Study of matter in extreme conditions using 4th generation FEL light sources

Size: px
Start display at page:

Download "Study of matter in extreme conditions using 4th generation FEL light sources"

Transcription

1 Study of matter in extreme conditions using 4th generation FEL light sources Sam Vinko Department of Physics Clarendon Laboratory University of Oxford Workshop on Science with Free Electron Lasers Shanghai, 21 August 2011

2 Outline Matter in extreme conditions (MEC) Unique match of free-electron lasers and MEC science FLASH: XUV FEL at DESY, Germany LCLS: X-ray FEL at SLAC, USA MEC science at FELs: flagship experiments First experiments on FLASH and LCLS Conclusions 2

3 Matter in extreme conditions occurs widely in nature Hot Dense Matter (HDM) supernova, stellar interiors, accretion disks plasma devices, laser produced plasmas, Z- pinches directly and indirectly driven inertial fusion Γ = V Coulomb E Kinetic Warm Dense Matter (WDM) cores of large planets systems that start solid and end as a plasma X-ray driven inertial confinement fusion 3

4 Matter in extreme conditions occurs widely in nature Necessity to study these systems in a controlled, laboratory environment to understand their properties: Equation of state over a large range of temperature, pressure, density Radiative and transport properties, opacity Material properties of WDM & HDM High energy-density (HED) systems are intrinsically unstable if unconfined confinement is an issue: inertial, magnetic, gravitational creating samples challenging: high energy deposition needed on the time scale of confinement samples small, with large gradients in temperature, density Probing HED also challenging volumetric probe needed, must penetrate dense systems intense enough to beat interaction cross sections, life-time time scales direct accurate measurement techniques not always available 4

5 MEC studies with XUV and X-ray FEL radiation 1. XUV and X-ray wavelengths are well-suited for MEC studies: Photon energies above plasmon energies allow volumetric energy deposition through single-electron photo-excitation and photo-ionization Resulting energy deposition mechanism is straightforward and simple to measure Optical laser excitation ω < ω p XUV and X-ray laser excitation ω > ω p ω < ω p is typically ev (UV) 5

6 MEC studies with XUV and X-ray FEL radiation 2. FEL short pulse lengths allow for inertial confinement approach: create and study the system before it blows up Simple, no additional confinement needed Requires ultrafast heating and probing techniques Relevant time scales determined by hydrodynamic expansion (> 10 ps) Strongly coupled and dense systems in principle simple to create and probe Probing on ultra-short time scales yields snapshots of the system temporal resolution 3. High photon flux (>10 12 photons per pulse) allows high energy deposition Intensties >10 17 W cm -2 have been achieved at XUV wavelengths Intensties >10 18 W cm -2 have been achieved at X-ray wavelengths Large photon numbers enable probing using photon-hungry techniques 4. Practical: tailor the source to each experiment Continuous wavelength range, versatility, high repetition rate, variable pulse length, etc. 6

7 4th generation FEL light sources Peak brightness 9 orders of magnitude higher than 3rd generation synchrotrons short bunch duration ( sub 100 fs); lots of photons per bunch (!10 12 ); tunable wavelength Hard X-ray FELs: LCLS at SLAC, USA : nm, 2009 SCSS at SPring-8, Japan : nm, 2011 European X-FEL at DESY, Germany: 0.1-6nm, 2015 Swiss-FEL at PSI : 0.1-7nm,

8 FLASH - Free electron LAser in Hamburg SASE single-pass FEL; tunable photon energy range ev (fundamental); pulse repetition rate 10 Hz; single-bunch / multi-bunch mode; ~50 μj average energy; ~ fs pulse length; achieved intensities ~10 17 Wcm 13.5 nm A. Nelson et al., Optics Express 17, (2009). 8

9 LCLS - Linac Coherent Light Source SASE single-pass FEL; tunable photon energy range: 500 ev 12 kev (fundamental); pulse repetition rate 120 Hz; ~1-3 mj average pulse energy; bandwidth 0.3% variable pulse length: <10 fs fs focusing optics ~10 18 Wcm -2 provided 9

