing the 9. electron configuration of an atom, 8 are used to indicate 10. the number of 9 occupying each sublevel. Correct electron configurations can be obtained by using the Aufbau diagram for the elements up to and including vanadium. 10 and copper are exceptions to the Aufbau principle. Chapter 5 Electrons in Atoms 107

4 Name Class Date Part B True-False Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 11. The orbitals of a principal energy level are lower in energy than the orbitals in the next higher principal energy level. 12. The configuration 3d 4 4s 2 is more stable than the configuration 3d 5 4s As many as four electrons can occupy the same orbital. 14. The Pauli exclusion principle states that an atomic orbital may describe at most two electrons. 15. The electron configuration for potassium is 1s 2 2s 2 2p 6 3s 2 3p 6 4s The electron configuration for copper is 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 9. Part C Matching Match each description in Column B to the correct term in Column A. Column A Column B 17. electron configuration 18. Aufbau principle 19. Pauli exclusion principle 20. Hund s rule 21. neon a. When electrons occupy orbitals of equal energy, one electron enters each orbital until all the orbitals contain one electron with parallel spins. b. An atomic orbital may describe at most two electrons. c. 1s 2 2s 2 2p 6 d. Electrons enter orbitals of lowest energy first. e. the most stable arrangement of electrons around the nucleus of an atom Part D Questions and Problems Answer the following in the space provided. 22. Write the electron configurations for the following atoms. a. C c. K b. S d. Ar 23. Identify the elements described below: a. Contains a full third energy level. Prentice Hall, Inc. All rights reserved. b. Contains the first p electron. 108 Core Teaching Resources

5 Name Date Class 5.3 PHYSICS AND THE QUANTUM MECHANICAL MODEL Section Review Objectives Describe the relationship between the wavelength and frequency of light Explain how the frequencies of light are related to changes in electron energies Distinguish between quantum mechanics and classical mechanics Identify the cause of the atomic emission spectrum Vocabulary amplitude wavelength ( ) frequency ( ) hertz (Hz) electromagnetic radiation spectrum atomic emission spectrum ground state photons Heisenberg uncertainty principle Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved. Key Equations c E h h m Part A Completion Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. According to quantum mechanics, the motions of subatomic 1. particles may be described as 1. The frequency and 2. wavelength of all waves are 2 related. 3. Every element emits 3 if it is heated by passing an 4. electric discharge through its gas or vapor. Passing this emission 5. through a prism gives the 4 of the element The quantum concept developed from Planck s studies of 7. and Einstein's explanation of the 6 effect. Planck showed that the amount of radiant energy absorbed or emitted by a body is proportional to the 7 of the radiation. Chapter 5 Electrons in Atoms 109

6 Name Class Date Part B True-False Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 8. The speed of light is a constant that can be obtained by dividing the frequency of light by its wavelength. 9. The amplitude of a wave is the distance between the crests. 10. The energy of a body can change only in small discrete units. 11. The position and velocity of an electron in an atom can be determined with great certainty. 12. The photoelectric effect will occur no matter what frequency of light strikes a metal. Part C Matching Match each description in Column B to the correct term in Column A. Column A Column B 13. photons 14. de Broglie s equation 15. visible light 16. ground state 17. wavelength a. predicts that all matter exhibits wavelike motions b. the distance between two consecutive wave crests c. light quanta d. the lowest energy level for a given electron e. example of electromagnetic radiation Part D Questions and Problems Answer the following in the space provided. 18. What is the frequency of radiation whose wavelength is cm? 19. Apply quantum theory to explain the photoelectric effect. Prentice Hall, Inc. All rights reserved. 110 Core Teaching Resources

Name Date Class MODELS OF THE ATOM

Name Date Class MODELS OF THE ATOM 5.1 MODELS OF THE ATOM Section Review Objectives Identify inadequacies in the Rutherford atomic model Identify the new assumption in the Bohr model of the atom Describe the energies and positions of electrons

