Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging

Size: px
Start display at page:

Download "Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging"

Transcription

1 Advanced Topic in Astrophysics Lecture 1 Radio Astronomy - Antennas & Imaging

2 Course Structure Modules Module 1, lectures 1-6 (Lister Staveley-Smith, Richard Dodson, Maria Rioja) Mon Wed Fri 1pm weeks 8 & 9 Radio astronomy: antennas, interferometry and VLBI Module 2, lectures 7-12 (Simon Driver) Mon-Wed-Fri 1pm weeks 10 & 11 Galaxies and cosmology Module 3, lectures (Ravi Subrahmanyan & Lakshmi Saripalli) Mon-Wed-Fri 1pm weeks 12 & 13 AGN and radiation mechanisms Module 4, lectures (Ken Freeman) Semester 2 Dynamics of the Milky Way

3 Assessment Continuous (30%) 1 question sheet after every 2-3 lectures Due by the end of the following week Examination (70%) 1 paper per module, approx 40min each.

4 Resources ATNF Synthesis Imaging workshops 2003, Texts Kraus: Radio Astronomy Rohlfs & Wilson: Tools of Radio Astronomy p.4

5 Outline Imaging Resolution Direct and indirect imaging Telescopes Parabolic and hyperbolic The Antenna Horns and receivers Radio astronomy fundamentals Brightness temperature Flux density Radiometer equation p.5

6 Direct imaging onto a focal plane Resolution Δθ p.6

7 Diffraction limits Δθ=1.22 λ/d Δθ=1 λ D Optical 500 nm 125 mm Radio 20 cm 50 km p.7

8 Direct and indirect imaging Direct imaging Normal imaging method whereby an image is projected onto a detector. Examples: camera, telescope, single-dish radio telescope Indirect imaging Used where we cannot form a direct map of the object on the focal plane. We infer the properties of the object from certain characteristics of the received electromagnetic field. Examples: interferometry, NMR, ultrasound, PET, speckle. p.8

9 p.9 Direct Imaging: Single dish radio telescope

10 Direct Imaging - Angular Resolution Angular Resolution (radians) D θ = λ D Wavelength, λ=0.21m, D=64m θ=0.003 rad, or 11 arcmin Such a radio telescope only matches the resolution of the human eye at its shortest wavelength 1-2cm. p.10

11 Parabolic reflector: A parabolic reflector adds all the fields from a surface (aperture) at a single focal point. p.11 R. Subrahmanyan

12 p.12 A radio telescope at Parkes, NSW (prime focus)

13 Hyperbolic reflector B.. A Light from the point A reflecting off the hyperbola appears to come from point B p.13

14 Parabolic reflector Prime Focus p.14

15 Hyperbolic reflector Parabolic reflector Classical Cassegrain p.15

16 Hyperbolic reflector Hyperbolic reflector p.16 Ritchey-Chrétien or shaped-reflector

17 AT antenna: Cassegrain configuration 22-m diameter primary main reflector 2.75-m secondary reflector p.17

18 Signal path: p.18

19 The antenna collects the E-field over the aperture at the focus The focus is a fixed spot at all frequencies. The reflector antenna is achromatic. p.19 the feed horn at the focus adds the fields and gives the sum to the receiver as a voltage.

20 Feeds are compact and corrugated horns The inner profile is curved The inner surface has grooves Cross-section of a horn p.20

21 Brightness Temperature Solid angle of source, Ω 1 Jansky (Jy) = W m -2 Hz -1 In radio astronomy T is known as the brightness temperature, even where the object is not a black body. Examples of non-thermal sources at 1 GHz: Radio galaxy core: size = 10-3 arcsec, S=1 Jy T=10 12 K Crab giant pulses: 100m at 1.9 kpc, S=1000 Jy T=10 34 K p.21

22 Antenna Temperature and Gain N.B. 2kT=SA expected from thermodynamics Solid angle of antenna pattern, Ω A Antenna temperature is same as brightness temperature only if the source fills the antenna beam. Examples Parkes 64-m antenna (η=60%): G=0.7 K Jy -1 SKA 1km 2 : G=362 K Jy -1 p.22

