Future experiments from the Moon dedicated to the study of the Cosmic Microwave Background

Size: px
Start display at page:

Download "Future experiments from the Moon dedicated to the study of the Cosmic Microwave Background"

Transcription

1 Future experiments from the Moon dedicated to the study of the Cosmic Microwave Background C. Burigana, A. De Rosa, L. Valenziano, R. Salvaterra, P. Procopio, G. Morgante, F. Villa, and N. Mandolesi

2 Cosmic Microwave Background Radiation (CMB) Anisotropies Angular power spectrum Polarization P 2 = Q 2 + U 2 Example: Scattering Thomson of radiation with quadrupole anisotropy generates linear polarization Spectrum Photon distribution function

3 Motivation & context The absence of atmospheric emission and radio-millimetre interferences + the feasibility of having in situ instrumentation of remarkable size up-gradable with time the Moon is a potentially ideal place for accurate measurements of CMB: polarization anisotropies, total intensity anisotropies at small angular scales, spectral distortions Although extremely challenging, these kinds of measures are of fundamental relevance for our understanding of the cosmic evolution, from the epoch of inflation to the plasma era, and, finally, to the epoch of cosmological re-ionization related to the cosmic structure formation We carried out a feasibility study of experiments dedicated to the CMB B-mode polarization and to absolute temperature measurements at centimetre and decimetre wavelengths Italian Vision for Moon Exploration, Observation of the Universe from the Moon (Studio Osservazione dell Universo dalla Luna), Final Report, Contratto I/032/06/04 - ASI Perspectives for future experiments and studies on cosmic background radiation from the Moon (WP1420, WP1430, WP1430cm) by C. Burigana, L. Valenziano, A. De Rosa, R. Salvaterra, P. Procopio, G. Morgante, F. Villa, N. Mandolesi

4 Polarization anisotropies of CMB

5 WMAP Courtesy WMAP Science Team

6 Multifrequency is needed! Courtesy WMAP Science Team

7 WMAP 3y Power Spectrum

8 Planck perspectives: TT, TE, EE

9 Measure of E and B modes of the CMB primordial polarisation anisotropy Synchrotron range without Galactic cut The same but excluding Galactic plane or in a clean region Sensitivity required to accurately determine E and B modes. 70GHz case, not observable from the Earth, where foreground contamination is minimum. La Porta et al., 2006

10 B-mode polarization APS from lensing need for about 10 arcmin resolution

11 Constraining Neutrino Mass and Cosmic Reionization with CMB Polarization as a function of neutrino mass Measurable in E mode Small effect in total intensity reionization bump Burigana et al., 2004

12

13

14 Sensitivity: a very high sensitivity is required since the predicted level of the signal is a free parameter of the theory. Therefore, the working hypothesis depends on the theoretical model considered, in this way requirements can be obtained in detail. The sensitivity requirement of the detector is S < 0.1 mk * sec-1/2. With this sensitivity, or better, the B modes can be measured till multipoles l ~ 500 for a signal dt > 0.1 mk and till l ~ for dt > 0.01 mk at clean cosmological frequencies. FWHM: 1 arcmin a 100 GHz Lifetime: 4 full sky surveys. This requirement reflects the trade-off between detector s sensitivity and redundancy of observations to allow an accurate separation of systematic effects. Number of detectors: at least N*1000, where N is the frequency band. The millimetre detectors, both bolometers and radiometers, have sensitivity near the quantum limit. Therefore, in order to obtain the sensitivity required by the predicted observational time it is necessary to have a number of detectors of the order of thousands. This number is necessary not only in cosmological bands, but also in the near bands in order to remove the foregrounds with a comparable accuracy.

15 Technology: HEMT from ~ 20 to 100; Bolometers from ~ 70 to 500 GHz. The detectors based on HEMT are used, for CMB measurements, in experiment on Earth and on the Planck mission. They proved great stability, reliability, cleanness in measurements and they can be used at temperatures of almost 20K; this temperatures can be obtained with active coolers. Recent developments raised the operational frequency over 300 GHz with predicted sensitivity of almost 2.5 times the quantum noise. They are candidates as ideal detectors for frequencies above 100 GHz. See the following figures where measurements and LAN HEMT InP models with gate length 35 nm are reported. The bolometers actually are the most sensitive millimetre, but the cryogenic apparatus needed to reach a temperature of almost 100 mk is more complex. They are the only available broad band detectors at high frequencies. It is important that in a mission like this, where the systematic effects are the limiting effect for the observations, the technologies of observations have a band of overlap.