10 LCLS - Matter in Extreme Conditions Endstation 10

11 MEC research with FELs Creating Warm Dense Matter Generate ~ 10 ev solid density matter Measure the equation of state XFEL 10 µm solid lower Z sample 100 µm short pulse probe laser Creating Hot Dense Matter Generate ~ 100ʼs ev solid density matter Generate hot, dense, high-pressure matter with the FEL solid high Z sample XFEL 6 µm short pulse probe laser L > absorption length Plasma spectroscopy of Hot Dense Matter Use high energy laser to create uniform HED plasmas Measure collision rates, redistribution rates, ionization kinetic XRSC CH Al FEL tuned to a resonance Probing High Pressure phenomena Use high energy laser to create steady high pressures Produce shocks and shockless high pressure systems Diagnostics: Diffraction, Small-angle, Diffuse scattering XFEL High Energy Laser Scattering Diagnostic development for dense matter Thomson scattering from solid density plasmas Measure ne, Te, ni, <Z>, f(v) XFEL back scattered signal ~ 100 µm dense heated sample forward scattered signal 11

12 Creating Warm Dense Matter FEL creates rapidly and uniformly heated high energy-density matter isochores (constant volume) 104!"#$%&'(#)*#+&,-*&#./+(0(/+ classical plasma! = 1 isentropes (constant entropy) WDM created by isochoric heating will isentropically expand: sampling WDM phase space Using foams allows more complete sampling Temperature (ev) dense plasma Density ( g/cm3)! = 10! = 100 high density matter

13 Creating Hot Dense Matter!"#$%123#4%&!.-5&62%$#+%&7&89:8; <%+3%*#5/*%&#0'&!*%$$/*% 2(+/.#B-0$&6C1D&E/.B4-'%&7&E!>; <%+3%*#5/*%&#0'&!*%$$/*% =%*$/$&<(+%&#0'&23#4% )((((*(#"34+1(5(%"&67",(89!7( :;;(/01(2 <=39,(7=%9>=+!&3(39+"(6=%%"-$=+,-(!=(:; A& &+,(C(DE&% C;;(+#(1=3,2!796A+"--(9-(=+"(&E-=%$4=+(3"+1!72 FG (K06# C?(LM:(A"B()%917!* HIJI&8%%&%5&#.I 13

14 Plasma spectroscopy on Hot Dense Matter!,-.#&',+./0.1"#.)2 Schematic experiment NO CL&M+&9. ;M:(P# =($(K.%&.#$%* 5&N&OP&.#$%*&(**#'(#5%$&9.&'-5 NO 9. FGH(!'+",(!=(:QRJ("B SE-"%."("#9--9=+(89!7 (TU%&V(-!%"&A(6&#"%& 5&N&FOO&3$P&Q?8&&(**#'(#5%$&3.#$+#!"#$%&'()*+ 107 He-like n = H-like 1s3l 1s2l Emission after pump before pump 1s 2 He-like H-like XFEL pump Energy (ev)

15 Probing high pressure phenomena 8U82&VQ?8&$"-4S&%T3%*(+%05 laser creates shock in a single crystal BL beams create ns divergent x-rays angular x-ray spread samples crystal planes provides critical data on dynamics at high pressure laser creates shock in a polycrystal XFEL is fs-scale monochromatic source grains in the polycrystal diffract the beam low divergence! nm-scale fs diffraction of real solids 15

16 Scattering Intensity Diagnostic development: X-ray Thomson scattering Proof-of-principle experiments on Be by H.J. Lee, A. Kritcher, T. Döppner, G. Gregori, S. H. Glenzer et al. Back Scattering q = 125 at LLE Forward Scattering q = 40 at LLNL 6 ratio of electron to ion feature: n e = 3.3x10 23 cm -3 1 Ion elastic scattering peak 4 2 Red wing gives T e = 53 ev plasmon peak plasmon peak Energy (kev) red wing provides fits to Te = 53 ev; ratio of electron to ion (elastic) peak gives mean ionization <Z> = 3.1; At high resolution ion feature provides Ti Energy (kev) ratio of plasmon peak intensities yields Te 12 ev; plasmon peak position yields ne 3 x cm -3 16

17 First Experimental Results 17

18 Creating Warm Dense Matter on FLASH Gas monitor detector Gas attenuator Aperture Fast shutter 13.5 nm Multilayer coated off-axis parabola 3 mm Target samples: Al, Mg, Si3N4 Photodiode Target stage scans through focus 4 µm Al filter 18