23 System Temperature, T sys System Temperature is the equivalent noise power produced in the antenna receiver from sources other than the object being observed. It is the same noise that would be produced by a perfect resistor in a heat bath of temperature T sys. T sys =T rx +T spill +T atm +T cmb +T gal + T rx, receiver: internal noise in electronics (4-20K at low frequency) T spill, spillover: reflected ground emission (few % of 300K) T atm, atmosphere: frequency dependent emission (2-300K) T cmb, cosmic microwave background (3K) T gal, Galactic background (10K at 1 GHz, T gal ν -2.7 ) p.23

24 Temperature sensitivity Radiometer equation ΔT = T τδν Temperature sensitivity (K) System temperature (K) Integration time (s) Bandwidth (Hz) T=20K, τ=7200 sec, Δν=200 MHz ΔT=50µK! System temperature describes the signal a telescope sees if looking at a blackbody of temperature T which fills the field of view. NOT physical temperature. p.24

25 Fluctuations in the Microwave Sky -200µK to 200µK NASA/WMAP Science Team p.25 Structure of Universe at z=1100

26

Fundamentals of radio astronomy

Fundamentals of radio astronomy Fundamentals of radio astronomy Sean Dougherty National Research Council Herzberg Institute for Astrophysics Apologies up front! Broad topic - a lot of ground to cover (the first understatement of the

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Radio Astronomy An Introduction

Radio Astronomy An Introduction Radio Astronomy An Introduction Felix James Jay Lockman NRAO Green Bank, WV References Thompson, Moran & Swenson Kraus (1966) Christiansen & Hogbom (1969) Condon & Ransom (nrao.edu) Single Dish School

More information

2 Radio Astronomy Fundamentals 2.1 Introduction

2 Radio Astronomy Fundamentals 2.1 Introduction 2 Radio Astronomy Fundamentals 2.1 Introduction The atmosphere is transparent to only two bands of the electromagnetic spectrum: optical and radio bands. Optical band: 0.4 0.8 µm Radio band : 1 cm 10 m

More information

Introduction to Interferometry

Introduction to Interferometry Introduction to Interferometry Ciro Pappalardo RadioNet has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 730562 Radioastronomy H.Hertz

More information

arxiv:astro-ph/ v1 27 Aug 2001

arxiv:astro-ph/ v1 27 Aug 2001 AMiBA 2001: High-z Clusters, Missing Baryons, and CMB Polarization ASP Conference Series, Vol. 999, 2002 L-W Chen, C-P Ma, K-W Ng and U-L Pen, eds ATCA and CMB anisotropies arxiv:astro-ph/0108409v1 27

More information

Astrophysics I ASTR:3771 Fall 2014

Astrophysics I ASTR:3771 Fall 2014 Astrophysics I ASTR:3771 Fall 2014 Prof. Kaaret 702 Van Allen Hall 335-1985 philip-kaaret@uiowa.edu Office hours: Tuesday 1:30-2:30 pm, Wednesday 9-11 am, or by appointment, or drop by. Topics We will

More information

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Telescopes Portals of Discovery 2014 Pearson Education, Inc. Telescopes Portals of Discovery CofC Observatory 6.1 Eyes and Cameras: Everyday Light Sensors Our goals

More information

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Seventh Edition Telescopes Portals of Discovery Telescopes Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes

More information

Radio Astronomy with a Satellite Dish

Radio Astronomy with a Satellite Dish Radio Astronomy with a Satellite Dish Michael Gaylard Hartebeesthoek Radio Astronomy Observatory September 13, 2012 1 Theory 1.1 Radio Waves Radio waves are electromagnetic waves having wavelengths greater

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

HOW TO GET LIGHT FROM THE DARK AGES

HOW TO GET LIGHT FROM THE DARK AGES HOW TO GET LIGHT FROM THE DARK AGES Anthony Smith Lunar Seminar Presentation 2/2/2010 OUTLINE Basics of Radio Astronomy Why go to the moon? What should we find there? BASICS OF RADIO ASTRONOMY Blackbody

More information

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!)