16 Cryogenics: According to the mission design (single payload, separate payload), to the number and to the type of detectors and their requisites of dissipation, different cryogenic chains can be hypothesized. As example we report an evolution of the chain used on Planck satellite, where the two different chains cohabit in the same focal plane. From T-env to ~50K passive cooling through radiators (V-Grooves like), located always in a area of shade. This radiators can be joined with mechanical coolers active at low vibrations or of sorption-cooler type. From ~50K to ~20-30K (Operating temperature for detectors based on HEMT technology and pre-cooling phase for cryogenic phases at lower temperatures), sorption/jt cooler with H2 or Ne; otherwise mechanical coolers can be used (as example a pulse tube with a small level of vibrations). Even if theoretically possible, the use of cryogenic liquids or solids H2 o Ne is not favoured due to the operating complexity.

17 From ~20-30K to ~5K (pre-cooling for 0.1K cooler): sorption/jt He cooler, technology under development, for systems of great heat-lift, by different research institutes. Also in this case cryogenic liquids can be used, with the remarks previously listed. Depending on the level of vibrations admitted by the microphony of detectors, mechanical cryogenerators (pulse tube) can be used. From ~5K to 0.1K: the technology for obtaining temperatures of almost 100 mk with a high heat lift is of dilution kind. The system used on Planck, for example, consents to cool more than 50 detectors at 100 mk, but its operative time is limited by the available quantity of He3, which is dispersed in space at the and of the cycle. For a new generation mission is necessary to develop new closed-cycle systems, which theoretically allow a infinite operative time.

18 Architecture based on OMT for an accurate separation of polarized signals. The Ortho Mode Transducer are the components that allow the most clean separation of the polarized components in the millimetre range. A mission dedicated to the measurements of CMB polarization with a so high sensitivity requires a separation of the components of almost 60dB.

19 Instead of a single big experiment, we can assume to have a set of 4 smaller payloads which exploit at full the synergies. In this case a excessively big antenna for high frequencies and the complications deriving from a very crowded focal region could be avoided. One (or two, given the low frequency) at low frequencies: HEMTbased for foregrounds measurements (from 20 to 60 GHz) One at intermediate frequencies: HEMT and/or Bolometers (e.g. from 70 to 200 GHz) for the cosmology One at high frequency: Bolometers (e.g. from 300 to 500 GHz) for foregrounds measurements.

20 Spectral Distortions of CMB

21 CMBR SPECTRUM T 0 = ± K (Mather et al. 1999) Redshift Dimensioneless frequency Has the CMBR a black body spectrum?

22 CMB Spectrum measures Recent measures of CMB spectrum (collected by Burigana and Salvaterra, 1999) λ>1cm: typical error > 0.1 K FIRAS measures: typical error ± K

23 Impact of various sources of errors: note the atmosphere relevance

24 Spectral distortions In the primordial universe some processes can lead the matter-radiation fluid out of the thermal equilibrium (energy dissipation because of density fluctuations,physical processes out of the equilibrium, radiative decay of particles, energy release related to the first stages of structures formation, free-free distortions) The photon distribution function isn t a Planckian one The Kompaneets equation in cosmological contest provides the best tool to compute the evolution of the photon distribution function, but a numerical code is needed! KYPRIX An extremely precise fortran based code, able to simulate the effects of the primordial physical processes that can affect the thermodynamic equilibrium of the CMBR

25 Primordial distortions BIG BANG Cosmological applications z term z BE z z ric z today Bose-Einstein like spectrum Superposition of black bodies with µ function of X where Free-free distortions Late distortions Related (mainly) to the reionization history of the universe Cosmological application of a numerical code for the solution of the Kompaneets equation, P.Procopio and C.Burigana, INAF-IASF Bologna, Internal Report, 421

26 Theoretical CMB Spectral Distortions Middle age Free-free Early Bose-Einstein like Late Comptonization like Distorted spectra in the presence of a late energy injection with Δε/ε i = 5 x 10-6 plus an early/intermediate energy injection with Δε/ε i = 5 x 10-6 occurring at y h =5, 1, 0.01 (from the bottom to the top; in the figure the cases at y h =5 and 1 are indistiguishable at short wavelengths; solid lines) and plus a free-free distortion with y B =10-6 (dashes).