19 Saturable absorption in Aluminium L-edge Electron configuration in atomic aluminium: (µm -1 )! p s 2 2s 2 2p 6 3s 2 3p 1 K L M " ff 4* * 4 5* E phot K-edge at 92 ev two absorption channels: bound-free excitation of L-electrons: σ = 27 μm-1 (CXRO tables online free-free excitation of the valence band: σ = 0.2 μm-1 (S.M. Vinko et al., HEDP 5, (2009)) 19

20 Saturable absorption in the XUV "%-&%%&3" $31$6,27(-38$7 9:;$1&-$"#27(<2#2=(>&""$8 97$,#13"(#$-;$12#?1$ $()$4/ 0.1 1x x x x x10 17!"#$"%&#'()*+,-./ 1 electron per atom excited core hole life time ~ 40 fs Nagler et al. Nature Physics 5, 1341 (2009) 20

21 Saturable absorption in Aluminium L-edge Electron configuration in atomic aluminium: (µm -1 )! p s 2 2s 2 2p 6 3s 2 3p 1 K L M " ff 4* * 4 5* E phot K-edge at 92 ev two absorption channels: bound-free excitation of L-electrons: σ = 27 μm-1 (CXRO tables online free-free excitation of the valence band: σ = 0.2 μm-1 (S.M. Vinko et al., HEDP 5, (2009)) 21

22 Saturable absorption in the XUV %$#")"$# 8&9).*"$# Experimental Data, binned Theoretical transmission, 15fs pulse Theoretical transmission, 35fs pulse Experimental Data, binned Theoretical transmission, 15fs pulse Theoretical transmission, 35fs pulse Transmission x x x x x x !"%",()+:"21";. Intensity (W/cm2) Transmission x x x x x x10 17 Intensity (W/cm 2 ) Transmission Experimental Data, binned Cold transmission in the low intensity limit: - 52nm Al oxide: 16% - 52nm Mg + 20 nm Al + oxide: 10% - 83 nm SiN: 65% Effective measure of the core-hole fraction! 0 1x x x x x10 17 Intensity (W/cm2) 22

23 Creation of WDM saturable absorption enables the creation of far more homogeneous systems attenuation lengths are longer they are linear instead of exponential 50 Standard absorption Saturated absorption Sample Depth (nm) Temperature (ev) Time (fs)

24 Probing Warm Dense Matter on FLASH: L-shell spectroscopy XY1#T($&3#*#K-.(4&+(**-*Z L&++ Q892R&\&]C&%= 23%45*-+%5%* 1&3-$(B-0%'&#5&[#*(-/$&#0).%$ <#*)%5&$#+3.% 1&$4#0&5"*-/)"&,-4/$ 1&!EE9Z&9.Z&2(:&III 6UUDZ&'(-'%; 24

25 Probing Warm Dense Matter on FLASH: L-shell spectroscopy L-shell photo-excitation Radiative recombination Solid, crystalline aluminium ^_ Q?8&3"-5-0&%T4(5%'&#&81$"%.&4-*%&$5#5% ^_N&]C&%= Emitted photons map the occupancy of the valence band 25

26 Emission spectra from Warm Dense Aluminium Intensity / Energy 3 5.1!10 15 W/cm 2 3.4!10 15 W/cm 2 9.3!10 14 W/cm 2 1.5!10 14 W/cm 2 4.3!10 13 W/cm 2 2.0!10 13 W/cm W/cm 2 Al IV emission lines T=1.1 ev T=0.9 ev T=0.8 ev T=0.4 ev Energy (ev) Scanned 3 orders of magnitude in intensity Fluorescence overlaps with atomic emission lines from dilute plasma Valence band emission takes place ~40 fs after the first arrival of FEL pulse Measures the average temperature and density immediately after the pulse Vinko et al., PRL 104, (2010) Temperature (ev) classical plasma! = 1 dense plasma! = 10! = 100 high density matter Density ( g/cm3) 26