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) (Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) Welcome back! (four pictures on class website; add your own to http://s304.photobucket.com/albums/nn172/rugbt/) Results:

More information

Millimeter Antenna Calibration

Millimeter Antenna Calibration Millimeter Antenna Calibration 9 th IRAM Millimeter Interferometry School 10-14 October 2016 Michael Bremer, IRAM Grenoble The beam (or: where does an antenna look?) How and where to build a mm telescope

More information

Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope

Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope Transient Cosmic Phenomena and their Influence on the Design of the SKA Radio Telescope Research Review Curtin Institute of Radio Astronomy 5 May 2009 ToC Parameter space Discovering phenomena ASKAP &

More information

Temperature Scales and Telescope Efficiencies

Temperature Scales and Telescope Efficiencies Temperature Scales and Telescope Efficiencies Jeff Mangum (NRAO) April 11, 2006 Contents 1 Introduction 1 2 Definitions 1 2.1 General Terms.................................. 2 2.2 Efficiencies....................................

More information

Mapping the Galaxy using hydrogen

Mapping the Galaxy using hydrogen The Swedish contribution to EU-HOU: A Hands-On Radio Astronomy exercise Mapping the Galaxy using hydrogen Daniel Johansson Christer Andersson Outline Introduction to radio astronomy Onsala Space Observatory

More information

Part I. The Quad-Ridged Flared Horn

Part I. The Quad-Ridged Flared Horn 9 Part I The Quad-Ridged Flared Horn 10 Chapter 2 Key Requirements of Radio Telescope Feeds Almost all of today s radio telescopes operating above 0.5 GHz use reflector antennas consisting of one or more

More information

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point

Magnifying Glass. Angular magnification (m): 25 cm/f < m < 25cm/f + 1. image at 25 cm (= normal near point) relaxed eye, image at (normal) far point Magnifying Glass Angular magnification (m): 25 cm/f < m < 25cm/f + 1 relaxed eye, image at (normal) far point image at 25 cm (= normal near point) For more magnification, first use a lens to form an enlarged

More information

Astr 2310 Thurs. March 3, 2016 Today s Topics

Astr 2310 Thurs. March 3, 2016 Today s Topics Astr 2310 Thurs. March 3, 2016 Today s Topics Chapter 6: Telescopes and Detectors Optical Telescopes Simple Optics and Image Formation Resolution and Magnification Invisible Astronomy Ground-based Radio

More information

1 General Considerations: Point Source Sensitivity, Surface Brightness Sensitivity, and Photometry

1 General Considerations: Point Source Sensitivity, Surface Brightness Sensitivity, and Photometry MUSTANG Sensitivities and MUSTANG-1.5 and - Sensitivity Projections Brian S. Mason (NRAO) - 6sep1 This technical note explains the current MUSTANG sensitivity and how it is calculated. The MUSTANG-1.5

More information

1.1 The role of radio observations in astronomy

1.1 The role of radio observations in astronomy 1 Introduction 1.1 The role of radio observations in astronomy The data give for the coordinates of the region from which the disturbance comes, a right ascension of 18 hours and declination of 10. (Karl

More information

Continuum Observing. Continuum Emission and Single Dishes

Continuum Observing. Continuum Emission and Single Dishes July 11, 2005 NAIC/NRAO Single-dish Summer School Continuum Observing Jim Condon Continuum Emission and Single Dishes Continuum sources produce steady, broadband noise So do receiver noise and drift, atmospheric

More information

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1:

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1: Astr 323: Extragalactic Astronomy and Cosmology Spring Quarter 2014, University of Washington, Željko Ivezić Lecture 1: Review of Stellar Astrophysics 1 Understanding Galaxy Properties and Cosmology The

More information

High (Angular) Resolution Astronomy

High (Angular) Resolution Astronomy High (Angular) Resolution Astronomy http://www.mrao.cam.ac.uk/ bn204/ mailto:b.nikolic@mrao.cam.ac.uk Astrophysics Group, Cavendish Laboratory, University of Cambridge January 2012 Outline Science Drivers