27 T e /T R = 10 4 z R = 20 dε/ε = 10-5 Cosmological application One of the representative cases Distortions due to reionization of the universe at low redshifts Ω m = 1 Ω Λ = 0 Ω m = 0.29 Ω Λ = 0.73

28 In the Planckian Hypothesis: limits achievable with a new low frequency experiment DIMES Example: 6 freq. channels between 2 & 90 GHz Limits achievable with a low frequency experiment with the same FIRAS sensitivity Current limits Hypothesis to be checked Burigana and Salvaterra, 2003 Cosmic time

29 CMB spectrum: Key parameters Configuration A and B Frequency operating range: GHz ( cm) Spectral resolution: 10% Angular resolution: 7 /8 Sensitivity: < 1 mk sec -1/2 Field of View: > 10 4 deg 2 Final sensitivity (E.O.L) better than 0.1 mk per resolution element Low sidelobes optics Ground shield avoid ground signal pickup thermal stability Channel Frequency (GHz) Wavelength (cm)

30

31 Calibrator requirements Return Loss < -60dB in the whole frequency range Intercalibration between frequency bands better than 30 μk Thermal stability better than 1 mk with well sampled temperature monitoring (temperature accuracy better than 10 μk) The ARCADE calibrator

32 Radiometers Differential radiometers (using low noise amplifiers) Absolute calibration One of the ARCADE radiometers (Kogut, 2002)

33 Sketch of the large payload Mass: ~1000 Kg, height ~ 6 m, deployed in a shaded crater

34 Scientific performance as function of (low) frequency coverage C = 2, 5, 8 freq. channels, 0.48, 1.9, 7.54 cm D = 3, 6, 9 freq. channels, 0.75, 3.0, 11.9 cm E = 3, 5, 7 freq. Channels, 0.75, 1.9, 4.75 cm R = recent λ 1cm F = COBE/FIRAS Note that even with λ 5cm the improvement is very good!

35 New Concept Design Requirements Mass < 300 Kg Simplify cooling system Location at the pole Continuous operation (day and night) Simplify pointing system Autonomous, unmanned operation Simplify deployment

36 Reduce Dimension and Mass Reduce the number of channels Use a smaller payload Use a smaller cooler Select highest frequency bands Reduce horn and calibrator dimension Enlarge FOV (14 FWHM) Reduce horn dimensions Passive cooling for the optics Use a smaller cooler Introduce steerable optical system Reduce horn dimension Avoid an alt-az mounting

37 New Location Select a location at the Pole Reduce the size of passive cooling radiators Reduce the observed portion of the sky (acceptable from the scientific point of view) Avoid rover and deployment system (reduce mass) Shaded crated location not strictly required Simplified deployment on the final site Operation on the landing module possible Power generation from solar panels on the payload Operation from the near side of the Moon Higher frequency less affected by man-made interference

38 New Payload Concept (conf. E) 3 channels 6 GHz 15 GHz 63 GHz FOV: 14 deg Passive cooling for the optics Steerable optical element at horn aperture 63GHz Channel Internal 15GHz Channel Thermal 6GHz Channel Steerable Mirror Feed Horn Absolute Reference@4K Thermal Cold Head

39 New Payload Concept - I 15GHz Channel 63GHz Channel Cold Head 6GHz Channel Pointing system obtained using steerable mirrors and Moon rotation Electonics box Compressor

40 New Payload Concept - II

41 Location External passive cooling Shield Internal passive cooling shield Solar panel Instrument Cooler s Radiators Middle Shield Location at the Pole Passive cooling possible. Smaller radiators Easy deployment, unmanned operation Shields deployed in-situ Operation from the lander possible Solar panels on the payload

42 Estimated mass: < 200 Kg In situ overall dimension: diameter: 8 m, height: 3 m Passive shield deployed Estimated power requirements: 3 kw Continuous operation possible

43 CONCLUSIONS I CMB general Moon advantages: absence of atmospheric emission and radio-millimetre interferences in situ instrumentation of remarkable size up-gradable with time Moon is a potentially ideal place for accurate measurements of CMB of very high scientific interest: B-mode Polarization Anisotropy (large equipments): inflation physics lensing cosmic reionization (through B & extremely accurate E mode) Spectral Distortions in particular at λ > 1 cm ( large equipments): cosmic reionization (FF & Compt. Dist.) dissipation various cosmic scales (FF, Compt,, BE) particle decays & annihilations (BE, full shape)

44 CONCLUSIONS II CMB spectrum The Moon is a unique opportunity for accurate cm & dm CMB spectrum measures free from atmosphere contamination dm observations requires 10 3 Kg experiments cm observations need 10 2 Kg experiments and 0.1 mk sensivity, a great improvement with respect to the current observation status in particular for free-free distortions & BE-like (early) distortions A compact design for early cm experiments has been proposed Definitive cm & dm missions will map the cosmic thermal history with high precision up redshifts of ~ 10 7 Options: The payload can be integrated with the lander that could supply power No critical dependence on choice of exact position, provided that it is well known Possible implementation on free-flyer, using any available Moon mission