27 Conclusions Creating of Warm dense systems with XUV FEL sources very promising Saturable absorption helps to create homogeneous samples; tailoring XUV beam characteristics to material properties is essential XUV fluorescence spectroscopy gives insight into electronic structure of dense plasmas; experimentally still challenging (resolution, weak signal) but combined with advanced analysis techniques (DFT-MD) yields a wealth of information immediate goals: proof of principle pump-probe spectroscopy Creating Hot Dense Matter with X-ray FELs First results of high-intensity X-ray-matter interaction presented spectroscopy promising probe technique, but significant care needed in deducting physical plasma parameters: spectra are not directly representative of the charge state distribution of the system Emission spectra extremely sensitive to IPD model: large experimental dataset useful to benchmark models and extract the IPD function for a well-defined system Ongoing research on LCLS: bright future ahead First Thomson scattering experiments conducted (Dec 2010) First homogeneity of created HDM studies by Fourier Domain Interferometry (Feb 2011) First X-ray diffraction from shocked samples conducted (June 2011) First plasma spectroscopy of laser heated samples (as we speak) Dedicated MEC endstation to start user operation early next year 35

28 Acknowledgements Peak Brightness Collaboration (see all authors of Nature Physics 5, p693 (2009), PRL 104, , (2010) Oxford: Orlando Ciricosta, Justin Wark LLNL: Richard Lee SLAC: Bob Nagler LBNL: Phillip Heimann, Byoung-ick Cho IAEA: Hyun-Kyung Chung 36

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

Matter in Extreme Condition at X-ray Free-Electron Lasers

Matter in Extreme Condition at X-ray Free-Electron Lasers Matter in Extreme Condition at X-ray Free-Electron Lasers Bob Nagler Bob.Nagler@slac.stanford.edu Collaborators (amongst many others...) Orlando Ciricosta, Colin Brown, Andrew Higginbotham, Christopher

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC-PUB-14159 SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC National Accelerator Laboratory: 2575 Sand Hill Road, Menlo

More information

Numerical Modeling of Radiative Kinetic Plasmas

Numerical Modeling of Radiative Kinetic Plasmas 2014 US-Japan JIFT Workshop on Progress in kinetic plasma simulations Oct.31-Nov.1, 2014, Salon F, New Orleans Marriott, New Orleans, LA, U.S.A Numerical Modeling of Radiative Kinetic Plasmas T. Johzaki

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

GA A25842 STUDY OF NON-LTE SPECTRA DEPENDENCE ON TARGET MASS IN SHORT PULSE LASER EXPERIMENTS

GA A25842 STUDY OF NON-LTE SPECTRA DEPENDENCE ON TARGET MASS IN SHORT PULSE LASER EXPERIMENTS GA A25842 STUDY OF NON-LTE SPECTRA DEPENDENCE ON TARGET MASS IN SHORT PULSE LASER EXPERIMENTS by C.A. BACK, P. AUDBERT, S.D. BATON, S.BASTIANI-CECCOTTI, P. GUILLOU, L. LECHERBOURG, B. BARBREL, E. GAUCI,

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Presented at the Michigan Institute for Plasma Science and Engineering

Presented at the Michigan Institute for Plasma Science and Engineering Presented at the Michigan Institute for Plasma Science and Engineering March 11, 2015 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-07NA27344.

More information

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 365 371 Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies

Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies Measurement of Long-Scale-Length Plasma Density Profiles for Two-Plasmon Decay Studies Plasma density scale length at 10 21 cm 3 (nm) 350 300 250 200 150 100 0 Flat foil 2 4 6 8 10 100 Target diameter

More information

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications DAVID ATTWOOD UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY CAMBRIDGE UNIVERSITY PRESS Contents

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas

Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas LLNL-PROC-564720 Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas J. Nilsen, W. R. Johnson, K. T. Cheng July 17, 2012 13th International Conference on X-ray Lasers Paris,

More information

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 Performance Metrics of Future Light Sources Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010 http://www-ssrl.slac.stanford.edu/aboutssrl/documents/future-x-rays-09.pdf special acknowledgment to John Corlett,

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Small Quantum Systems Scientific Instrument

Small Quantum Systems Scientific Instrument Small Quantum Systems Scientific Instrument WP-85 A. De Fanis, T. Mazza, H. Zhang, M. Meyer European XFEL GmbH TDR_2012: http://www.xfel.eu/documents/technical_documents XFEL Users Meeting 2014, January