More information

Fast Radio Bursts. Laura Spitler Max-Planck-Institut für Radioastronomie 11. April 2015

Fast Radio Bursts. Laura Spitler Max-Planck-Institut für Radioastronomie 11. April 2015 Fast Radio Bursts Laura Spitler Max-Planck-Institut für Radioastronomie 11. April 2015 Lorimer Burst Bright burst discovered in the reprocessing of archival data from a pulsar survey A Bright Millisecond

More information

Radio Interferometry and ALMA

Radio Interferometry and ALMA Radio Interferometry and ALMA T. L. Wilson ESO 1 PLAN Basics of radio astronomy, especially interferometry ALMA technical details ALMA Science More details in Interferometry Schools such as the one at

More information

Light and Telescope 10/22/2018. PHYS 1403 Introduction to Astronomy. Reminder/Announcement. Chapter Outline. Chapter Outline (continued)

Light and Telescope 10/22/2018. PHYS 1403 Introduction to Astronomy. Reminder/Announcement. Chapter Outline. Chapter Outline (continued) PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Reminder/Announcement 1. Extension for Term Project 1: Now Due on Monday November 12 th 2. You will be required to bring your cross staff

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

ETA Observations of Crab Pulsar Giant Pulses

ETA Observations of Crab Pulsar Giant Pulses ETA Observations of Crab Pulsar Giant Pulses John Simonetti,, Dept of Physics, Virginia Tech October 7, 2005 Pulsars Crab Pulsar Crab Giant Pulses Observing Pulses --- Propagation Effects Summary Pulsars

More information

Measurement of the radiation from thermal and nonthermal radio sources

Measurement of the radiation from thermal and nonthermal radio sources Measurement of the radiation from thermal and nonthermal radio sources Preethi Pratap MIT Haystack Observatory, Westford, Massachusetts 01886 Gordon McIntosh Division of Science and Mathematics, University

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

Astronomical Techniques I

Astronomical Techniques I Astronomical Techniques I Lecture 4 Yogesh Wadadekar Jan-Feb 2015 IUCAA-NCRA Grad School 1 / 21 Coma or comatic aberration - inherent to parabolic telescopes show video IUCAA-NCRA Grad School 2 / 21 Schmidt

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Lecture 2 Yogesh Wadadekar ISYA 2016, Tehran ISYA 2016, Tehran 1 / 51 How sun moves? How do stars move in the sky? ISYA 2016, Tehran 2 / 51 Celestial sphere ISYA 2016, Tehran 3

More information

Outline. Mm-Wave Interferometry. Why do we care about mm/submm? Star-forming galaxies in the early universe. Dust emission in our Galaxy

Outline. Mm-Wave Interferometry. Why do we care about mm/submm? Star-forming galaxies in the early universe. Dust emission in our Galaxy Outline 2 Mm-Wave Interferometry Debra Shepherd & Claire Chandler Why a special lecture on mm interferometry? Everything about interferometry is more difficult at high frequencies Some problems are unique

More information

ASKAP Array Configurations: Options and Recommendations. Ilana Feain, Simon Johnston & Neeraj Gupta Australia Telescope National Facility, CSIRO

ASKAP Array Configurations: Options and Recommendations. Ilana Feain, Simon Johnston & Neeraj Gupta Australia Telescope National Facility, CSIRO ASKAP Array Configurations: Options and Recommendations Ilana Feain, Simon Johnston & Neeraj Gupta Australia Telescope National Facility, CSIRO August 6, 2008 Executive Summary In this discussion document

More information

Theoretical Examination

Theoretical Examination Page 1 of (T1) True or False Determine if each of the following statements is True or False. In the Summary Answersheet, tick the correct answer (TRUE / FALSE) for each statement. No justifications are

More information

AN INTRODUCTION TO RADIO ASTRONOMY

AN INTRODUCTION TO RADIO ASTRONOMY AN INTRODUCTION TO RADIO ASTRONOMY Third Edition Written by two prominent figures in radio astronomy this well-established, graduate-level textbook is a thorough and up-to-date introduction to radio telescopes