More information

Name Date Class ELECTRONS IN ATOMS

Name Date Class ELECTRONS IN ATOMS Name _ Date Class 5 ELECTRONS IN ATOMS SECTION 5.1 MODELS OF THE ATOM (pages 127 132) This section summarizes the development of atomic theory. It also explains the significance of quantized energies of

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Electrons in Atoms ELECTRONS AND THE STRUCTURE OF ATOMS 5.1 Revising the Atomic Model Essential Understanding of an atom. An electron s energy depends on its location around the nucleus Reading Strategy

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 REVIEW Arrangement of Electrons in Atoms SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. In what way does the photoelectric effect support the particle theory

More information

Quantum Mechanical Model of the Atom. Honors Chemistry Chapter 13

Quantum Mechanical Model of the Atom. Honors Chemistry Chapter 13 Quantum Mechanical Model of the Atom Honors Chemistry Chapter 13 Let s Review Dalton s Atomic Theory Thomson s Model Plum Pudding Rutherford s Model Bohr s Model Planetary Quantum Mechanical Model cloud

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

Chapter 5: Electrons in Atoms

Chapter 5: Electrons in Atoms Chapter 5: Electrons in Atoms Models of the Atom Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus, like the planets move around

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea Electrons in Atoms Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element Greek Idea Thomson s Model Discovered electrons Atoms were made of positive

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 1 Chapter 13 Electrons in Atoms We need to further develop our understanding of atomic structure to help us understand how atoms bond to

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Electrons in Atoms Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration Click a hyperlink or folder tab to view the corresponding slides. Exit

More information

Bellwork: Calculate the atomic mass of potassium and magnesium

Bellwork: Calculate the atomic mass of potassium and magnesium Bellwork: Calculate the atomic mass of potassium and magnesium Chapter 5 - electrons in atoms Section 5.1: Revising the atomic model What did Ernest Rutherford think about electrons? In Rutherford s model,

More information

Introduction. Electromagnetic Waves. Electromagnetic Waves

Introduction. Electromagnetic Waves. Electromagnetic Waves Introduction Much of the information we know about electrons comes from studies of interactions of light and matter. In the early 1900 s, scientists discovered that light has properties of both a wave

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day Calendar Sunday Monday Tuesday Wednesday Thursday Friday Saturday 13 14 Waves vocab waves ws 20 PSAT make notecards 7th 15 21 22 quiz 16 23 17 24 27 28 29 30 31 elements test demo day Blank 1 The Nature

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Electron Configuration

Electron Configuration Electron Configuration Plumb Pudding Atomic Model Thomson s atomic model consisted of negatively charged electrons embedded in a ball of positive charge. Diagram pg 81 of chemistry text. Rutherford s Model

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ ID: A EOC review II Matching Match each item with the correct statement below. a. atomic orbital d. ground state b. aufbau principle e. Pauli exclusion principle c. electron configuration

More information

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter 6. of Atoms. Waves. Waves 1/15/2013

Chapter 6. of Atoms. Waves. Waves 1/15/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Quantum Theory and the Electronic Structure of Atoms

Quantum Theory and the Electronic Structure of Atoms Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of Waves Wavelength ( ) is the distance

More information

Chapter 4 Electron Configurations

Chapter 4 Electron Configurations Chapter 4 Electron Configurations Waves Today scientists recognize light has properties of waves and particles Waves: light is electromagnetic radiation and travels in electromagnetic waves. 4 Characteristics

More information

Name Period. Practice Problems

Name Period. Practice Problems Name Period CRHS Academic Chemistry Unit 4 Electrons Practice Problems Due Date Assignment On-Time (100) Late (70) 4.1 4.2 4.3 4.4 4.5 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located on

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Chemistry - Chapter 5 Study Guide

Chemistry - Chapter 5 Study Guide Chemistry Chapter 5 and Special Ionic Nomenclature Checklist I can: List the three properties of a wave Define a wavelength Define a photon Describe Bohr s model Describe the quantum theory of matter Define

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s. Chapter 6 Electronic Structure of Atoms Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance between corresponding points on