45 Thanks for the attention!

4.3 Planck. Scientific goals. Planck payload

4.3 Planck. Scientific goals. Planck payload 4.3 Planck In late 1992, the NASA COBE team announced the detection of intrinsic temperature fluctuations in the Cosmic Background Radiation Field (CBRF), observed on the sky at angular scales larger than

More information

The first light in the universe

The first light in the universe The first light in the universe Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Photons in the early universe Early universe is a hot and dense expanding plasma 14 May 1964, 11:15

More information

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December 2014 The Planck mission Marco Bersanelli Dipartimento di Fisica, Università degli Studi di Milano Planck-LFI Deputy PI

More information

Large Scale Polarization Explorer

Large Scale Polarization Explorer Science goal and performance (Univ. Roma La Sapienza) for the LSPE collaboration Page 1 LSPE is a balloon payload aimed at: Measure large scale CMB polarization and temperature anisotropies Explore large

More information

News from BICEP/Keck Array CMB telescopes

News from BICEP/Keck Array CMB telescopes News from BICEP/Keck Array CMB telescopes Zeeshan Ahmed KIPAC, SLAC National Accelerator Laboratory Pi Day, 2016 Southern Methodist University Outline 1. Cosmology CMB, Inflation, B-modes 2. The Compact

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Probing the Dark Ages with 21 cm Absorption

Probing the Dark Ages with 21 cm Absorption May 13, 2008 Probing the Dark Ages with 21 cm Absorption Emil Polisensky (UMD/NRL) ABSTRACT A brief overview of detecting neutral hydrogen gas during the cosmic Dark Ages in absorption against the background

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

Planck Mission and Technology

Planck Mission and Technology Planck Mission and Technology Petri Jukkala, Nicholas Hughes, Mikko Laaninen, Ville-Hermanni Kilpiä YLINEN Electronics Ltd Jussi Tuovinen, Jussi Varis, Anna Karvonen MilliLab, VTT Information Technology

More information

QUIET-I and QUIET-II:

QUIET-I and QUIET-II: QUIET-I and QUIET-II: HEMT-based coherent CMB polarimetry Great Lakes Cosmology Workshop X June 14, 2010 Immanuel Buder (for the QUIET Collaboration) Department of Physics, U. of Chicago Outline Science

More information

CMB Polarization Experiments: Status and Prospects. Kuo Assistant Professor of Physics Stanford University, SLAC

CMB Polarization Experiments: Status and Prospects. Kuo Assistant Professor of Physics Stanford University, SLAC CMB Polarization Experiments: Status and Prospects Chao-Lin Kuo Assistant Professor of Physics Stanford University, SLAC Remaining questions in fundamental Cosmology Spectral index of the initial perturbations,

More information

Physics of CMB Polarization and Its Measurement

Physics of CMB Polarization and Its Measurement Physics of CMB Polarization and Its Measurement HEP seminar at Kyoto University April 13 th, 2007 Akito KUSAKA University of Tokyo Outline Physics of CMB and its Polarization What does WMAP shed light

More information

Exploring the primordial Universe with QUBIC

Exploring the primordial Universe with QUBIC Exploring the primordial Universe with the Q U Bolometric Interferometer for Cosmology J.-Ch. Hamilton, APC, Paris, France (CNRS, IN2P3, Université Paris-Diderot) Expected difficulties in the B-Modes Quest

More information

Measurements of Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole

Measurements of Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole Measurements of Degree-Scale B-mode Polarization with the BICEP/Keck Experiments at South Pole Benjamin Racine for the BICEP/Keck Collaboration March 18th, 2018 53 èmes Rencontres de Moriond La Thuile

More information

Short course: 101 level introductory course to provide a foundation for everyone coming to the workshop to understand the field.

Short course: 101 level introductory course to provide a foundation for everyone coming to the workshop to understand the field. Designing future CMB experiments: how this will work Short course: 101 level introductory course to provide a foundation for everyone coming to the workshop to understand the field. Study visions and goals

More information

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron The international scenario Balloons, LiteBIRD, PIXIE, Millimetron Francesco Piacentini Sapienza Università di Roma, Dipartimento di Fisica on behalf of the Italian CMB community Overview International

More information

PIXIE: The Primordial Inflation Explorer. Al Kogut GSFC

PIXIE: The Primordial Inflation Explorer. Al Kogut GSFC PIXIE: The Primordial Inflation Explorer Al Kogut GSFC History of the Universe Standard model leaves many open questions NASA Strategic Guidance: 2010 Astrophysics Decadal Survey Top Mid-Scale Priorities

More information

Michel Piat for the BRAIN collaboration

Michel Piat for the BRAIN collaboration Precise measurement of CMB polarisation from Dome-C: the BRAIN experiment Michel Piat for the BRAIN collaboration Laboratoire Astroparticule et Cosmologie Université Paris 7 Denis Diderot 1 Outline 1.