More information

Sensitivity. Bob Zavala US Naval Observatory. Outline

Sensitivity. Bob Zavala US Naval Observatory. Outline Sensitivity Bob Zavala US Naval Observatory Tenth Synthesis Imaging Summer School University of New Mexico, June 13-20, 2006 Outline 2 What is Sensitivity? Antenna Performance Measures Interferometer Sensitivity

More information

Astronomical Experiments for the Chang E-2 Project

Astronomical Experiments for the Chang E-2 Project Astronomical Experiments for the Chang E-2 Project Maohai Huang 1, Xiaojun Jiang 1, and Yihua Yan 1 1 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road,Chaoyang District,

More information

Planning, Scheduling and Running an Experiment. Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO

Planning, Scheduling and Running an Experiment. Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO Planning, Scheduling and Running an Experiment Aletha de Witt AVN-Newton Fund/DARA 2018 Observational & Technical Training HartRAO. Planning & Scheduling observations Science Goal - You want to observe

More information

Estimation of the Cosmic Microwave Background Radiation

Estimation of the Cosmic Microwave Background Radiation S.P.Spirydovich Abstract Estimation of the Cosmic Microwave Background Radiation The author discusses some aspects of experiment, which was built to measure temperature of cosmic microwave background (CMB)

More information

arxiv: v1 [astro-ph.he] 21 Dec 2018

arxiv: v1 [astro-ph.he] 21 Dec 2018 J. Astrophys. Astr. (0000) 000: #### DOI Prospects of detecting Fast Radio Bursts using Indian Radio Telescopes Siddhartha Bhattacharyya 1,* 1 Department of Physics, Indian Institute of Technology, Kharagpur,

More information

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016 Radio Interferometry and VLBI Aletha de Witt AVN Training 2016 Radio Interferometry Single element radio telescopes have limited spatial resolution θ = 1.22 λ/d ~ λ/d Resolution of the GBT 100m telescope

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Single-Dish Continuum

Single-Dish Continuum Single-Dish Continuum Continuum Emission Mechanisms & Science Issues Confusion gain fluctuations atmosphere Receiver architectures & observing strategies Calibration Brian Mason (NRAO) NRAO/Arecibo Single-Dish

More information

The Discovery of Cosmic Radio Noise

The Discovery of Cosmic Radio Noise The Discovery of Cosmic Radio Noise Natural radio emission from our Galaxy was detected accidentally in 193 by Karl Guthe Jansky, a physicist working as a radio engineer for Bell Telephone Laboratories.

More information

Radio Astronomy Summer School Introduction Early History of Radio Astronomy. Tatsuhiko Hasegawa (ASIAA)

Radio Astronomy Summer School Introduction Early History of Radio Astronomy. Tatsuhiko Hasegawa (ASIAA) Radio Astronomy Summer School 2008 Introduction Early History of Radio Astronomy Tatsuhiko Hasegawa (ASIAA) 1. Radio astronomy was interferometry from the beginning. 2. Closely related to developments

More information

Single-dish antenna at (sub)mm wavelengths

Single-dish antenna at (sub)mm wavelengths Single-dish antenna at (sub)mm wavelengths P. Hily-Blant Institut de Planétologie et d Astrophysique de Grenoble Université Joseph Fourier October 15, 2012 Introduction A single-dish antenna Spectral surveys

More information

A Measurement of the Cosmic Microwave Background Temperature at 1280 MHz

A Measurement of the Cosmic Microwave Background Temperature at 1280 MHz J. Astrophys. Astr. (2000) 21, 1-17 A Measurement of the Cosmic Microwave Background Temperature at 1280 MHz A. Raghunathan & Ravi Subrahmanyan*, Raman Research Institute, C. V. Raman Avenue, Bangalore

More information

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron - Synchrotron emission: A brief history - Examples - Cyclotron radiation - Synchrotron radiation - Synchrotron power from a single electron - Relativistic beaming - Relativistic Doppler effect - Spectrum

More information

Radio Astronomy & The Galactic Rotation Curve. Senior Thesis Submitted: April 1, 2008