More information

Chapter 4 The Structure of the Atom

Chapter 4 The Structure of the Atom Chapter 4 The Structure of the Atom Read pg. 86-97 4.1 Early Theories of Matter The Philosophers Democritus Artistotle - Artistotle s influence so great and the science so primitive (lacking!) his denial

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

Unit 3: Electron configuration and periodicity

Unit 3: Electron configuration and periodicity Unit 3: Electron configuration and periodicity Group 1 BOHR MODELS Group 18 H Group 2 Group 13 Group 14 Group 15 Group 16 Group 17 He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca His theory couldn t

More information

The Electron Cloud. Here is what we know about the electron cloud:

The Electron Cloud. Here is what we know about the electron cloud: The Electron Cloud Here is what we know about the electron cloud: It contains the subatomic particles called electrons This area accounts for most of the volume of the atom ( empty space) These electrons

More information

Atomic Structure Part II. Electrons in Atoms

Atomic Structure Part II. Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Modern Atomic Theory and the Periodic Table

Modern Atomic Theory and the Periodic Table Modern Atomic Theory and the Periodic Table Chapter 10 the exam would have to be given earlier Hein and Arena Version 1.1 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons,

More information

CHAPTER 5. Electrons in Atoms. Rutherford Model. Bohr Model. Plum Pudding Model. 5.1 Atomic Models

CHAPTER 5. Electrons in Atoms. Rutherford Model. Bohr Model. Plum Pudding Model. 5.1 Atomic Models CHAPTER 5 Electrons in Atoms 5.1 Atomic Models The Chemical properties of atoms, ions, and molecules are related to the arrangement of the electrons within them. The first model of the atom was Dalton

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms CVB102 Lecture 1 - Chemical Structure and Reactivity Contact Information: Dr. Bill Lot b.lott@qut.edu.au Electronic Structure of Atoms Text: Blackman, et al Pp. 127-147 (Pp. 148-159 recommended) The periodic

More information

The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom.

The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom. The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom. Plum Pudding Model Rutherford s Model Niels Bohr studied the hydrogen atom because it

More information

Chapter 5 Models of the Atom

Chapter 5 Models of the Atom Chapter 5 Models of the Atom Atomic Models Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus. However, Rutherford s atomic model

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

Q1 and Q2 Review large CHEMISTRY

Q1 and Q2 Review large CHEMISTRY Q1 and Q2 Review large CHEMISTRY Multiple Choice Identify the choice that best completes the statement or answers the question. 1. E = hv relates the following a. Energy to Planck s constant & wavelength

More information

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom Arrangement of Electrons in Atoms Table of Contents Section 1 The Development of a New Atomic Model Section 2 The Quantum Model of the Atom Section 3 Electron Configurations Section 1 The Development of

More information

Chapter 6: Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms Chapter 6: Electronic Structure of Atoms Learning Outcomes: Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. Order the common kinds of radiation

More information

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space.

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space. Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through space. What are the 7 forms of electromagnetic radiation, in order of INCREASING wavelength? gamma rays

More information

5.2 Electron Arrangement in Atoms > Happy Thursday!

5.2 Electron Arrangement in Atoms > Happy Thursday! Happy Thursday! Please take out your homework problems for me to check for a grade. Keep them out since we will be going over them. Also, take out your notes packet! 1 Chapter 5 Electrons In Atoms 5.1

More information

Light, Waves, and Electrons

Light, Waves, and Electrons Light, Waves, and Electrons Light: Travels 1. 2. Light Waves Wavelength Frequency Electromagnetic Spectrum Speed of light The product of frequency of a wave and wavelength = the speed of light Calculate

More information

Modern Atomic Theory

Modern Atomic Theory Modern Atomic Theory In science, often times chemical or physical behavior can not be seen with the naked eye (nor with the use of some other device). Consequently, an understanding and explanation of

More information

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12 KEY Review Sheet: UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS 1. Know which isotope is the standard for the atomic mass unit. CARBON-12 2. Know what the difference in masses of isotopes

More information

Starter # (1) Why was Rutherford s model not good enough and need to be modified by scientists?