More information

Primordial gravitational waves detected? Atsushi Taruya

Primordial gravitational waves detected? Atsushi Taruya 21 May 2014 Lunch seminar @YITP Primordial gravitational waves detected? Atsushi Taruya Contents Searching for primordial gravitational waves from cosmic microwave background polarizations Gravitational-wave

More information

Cosmology Large Angular Scale Surveyor. Wednesday, September 25, 13

Cosmology Large Angular Scale Surveyor. Wednesday, September 25, 13 Cosmology Large Angular Scale Surveyor T. Marriage for the CLASS Collaboration U. Michigan Cosmology After Planck Sep 24, 2013 CLASS Collaborators NASA GSFC D. Chuss K. Denis A. Kogut N. Miller H. Moseley

More information

Polarization of the Cosmic Microwave Background: Are Those Guys Serious? Al Kogut Goddard Space Flight Center

Polarization of the Cosmic Microwave Background: Are Those Guys Serious? Al Kogut Goddard Space Flight Center Polarization of the Cosmic Microwave Background: Are Those Guys Serious? Al Kogut Goddard Space Flight Center Precision Cosmology CMB Lensing Galaxy Surveys Structure formation seeded by adiabatic scale-invariant

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe Rodrigo Leonardi Planck Science Office ESTEC/ESA OVERVIEW Planck observational objective & science.

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

CMB polarization and cosmology

CMB polarization and cosmology Fundamental physics and cosmology CMB polarization and cosmology Institut d'astrophysique Spatiale Orsay Standard cosmology : reverse the expansion... 10 16 GeV GUT 10-42 s 10 15 GeV 10-32 s 300 GeV 0.1

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

1. CMB Observations and cosmological constraints

1. CMB Observations and cosmological constraints 1. CMB Observations and cosmological constraints R. BRUCE PARTRIDGE Abstract Measurements of the spectrum of the cosmic microwave background (CMB) and of the power spectrum of fluctuations in its intensity

More information

Measurements of the CMB by the PLANCK satellite

Measurements of the CMB by the PLANCK satellite Measurements of the CMB by the PLANCK satellite M.C. Falvella Italian Space Agency (ASI) on behalf of Planck collaboration In 1992 two space-based CMB experiments (COBRAS and SAMBA) were proposed to ESA.

More information

The Einstein Polarization Interferometer for Cosmology (EPIC)

The Einstein Polarization Interferometer for Cosmology (EPIC) The Einstein Polarization Interferometer for Cosmology (EPIC) Peter Timbie UW-Madison for the EPIC collaboration Brown, Cardiff, Illinois, Ireland-Maynooth, LLNL, Manchester, Richmond, UCSD, Wisconsin,

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

QUIET Experiment and HEMT receiver array

QUIET Experiment and HEMT receiver array QUIET Experiment and HEMT receiver array SLAC Advanced Instrumentation Seminar October 14 th, 2009 Akito KUSAKA (for QUIET Collaboration) KICP, University of Chicago Outline Introduction Physics of CMB

More information

PLANCK lately and beyond

PLANCK lately and beyond François R. Bouchet, Institut d Astrophysique de Paris PLANCK lately and beyond CORE/M5 TT, EE, BB 2016 status Only keeping points w. sufficiently small error bars, Fig. E Calabrese τ = 0.055±0.009 1 114

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Following recombination, photons that were coupled to the matter have had very little subsequent interaction with matter. Now observed as the cosmic microwave background. Arguably

More information

Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments

Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments M. Piat, C. Rosset To cite this version: M. Piat, C. Rosset. Precise measurement of CMB polarisation from Dome-C: the

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Assignments Read all (secs. 25-29) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Term project due last day of class, Tues. May 17 Final Exam Thurs. May 19, 3:30 p.m. here Olber

More information

The CMB sky observed at 43 and 95 GHz with QUIET

The CMB sky observed at 43 and 95 GHz with QUIET The CMB sky observed at 43 and 95 GHz with QUIET Hans Kristian Eriksen for the QUIET collaboration University of Oslo Munich, November 28th, 2012 QUIET (Q/U Imaging ExperimenT) QUIET is a ground-based

More information

Planck. Report on the status of the mission Carlo Baccigalupi, SISSA

Planck. Report on the status of the mission Carlo Baccigalupi, SISSA Planck Report on the status of the mission Carlo Baccigalupi, SISSA Outline CMB The Planck satellite Data processing center Expectations from Planck Planck data CMB CMB angular power spectrum Angle 200/l