Radio Astronomy & The Galactic Rotation Curve. Senior Thesis Submitted: April 1, 2008 Radio Astronomy & The Galactic Rotation Curve Senior Thesis Submitted: April 1, 2008 Kelvin L. Varghese Bachelor of Science Candidate, May 2008 Southern Methodist University Department of Physics Abstract

More information

Imaging with the SKA: Comparison to other future major instruments

Imaging with the SKA: Comparison to other future major instruments 1 Introduction Imaging with the SKA: Comparison to other future major instruments A.P. Lobanov Max-Planck Institut für Radioastronomie, Bonn, Germany The Square Kilometer Array is going to become operational

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

Astronomy 210 Final. Astronomy: The Big Picture. Outline

Astronomy 210 Final. Astronomy: The Big Picture. Outline Astronomy 210 Final This Class (Lecture 40): The Big Bang Next Class: The end HW #11 Due next Weds. Final is May 10 th. Review session: May 6 th or May 9 th? Designed to be 2 hours long 1 st half is just

More information

Galactic Structure Mapping through 21cm Hyperfine Transition Line

Galactic Structure Mapping through 21cm Hyperfine Transition Line Galactic Structure Mapping through 21cm Hyperfine Transition Line Henry Shackleton MIT Department of Physics (Dated: May 14, 2017) Using a Small Radio Telescope (SRT), we measure electromagnetic radiation

More information

April 30, 1998 What is the Expected Sensitivity of the SMA? SMA Memo #125 David Wilner ABSTRACT We estimate the SMA sensitivity at 230, 345 and 650 GH

April 30, 1998 What is the Expected Sensitivity of the SMA? SMA Memo #125 David Wilner ABSTRACT We estimate the SMA sensitivity at 230, 345 and 650 GH April 30, 1998 What is the Expected Sensitivity of the SMA? SMA Memo #125 David Wilner ABSTRACT We estimate the SMA sensitivity at 230, 345 and 650 GHz employing current expectations for the receivers,

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

CMB interferometry (20 April 2012)

CMB interferometry (20 April 2012) CMB interferometry (20 April 2012) Clive Dickinson (Jodrell Bank CfA, U. Manchester) CMB power spectrum measurements We have come a long way in just a few years! Interferometers have made a big impact

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

! Communication, 2.!

! Communication, 2.! Communication, 2. Search Strategies Basic Problem: where to look? Possible Scenarios Powerful, omnidirectional beacons Implies very advanced civilization Seeking to attract attention of new civilizations

More information

Introduction to Radio Interferometers Mike Garrett (ASTRON/Swinburne)

Introduction to Radio Interferometers Mike Garrett (ASTRON/Swinburne) Introduction to Radio Interferometers Mike Garrett (ASTRON/Swinburne) ERIS School - Bonn - Sep 11, 2007. Overview of Lecture Early radio astronomy what makes radio astronomy "special"! Radio Interferometry

More information

HI Surveys and the xntd Antenna Configuration

HI Surveys and the xntd Antenna Configuration ATNF SKA memo series 006 HI Surveys and the xntd Antenna Configuration Lister Staveley-Smith (ATNF) Date Version Revision 21 August 2006 0.1 Initial draft 31 August 2006 1.0 Released version Abstract Sizes

More information

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA VERITAS Design Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA VERITAS design goals VERITAS is a ground-based observatory for gamma-ray astronomy VERITAS design is derived from scientific

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The diagram shows the concave mirror of a Cassegrain reflecting telescope, together with the eyepiece lens. Complete the diagram of the telescope and mark on it the focal

More information

Radio Astronomy module

Radio Astronomy module Radio Astronomy module Contact tony@ska.ac.za Notes: NRAO Essential radio astronomy course: http://www.cv.nrao.edu/course/astr534/era.shtml See also http://www.haystack.mit.edu/ edu/undergrad/materials/ra_tutorial.html