Starter # (1) Why was Rutherford s model not good enough and need to be modified by scientists? 1. (1) Why was Rutherford s model not good enough and need to be modified by scientists? It could not explain or predict any chemical behavior of any elements 2. (1) What is one of the only things that

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity p. 99 p. 98 p. 98 Electromagnetic Spectrum Image Atomic Structure and Periodicity Chemistry Zumdahl Chapter 7 Properties of Light Electromagnetic Radiation: a form of energy that exhibits wavelike behavior

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates Name Period CRHS Academic Chemistry Unit 4 Electrons Notes Key Dates Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

10/4/2011. Tells you the number of protons

10/4/2011. Tells you the number of protons Atomic Structure The arrangement of the subatomic particles within the atom determines the chemical properties of the elements How they interact with one another The types of ions and structures that they

More information

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 6 John D. Bookstaver St. Charles Community College Cottleville, MO Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic

More information

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

Arrangement of Electrons. Chapter 4

Arrangement of Electrons. Chapter 4 Arrangement of Electrons Chapter 4 Properties of Light -Light s interaction with matter helps to understand how electrons behave in atoms -Light travels through space & is a form of electromagnetic radiation

More information

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation. Preview Objectives Properties of Light Wavelength and Frequency The Photoelectric Effect The Hydrogen-Atom Line-Emission Spectrum Bohr Model of the Hydrogen Atom Photon Emission and Absorption Section

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion.

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Nucleus Contains 99.9% of the mass of an atom Found

More information

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Electromagnetic radiation Amplitude Wavelength Frequency Speed of light Visible spectrum Quantum (Planck)

More information

Chapter 4: The Electron

Chapter 4: The Electron Chapter 4: The Electron C. Goodman Doral Academy Preparatory High School, 2012-2013 Based on a PowerPoint presentation by Sarah Temple By PresenterMedia.com Section 4-1 Electromagnetic Spectrum Essential

More information

Honors Chemistry: Chapter 4- Problem Set (with some 6)

Honors Chemistry: Chapter 4- Problem Set (with some 6) Honors Chemistry: Chapter 4- Problem Set (with some 6) All answers and work on a separate sheet of paper! Classify the following as always true (AT), sometimes true (ST), or never true (NT) 1. Atoms of

More information

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 5.1 Notes I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

The Structure of the Atom

The Structure of the Atom CHAPTER 5 The Structure of the Atom 5.4 Light and Spectroscopy 460 370 BC 1808 1870 1897 1910 1925 Today Democritus Atomism Dalton Modern atomic theory Crookes Cathode rays Thomson Discovery of the electron

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms CHEMISTRY & YOU What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5. Electron Arrangement in Atoms 5.3 Atomic and the Quantum Mechanical Model An electric

More information

Chem I - Wed, 9/16/15

Chem I - Wed, 9/16/15 Chem I - Wed, 9/16/15 Do Now Complete the back of worksheet 4.5 Homework Pennium Lab if not Finished E- Config POGIL Agenda Return Papers Wks 4.5 Pennium Lab Electron Config Chapter 5 Quantum Theory and

More information

Atomic Theory. Contribution to Modern Atomic Theory

Atomic Theory. Contribution to Modern Atomic Theory Alief High School Chemistry STAAR Review Reporting Category 2: Atomic Structure and Nuclear Chemistry C.6.A Understand the experimental design and conclusions used in the development of modern atomic theory,

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave nature of

More information

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education Chapter 6 Laser: step-like energy transition 6.1 The Wave Nature of Light 6.2 Quantized Energy and Photons 6.3 Line Spectra and the Bohr Model 6.4 The Wave Behavior of Matter 6.5 Quantum Mechanics and

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry Electronic Structure and the Periodic Table Unit 6 Honors Chemistry Wave Theory of Light James Clerk Maxwell Electromagnetic waves a form of energy that exhibits wavelike behavior as it travels through

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Quantum Mechanical Model

Quantum Mechanical Model Quantum Mechanical Model De Broglie De Broglie build upon Planck s observations of packets of light (photons) emit a distinctive quantum of energy. He proposed that the particles being emitted have particle

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information