More information

arxiv:astro-ph/ v1 9 Dec 2001

arxiv:astro-ph/ v1 9 Dec 2001 XXX-XXXXX YYY-YYYYYY November 2, 2018 arxiv:astro-ph/0112205v1 9 Dec 2001 Archeops: CMB Anisotropies Measurement from Large to Small Angular Scale Alexandre Amblard, on behalf of the Archeops Collaboration

More information

Challenges present and future in the observation of the Cosmic Microwave Background

Challenges present and future in the observation of the Cosmic Microwave Background Challenges present and future in the observation of the Cosmic Microwave Background Aniello (Daniele) Mennella Università degli Studi di Milano Dipartimento di Fisica Today Today We're looking at the universe

More information

Model Universe Including Pressure

Model Universe Including Pressure Model Universe Including Pressure The conservation of mass within the expanding shell was described by R 3 ( t ) ρ ( t ) = ρ 0 We now assume an Universe filled with a fluid (dust) of uniform density ρ,

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc.

Chapter 22 Lecture. The Cosmic Perspective. Seventh Edition. The Birth of the Universe Pearson Education, Inc. Chapter 22 Lecture The Cosmic Perspective Seventh Edition The Birth of the Universe The Birth of the Universe 22.1 The Big Bang Theory Our goals for learning: What were conditions like in the early universe?

More information

THE SPOrt MISSION ON ISSA

THE SPOrt MISSION ON ISSA THE SPOrt MISSION ON ISSA S. Cortiglioni 1, S. Cecchini 1, M. Orsini 1, G. Boella 2, M. Gervasi 2, G. Sironi 2, R. Fabbri 3, J. Monari 4, A. Orfei 4, K.-W. Ng 5, L. Nicastro 6, U. Pisani 7, R. Tascone

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 10 Cosmic microwave background Content 10.0 Small introduction 10.1 Cosmic microwave

More information

Cosmic Microwave Background Introduction

Cosmic Microwave Background Introduction Cosmic Microwave Background Introduction Matt Chasse chasse@hawaii.edu Department of Physics University of Hawaii at Manoa Honolulu, HI 96816 Matt Chasse, CMB Intro, May 3, 2005 p. 1/2 Outline CMB, what

More information

Herschel and Planck: ESA s New Astronomy Missions an introduction. Martin Kessler Schloss Braunshardt 19/03/2009

Herschel and Planck: ESA s New Astronomy Missions an introduction. Martin Kessler Schloss Braunshardt 19/03/2009 Herschel and Planck: ESA s New Astronomy Missions an introduction Martin Kessler Schloss Braunshardt 19/03/2009 Missions in Operations Rosetta Hubble Integral Newton Mars Express SOHO Ulysses Cluster Venus

More information

Estimation of the Cosmic Microwave Background Radiation

Estimation of the Cosmic Microwave Background Radiation S.P.Spirydovich Abstract Estimation of the Cosmic Microwave Background Radiation The author discusses some aspects of experiment, which was built to measure temperature of cosmic microwave background (CMB)

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

PICO - Probe of Inflation and Cosmic Origins

PICO - Probe of Inflation and Cosmic Origins PICO - Probe of Inflation and Cosmic Origins Shaul Hanany University of Minnesota Executive Committee Bock, Borrill, Crill, Devlin, Flauger, Hanany, Jones, Knox, Kogut, Lawrence, McMahon, Pryke, Trangsrud

More information

The Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE)

The Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE) The Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE) D.T. Chuss, J. Hinderks, G. F. Hinshaw, S.H. Moseley, G.M. Voellmer, E.J. Wollack NASA Goddard Space Flight Center,

More information

The Planck Telescope

The Planck Telescope The Planck Telescope F.Villa 1, M.Bersanelli 2, C.Burigana 1, R.C.Butler 1, N.Mandolesi 1, A.Mennella 3, G.Morgante 1, M.Sandri 1, L.Terenzi 1, L.Valenziano 1 1 Istituto TESRE/CNR Bologna Italy 2 Università

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Carlo Baccigalupi,, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/main/winterschoollecture5 These lectures are available in pdf format

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

BINGO simulations and updates on the performance of. the instrument

BINGO simulations and updates on the performance of. the instrument BINGO simulations and updates on the performance of BINGO telescope the instrument M.-A. Bigot-Sazy BINGO collaboration Paris 21cm Intensity Mapping Workshop June 2014 21cm signal Observed sky Credit:

More information

Anisotropy Measurements of the Cosmic Microwave Background

Anisotropy Measurements of the Cosmic Microwave Background Anisotropy Measurements of the Cosmic Microwave Background J. Gundersen, M. Lim, J. Staren, C. Wuensche, N. Figueiredo, T. Gaier, T. Koch, P. Meinhold, M. Seiffert, and P. Lubin Department of Physics,