More information

Detecting High Energy Cosmic Rays with LOFAR

Detecting High Energy Cosmic Rays with LOFAR Detecting High Energy Cosmic Rays with LOFAR Andreas Horneffer for the LOFAR-CR Team LOFAR CR-KSP: Main Motivation Exploring the sub-second transient radio sky: Extensive Air showers as guaranteed signal

More information

Optimizing the observing bandwidths for the CLASS HF detectors

Optimizing the observing bandwidths for the CLASS HF detectors Optimizing the observing bandwidths for the CLASS HF detectors K. Randle 1,2 K. Rostem 3 D. Chuss 2 1 Department of Physics University of Massachusetts Amherst 2 Observational Cosmology Laboratory NASA

More information

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

More information

How do you make an image of an object?

How do you make an image of an object? How do you make an image of an object? Use a camera to take a picture! But what if the object is hidden?...or invisible to the human eye?...or too far away to see enough detail? Build instruments that

More information

Light and Telescope 10/20/2017. PHYS 1411 Introduction to Astronomy. Guideposts (cont d.) Guidepost. Outline (continued) Outline.

Light and Telescope 10/20/2017. PHYS 1411 Introduction to Astronomy. Guideposts (cont d.) Guidepost. Outline (continued) Outline. PHYS 1411 Introduction to Astronomy Light and Telescope Chapter 6 Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 5 Astronomy Today 8th Edition Chaisson/McMillan Chapter 5 Telescopes Units of Chapter 5 5.1 Optical Telescopes 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy

More information

Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou

Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou Very Long Baseline Interferometry (VLBI) Wei Dou Tutor: Jianfeng Zhou 2017 03-16 Content Introduction to interferometry and VLBI VLBA (Very Long Baseline Array) Why VLBI In optics, airy disk is a point

More information

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF

The Australia Telescope. The Australia Telescope National Facility. Why is it a National Facility? Who uses the AT? Ray Norris CSIRO ATNF The Australia Telescope National Facility The Australia Telescope Ray Norris CSIRO ATNF Why is it a National Facility? Funded by the federal government (through CSIRO) Provides radio-astronomical facilities

More information

Light and Telescope 3/4/2018. PHYS 1403 Introduction to Astronomy. Guideposts (cont d.) Guidepost. Outline (continued) Outline.

Light and Telescope 3/4/2018. PHYS 1403 Introduction to Astronomy. Guideposts (cont d.) Guidepost. Outline (continued) Outline. PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

Optics and Telescopes

Optics and Telescopes Optics and Telescopes Guiding Questions 1. Why is it important that telescopes be large? 2. Why do most modern telescopes use a large mirror rather than a large lens? 3. Why are observatories in such remote

More information

School of Physics & Astronomy

School of Physics & Astronomy School of Physics & Astronomy Astronomy (AS) modules AS1001 Astronomy and Astrophysics 1 SCOTCAT Credits: 20 SCQF Level 7 Semester: 1 11.00 am lectures, one afternoon chosen from Mon, Wed and Fri with

More information

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION CHAPTER 3 Telescopes Lecture Presentation 3.0 Imaging the universe Our original observations of the universe depended on our eyes! What other

More information

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 26: Telescopes. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 26: Telescopes Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 26 17 Apr 2007 Read: Ch. 6,26 Astronomy 114 1/17 Announcements Quiz #2: we re aiming

More information

Future Radio Interferometers

Future Radio Interferometers Future Radio Interferometers Jim Ulvestad National Radio Astronomy Observatory Radio Interferometer Status in 2012 ALMA Covers much of 80 GHz-1 THz band, with collecting area of about 50% of VLA, for a

More information

=> most distant, high redshift Universe!? Consortium of international partners

=> most distant, high redshift Universe!? Consortium of international partners LOFAR LOw Frequency Array => most distant, high redshift Universe!? Consortium of international partners Dutch ASTRON USA Haystack Observatory (MIT) USA Naval Research Lab `best site = WA Novel `technology

More information

Determining the Specification of an Aperture Array for Cosmological Surveys

Determining the Specification of an Aperture Array for Cosmological Surveys Determining the Specification of an Aperture Array for Cosmological Surveys P. Alexander University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, UK. A. J. aulkner Jodrell Bank