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Lecture 1 August 29

Lecture 1 August 29 HASYLAB - Facility - Free Electron Laser (FEL) http://www-hasylab.desy.de/facility/fel/main.htm Page 1 of 1 8/23/2006 HASYLAB Facility Free Electron Laser Overview FLASH FLASH User Info Events Job Offers

More information

Femtosecond X-Ray Experiments

Femtosecond X-Ray Experiments Femtosecond X-Ray Experiments Christian Bressler FXE Hamburg, January 25, 2017 FXE Workshop Dec 2016: Users overall very happy with implemented components 2 Scientific Instrument FXE The FXE scientific

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-4 Joint ICTP- Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Atomic Processes Modeling in Plasmas Modeling Spectroscopic Observables from Plasmas Hyun-Kyung

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Sargis Ter-Avetisyan ELI - Extreme Light Infrastructure Science and Technology with

More information

Magnetized High-Energy-Density Plasma

Magnetized High-Energy-Density Plasma LLNL PRES 446057 Magnetized High-Energy-Density Plasma D.D. Ryutov Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Presented at the 2010 Science with High-Power Lasers and Pulsed Power

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets in LCLS MEC Instrument SLAC RP: Johannes Bauer, Maranda Cimeno, James Liu, Sayed Rokni,

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

Betatron radiation from a hybrid self-modulated wakefield and direct laser accelerator

Betatron radiation from a hybrid self-modulated wakefield and direct laser accelerator Betatron radiation from a hybrid self-modulated wakefield and direct laser accelerator 1, N. Lemos 2, J.L. Shaw 2, B.B. Pollock 1, G. Goyon 1, W. Schumaker 3, F. Fiuza 3, A. Saunders 4, K. A. Marsh 2,

More information

Integrated Modeling of Fast Ignition Experiments

Integrated Modeling of Fast Ignition Experiments Integrated Modeling of Fast Ignition Experiments Presented to: 9th International Fast Ignition Workshop Cambridge, MA November 3-5, 2006 R. P. J. Town AX-Division Lawrence Livermore National Laboratory

More information

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Henry.Chapman@desy.de Isaac Newton Opticks 1704 Newton was the first

More information

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons: Experience at FLASH AMO at FLASH FELs provide unique opportunities and challenges for AMO physics due to essentially three reasons: AMO at FLASH 1. huge integrated flux dilute samples Highly charged ions

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

Beam manipulation with high energy laser in accelerator-based light sources

Beam manipulation with high energy laser in accelerator-based light sources Beam manipulation with high energy laser in accelerator-based light sources Ming-Chang Chou High Brightness Injector Group FEL winter school, Jan. 29 ~ Feb. 2, 2018 Outline I. Laser basic II. III. IV.

More information

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH)

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH) Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH) Hamburg Oct. 8 10, 2008 P. Lambropoulos in collaboration with

More information

Plasmas occur over a vast range of conditions Temperature. Spectroscopy of Dense Plasmas. Population Kinetics Models

Plasmas occur over a vast range of conditions Temperature. Spectroscopy of Dense Plasmas. Population Kinetics Models Spectroscopy of Dense Plasmas H.-K. Chung Atomic and Molecular Data Unit Nuclear Data Section Joint ICTP- Advanced School on Modern Methods in Plasma Spectroscopy Trieste, Italy 19 March 15 International

More information

An Overview of High Energy Density Science. Free-electron Lasers

An Overview of High Energy Density Science. Free-electron Lasers An Overview of High Energy Density Science on Free-electron Lasers P. Audebert, H. Baldis, J. Benage, M. Bergh, C. Caleman, R. Cauble, P. Celliers, M.H. Chen, H.K. Chung, G. Collins, M. Fajardo, R. Falcone,

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

Introduction to Synchrotron Radiation

Introduction to Synchrotron Radiation Introduction to Synchrotron Radiation Frederico Alves Lima Centro Nacional de Pesquisa em Energia e Materiais - CNPEM Laboratório Nacional de Luz Síncrotron - LNLS International School on Laser-Beam Interactions

More information

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten Institut für Experimentelle Physik STI Round-Table Meeting, Hamburg, 22. - 24. Juni 2004 Outline motivation: why short pulses and the XFEL