More information

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum The Cosmic Microwave Background Part II Features of the Angular Power Spectrum Angular Power Spectrum Recall the angular power spectrum Peak at l=200 corresponds to 1o structure Exactly the horizon distance

More information

Cosmic microwave background radiation

Cosmic microwave background radiation Cosmic microwave background radiation Lyman Page and David Wilkinson Physics Department, Princeton University, Princeton, New Jersey 08544 The cosmic microwave background radiation (CMBR) is widely interpreted

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

Microcosmo e Macrocosmo

Microcosmo e Macrocosmo Microcosmo e Macrocosmo Paolo de Bernardis Dipartimento di Fisica Sapienza Università di Roma Lezioni della Cattedra Fermi 23 Gennaio 2014 Dipartimento di Fisica Sapienza Università di Roma Friedman s

More information

Rayleigh scattering:

Rayleigh scattering: Rayleigh scattering: blue sky thinking for future CMB observations arxiv:1307.8148; previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

MoBiKID Kinetic Inductance Detectors for up-coming B-mode satellite experiments

MoBiKID Kinetic Inductance Detectors for up-coming B-mode satellite experiments MoBiKID Kinetic Inductance Detectors for up-coming B-mode satellite experiments TIPP 17 - BEIJING INFN, Sezione di Roma Dawn of the universe: where are we? Looking into the CMB for a proof of the Inflation...

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Detection of B-mode Polarization at Degree Scales using BICEP2. The BICEP2 Collaboration

Detection of B-mode Polarization at Degree Scales using BICEP2. The BICEP2 Collaboration Detection of B-mode Polarization at Degree Scales using BICEP2 The BICEP2 Collaboration 2 The BICEP2 Postdocs Colin Bischoff Immanuel Buder Jeff Filippini Stefan Fliescher Martin Lueker Roger O Brient

More information

What I heard about Planck Eiichiro Komatsu (MPA) December 9, 2014 December 22, 2014

What I heard about Planck Eiichiro Komatsu (MPA) December 9, 2014 December 22, 2014 What I heard about Planck 2014 Eiichiro Komatsu (MPA) [v1@ipmu] December 9, 2014 [v2@utap] December 22, 2014 Disclaimer I am not involved in Planck I did not attend the conference in Ferrara, Italy, for

More information

Simulating Cosmic Microwave Background Fluctuations

Simulating Cosmic Microwave Background Fluctuations Simulating Cosmic Microwave Background Fluctuations Mario Bisi Emma Kerswill Picture taken from: http://astro.uchicago.edu/~tyler/omegab.html Introduction What is the CMB and how was it formed? Why is

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

Lorenzo Moncelsi. SPIDER Probing The Dawn Of Time From Above The Clouds

Lorenzo Moncelsi. SPIDER Probing The Dawn Of Time From Above The Clouds SPIDER Probing The Dawn Of Time From Above The Clouds Planck 2013 B-modes BICEP2 2014 Thomson scattering within local quadrupole anisotropies generates linear polarization Scalar modes T, E Tensor modes

More information

SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes

SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes, Dick Bond, Olivier Doré CITA, University of Toronto, Canada E-mail: cmactavi@cita.utoronto.ca Rick Bihary, Tom Montroy,

More information

Toward an Understanding of Foregrounds in the BICEP2 Region

Toward an Understanding of Foregrounds in the BICEP2 Region Toward an Understanding of Foregrounds in the BICEP2 Region Raphael Flauger JCAP08(2014)039 (arxiv:1405.7351) w/ Colin Hill and David Spergel Status and Future of Inflationary Theory, KICP, August 22,

More information

M.Bersanelli Physics Department, University of Milano. IAP, June 2012 M. Bersanelli Beyond CORE Workshop

M.Bersanelli Physics Department, University of Milano. IAP, June 2012 M. Bersanelli Beyond CORE Workshop IAP, Paris, 25-2929 June, 2012 Beyond CORE Workshop: Planning for a Polarization Space Mission Alternative design strategies and technology developments M.Bersanelli Physics Department, University of Milano

More information

Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging

Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging Course Structure Modules Module 1, lectures 1-6 (Lister Staveley-Smith, Richard Dodson, Maria Rioja) Mon Wed Fri 1pm weeks

More information

HOW TO GET LIGHT FROM THE DARK AGES

HOW TO GET LIGHT FROM THE DARK AGES HOW TO GET LIGHT FROM THE DARK AGES Anthony Smith Lunar Seminar Presentation 2/2/2010 OUTLINE Basics of Radio Astronomy Why go to the moon? What should we find there? BASICS OF RADIO ASTRONOMY Blackbody