More information

BINGO simulations and updates on the performance of. the instrument

BINGO simulations and updates on the performance of. the instrument BINGO simulations and updates on the performance of BINGO telescope the instrument M.-A. Bigot-Sazy BINGO collaboration Paris 21cm Intensity Mapping Workshop June 2014 21cm signal Observed sky Credit:

More information

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines ASTR 1040 Accel Astro: Stars & Galaxies Topics for Today Basic principles of eyes, camera, telescopes Twinkle and absorption by our atmosphere What light gets through, what does not Next lecture: Telescopes

More information

Make Your Own Radio Image Large Public Venue Edition

Make Your Own Radio Image Large Public Venue Edition Make Your Own Radio Image Large Public Venue Edition Adapted from the NRAO s Make Your Own Radio Image Background This Activity has been adapted from the NRAO s Make Your Own Radio Image. Radio telescopes

More information

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter garret.cotter@physics.ox.ac.uk Office 756 in the DWB & Exeter College Welcome to

More information

V. Astronomy Section

V. Astronomy Section EAS 100 Planet Earth Lecture Topics Brief Outlines V. Astronomy Section 1. Introduction, Astronomical Distances, Solar System Learning objectives: Develop an understanding of Earth s position in the solar

More information

AS750 Observational Astronomy

AS750 Observational Astronomy Lecture 9 0) Poisson! (quantum limitation) 1) Diffraction limit 2) Detection (aperture) limit a)simple case b)more realistic case 3) Atmosphere 2) Aperture limit (More realistic case) Aperture has m pixels

More information

SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION)

SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION) SCIENTIFIC CASES FOR RECEIVERS UNDER DEVELOPMENT (OR UNDER EVALUATION) C.STANGHELLINI (INAF-IRA) Part I Infrastructure 1 Main characteristics and status of the Italian radio telescopes 2 Back-ends, opacity

More information

ASTR240: Radio Astronomy

ASTR240: Radio Astronomy AST24: adio Astronomy HW#1 Due Feb 6, 213 Problem 1 (6 points) (Adapted from Kraus Ch 8) A radio source has flux densities of S 1 12.1 Jy and S 2 8.3 Jy at frequencies of ν 1 6 MHz and ν 2 1415 MHz, respectively.

More information

Measurement of Galactic Rotation Curve

Measurement of Galactic Rotation Curve Measurement of Galactic Rotation Curve Objective: The 21-cm line produced by neutral hydrogen in interstellar space provides radio astronomers with a very useful probe for studying the differential rotation

More information

Cassiopeia A flux density measured with APRAXOS

Cassiopeia A flux density measured with APRAXOS Research Collection Report Cassiopeia A flux density measured with APRAXOS Author(s): Riahi, Nima Publication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004362686 Rights / License: In Copyright

More information

School of Physics & Astronomy

School of Physics & Astronomy School of Physics & Astronomy Astronomy (AS) modules AS1001 Astronomy and Astrophysics 1 Physics & Astronomy - 1000 & 2000 Level - 2017/8 - August 2017 SCOTCAT Credits: 20 SCQF Level 7 Semester: 1 11.00

More information

Wave Interference and Diffraction Part 3: Telescopes and Interferometry

Wave Interference and Diffraction Part 3: Telescopes and Interferometry Wave Interference and Diffraction Part 3: Telescopes and Interferometry Paul Avery University of Florida http://www.phys.ufl.edu/~avery/ avery@phys.ufl.edu PHY 2049 Physics 2 with Calculus PHY 2049: Chapter

More information

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 27: The Galaxy Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 27 18 Apr 2007 Read: Ch. 25,26 Astronomy 114 1/23 Announcements Quiz #2: we re

More information

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Astronomical Tools Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Laws of Refraction and Reflection Law of Refraction n 1 sin θ 1

More information

1. History of Telescopes

1. History of Telescopes Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 4 th Lecture: 9 September 010 1. History of Telescopes Hans Lipperhey 1608 first patent for spy glasses Galileo Galilei 1609 first use

More information