More information

ELISS

ELISS ELISS 2016 22. 8. 2016 Study nature in smaller spatial and shorter time scales Spatial resolution d = 0.61 λ NA Motivation Phys. Today 65, 9, 44 (2012) Temporal resolution ~pulse duration in pump-probe

More information

Matter in Extreme Conditions At LCLS. Gilliss Dyer, December 5, 2018 Fusion Power Associates 39 th Annual Meeting

Matter in Extreme Conditions At LCLS. Gilliss Dyer, December 5, 2018 Fusion Power Associates 39 th Annual Meeting Matter in Extreme Conditions At LCLS Gilliss Dyer, December 5, 2018 Fusion Power Associates 39 th Annual Meeting Switched on in 2009, the Linac Coherent Light Source was the world s first hard x-ray free

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Delay-Line Imaging and XPCS

Delay-Line Imaging and XPCS . Delay-Line Imaging and XPCS Gerhard Grübel W.Roseker, F. Lehmkühler, L. MüIler, S. Schleitzer, M. Berntsen, H. Schulte-Schrepping, M. Walther DESY Deutsches Elektronen Synchrotron, Notkestr. 85, 22607

More information

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Excitements and Challenges for Future Light Sources Based on X-Ray FELs Excitements and Challenges for Future Light Sources Based on X-Ray FELs 26th ADVANCED ICFA BEAM DYNAMICS WORKSHOP ON NANOMETRE-SIZE COLLIDING BEAMS Kwang-Je Kim Argonne National Laboratory and The University

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

INNOVATIVE IDEAS FOR SINGLE-PASS FELS

INNOVATIVE IDEAS FOR SINGLE-PASS FELS doi:10.18429/jacow-ipac2014- Abstract INNOVATIVE IDEAS FOR SINGLE-PASS FELS Toru Hara #, RIKEN SPring-8 Center, Hyogo, Japan SASE FELs (Self-Amplified Spontaneous Emission Free-Electron Lasers) are a powerful

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets at LCLS MEC Instrument T. Liang 1,2, J. Bauer 1, M. Cimeno 1, A. Ferrari 3, E. Galtier

More information

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Helmholtz

More information

Development of a WDM platform for chargedparticle stopping experiments

Development of a WDM platform for chargedparticle stopping experiments Journal of Physics: Conference Series PAPER OPEN ACCESS Development of a WDM platform for chargedparticle stopping experiments To cite this article: A B Zylstra et al 216 J. Phys.: Conf. Ser. 717 12118

More information

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN ATHENA / AD-1 First production and detection of cold antihydrogen atoms ATHENA Collaboration Rolf Landua CERN 1 LONG TERM PHYSICS GOALS Antihydrogen = Hydrogen? CPT Gravity But... 2 FIRST GOAL PRODUCTION

More information

Extatic welcome week, 22/9/2017

Extatic welcome week, 22/9/2017 Extatic welcome week, 22/9/2017 Motivation Phys. Today 65, 9, 44 (2012) 2 Need for short X-ray pulses Motivation Synchrotrons: 100 ps (fs) XFEL (X-ray Free Electron Lasers): >10 fs Superbright, but large

More information

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3 Ultrafast transient absorption spectroscopy investigations of charge carrier dynamics of methyl ammonium lead bromide (CH 3 NH 3 PbBr 3 ) perovskite nanostructures Hamzeh Telfah 1 ; Abdelqader Jamhawi

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

Electron-Acoustic Wave in a Plasma

Electron-Acoustic Wave in a Plasma Electron-Acoustic Wave in a Plasma 0 (uniform ion distribution) For small fluctuations, n ~ e /n 0

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography Acknowledgement K. Nishihara, H. Nishimura, S. Fujioka Institute for Laser Engineering, Osaka University A. Sunahara, H. Furukawa Institute for Laser Technology T. Nishikawa, Okayama University F. Koike,

More information

The Linac Coherent Light Source II (LCLS II) at SLAC

The Linac Coherent Light Source II (LCLS II) at SLAC The Linac Coherent Light Source II (LCLS II) at SLAC Overview The Linac Coherent Light Source (LCLS) will be the world s first free-electron laser at Ångström wavelengths (XFEL). It will be the first high