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Physics Nobel Prize 2006

Physics Nobel Prize 2006 Physics Nobel Prize 2006 Ghanashyam Date The Institute of Mathematical Sciences, Chennai http://www.imsc.res.in shyam@imsc.res.in Nov 4, 2006. Organization of the Talk Organization of the Talk Nobel Laureates

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2 Physics 661 Particle Physics Phenomenology October 2, 2003 Evidence for theory: Hot Big Bang Model Present expansion of the Universe Existence of cosmic microwave background radiation Relative abundance

More information

Constraining the topology of the Universe using CMB maps

Constraining the topology of the Universe using CMB maps Constraining the topology of the Universe using CMB maps P. Bielewicz, A.J. Banday K.M. Górski, JPL Outline topology of the Universe signatures of topology in the CMB maps search for signatures of topology

More information

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe and the Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu December 02, 2014 Read: Chap 23 12/04/14 slide 1 Assignment on Chaps 22 23, at the end of next week,

More information

SKY POLARISATION OBSERVATORY (SPOrt): A PROJECT FOR THE INTERNATIONAL SPACE STATION

SKY POLARISATION OBSERVATORY (SPOrt): A PROJECT FOR THE INTERNATIONAL SPACE STATION SKY POLARISATION OBSERVATORY (SPOrt): A PROJECT FOR THE INTERNATIONAL SPACE STATION Cortiglioni, S. Cecchini, S. Orsini, M. I.Te.S.R.E./CNR via P. Gobetti 1, 4019 Bologna, Italy Boella, G. Gervasi, M.

More information

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi Forthcoming CMB experiments and expectations for dark energy Carlo Baccigalupi Outline Classic dark energy effects on CMB Modern CMB relevance for dark energy: the promise of lensing Lensing (B modes)

More information

arxiv:astro-ph/ v2 19 May 1997

arxiv:astro-ph/ v2 19 May 1997 THE CMB SPECTRUM Cosmic Microwave Background arxiv:astro-ph/9705101v2 19 May 1997 1. Introduction GEORGE F. SMOOT Lawrence Berkeley National Lab & Physics Department University of California Berkeley CA

More information

Ringing in the New Cosmology

Ringing in the New Cosmology Ringing in the New Cosmology 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Acoustic Peaks in the CMB Wayne Hu Temperature Maps CMB Isotropy Actual Temperature Data COBE 1992 Dipole

More information

Contents. 2 Curriculum Vitae Summary of Work Effort Current and Pending Support 43

Contents. 2 Curriculum Vitae Summary of Work Effort Current and Pending Support 43 Contents 1 Scientific, Technical, and Management Section 1 1.1 Executive Summary.................................. 1 1.2 Observables and Baselines.............................. 1 1.3 Science Objectives..................................

More information

Space Cryogenics at the Rutherford Appleton Laboratory

Space Cryogenics at the Rutherford Appleton Laboratory Space Cryogenics at the Rutherford Appleton Laboratory Tom Bradshaw Martin Crook Bryan Shaughnessy Cryogenic Cluster Day STFC, Rutherford Appleton Laboratory 22 nd September 2010 Introduction Rutherford

More information

CMB polarization anisotropies from cosmological reionization: extension to B-modes

CMB polarization anisotropies from cosmological reionization: extension to B-modes Prepared for submission to JCAP CMB polarization anisotropies from cosmological reionization: extension to B-modes arxiv:1205.0463v1 [astro-ph.co] 2 May 2012 T. Trombetti, a,b C. Burigana a,c a INAF-IASF

More information

Imprint of Scalar Dark Energy on CMB polarization

Imprint of Scalar Dark Energy on CMB polarization Imprint of Scalar Dark Energy on CMB polarization Kin-Wang Ng ( 吳建宏 ) Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan Cosmology and Gravity Pre-workshop NTHU, Apr

More information

Testing parity violation with the CMB

Testing parity violation with the CMB Testing parity violation with the CMB Paolo Natoli Università di Ferrara (thanks to Alessandro Gruppuso)! ISSS L Aquila 24 April 2014 Introduction The aim is to use observed properties of CMB pattern to

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

Data analysis of massive data sets a Planck example

Data analysis of massive data sets a Planck example Data analysis of massive data sets a Planck example Radek Stompor (APC) LOFAR workshop, Meudon, 29/03/06 Outline 1. Planck mission; 2. Planck data set; 3. Planck data analysis plan and challenges; 4. Planck

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang 1 Outline Observational Cosmology:

More information