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

Experimental X-Ray Spectroscopy: Part 2

Experimental X-Ray Spectroscopy: Part 2 Experimental X-Ray Spectroscopy: Part 2 We will use the skills you have learned this week to analyze this spectrum: What are the spectral lines? Can we determine the plasma temperature and density? Other

More information

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

SCSS Prototype Accelerator -- Its outline and achieved beam performance -- SCSS Prototype Accelerator -- Its outline and achieved beam performance -- Hitoshi TANAKA RIKEN, XFEL Project Office 1 Content 1. Light Quality; SPring-8 v.s. XFEL 2. What are the critical issues? 3. Mission

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB ERL as a X-ray Light Source Contents Introduction Light sources landscape General motivation

More information

XRD endstation: condensed matter systems

XRD endstation: condensed matter systems XRD endstation: condensed matter systems Justine Schlappa SCS Instrument Beamline Scientist Hamburg, January 24, 2017 2 Outline Motivation Baseline XRD setup R&D setup Two-color operation and split&delay

More information

PIC simulations of laser interactions with solid targets

PIC simulations of laser interactions with solid targets PIC simulations of laser interactions with solid targets J. Limpouch, O. Klimo Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, Czech Republic

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Applications of scattering theory! From the structure of the proton! to protein structure!

Applications of scattering theory! From the structure of the proton! to protein structure! Applications of scattering theory From the structure of the proton to protein structure Nicuşor Tîmneanu 2016 Contents and goals What is scattering and why study it? How is the structure of matter determined?

More information

Upgrade of the FLASH beamlines New diagnostic and beam transport tools

Upgrade of the FLASH beamlines New diagnostic and beam transport tools Upgrade of the FLASH beamlines New diagnostic and beam transport tools Kai Tiedtke FLASH Seminar 16.3.2010 Installation in the tunnel and experimental hall -Install a focusing mirror at BL3 Experimental

More information

Harmonic Lasing Self-Seeded FEL

Harmonic Lasing Self-Seeded FEL Harmonic Lasing Self-Seeded FEL E. Schneidmiller and M. Yurkov FEL seminar, DESY Hamburg June 21, 2016 In a planar undulator (K ~ 1 or K >1) the odd harmonics can be radiated on-axis (widely used in SR

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information

Coherence properties of the radiation from SASE FEL

Coherence properties of the radiation from SASE FEL CERN Accelerator School: Free Electron Lasers and Energy Recovery Linacs (FELs and ERLs), 31 May 10 June, 2016 Coherence properties of the radiation from SASE FEL M.V. Yurkov DESY, Hamburg I. Start-up

More information

Trends in X-ray Synchrotron Radiation Research

Trends in X-ray Synchrotron Radiation Research Trends in X-ray Synchrotron Radiation Research Storage rings Energy Recovery Linacs (ERL) Free Electron Lasers Jochen R. Schneider DESY Development of the brilliance of X-ray sources Since the discovery

More information

Clusters in intense x-ray pulses from 100 nm to.7 nm

Clusters in intense x-ray pulses from 100 nm to.7 nm Clusters in intense x-ray pulses from 100 nm to.7 nm Linac Coherent Light Source, SLAC National Accelerator Laboratory Outline: Introduction and motivation Spectroscopy of clusters Single shot imaging

More information

Undulator Commissioning Spectrometer for the European XFEL

Undulator Commissioning Spectrometer for the European XFEL Undulator Commissioning Spectrometer for the European XFEL FEL Beam Dynamics Group meeting DESY, Hamburg, Nov. 9 th 010 Wolfgang Freund, WP74 European XFEL wolfgang.freund@xfel.eu Contents Undulator commissioning

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

An Adventure in Marrying Laser Arts and Accelerator Technologies

An Adventure in Marrying Laser Arts and Accelerator Technologies An Adventure in Marrying Laser Arts and Accelerator Technologies Dao Xiang Beam Physics Dept, SLAC, Stanford University Feb-28-2012 An example sample Probe (electron) Pump (laser) Typical pump-probe experiment

More information

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS L. Giannessi, S. Spampinati, ENEA C.R., Frascati, Italy P. Musumeci, INFN & Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy Abstract

More information