M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

Size: px
Start display at page:

Download "M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics"

Transcription

1 M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter Office 756 in the DWB & Exeter College

2 Welcome to M.Phys. & M.Math.Phys. Astrophysics There are some recent changes to the course in response to feedback: We have re-organised the logical structure, the course now starts with radiative processes and then moves on to more phenomenological topics. The size of the lecturing team has been reduced. I will cover the whole of Michaelmas term, giving the lectures on the first two topics, Radiative Processes & High Energy. No doubt there will be some teething troubles, please get in touch with any problems and (constructive!) criticism. I use a combination of slides and blackboard. Wherever possible derivations will be done on the board to allow everyone time to follow them. I am always happy to answer questions - always feel free to ask at the end of the lecture, or to if you want to arrange a time have a longer discussion.

3 Lectures this term are always at noon in the Dennis Sciama Lecture Theatre Radiative Processes in Astrophysics Week 1 Mon Wed Fri Week 2 Mon Wed Fri Week 3 Mon Wed Fri Week 4 Mon Wed Fri High-Energy Astrophysics Week 4 Mon Wed Fri Week 5 Mon Wed Fri Week 6 Mon Wed Fri Week 7 Mon Wed Fri Week 8 Mon Wed Fri

4 Synopsis: Radiative Processes The EM spectrum in astrophysics; temperature and radiation brightness. Spectroscopy, forbidden and allowed transitions, cosmic abundances Two-level atom, A, B and C coefficients and their useful regimes, thermal populations, IR fine structure, critical density, mass estimates Recombination andionization, Stromgren sphere, ionization balance, effective temperature estimates. Three-level atom: electron temperature and density. Absorption lines, equivalent width, curve of growth, column densities. The interstellar medium. Atomic and ionic absorption lines, abundance of gas, molecules and dust. Hyperfine transitions: 21cm line of HI Interstellar extinction, dust, equilibrium and stochastic processes The sun. Ionization and sources of opacity, radiative transfer, the Gray atmosphere, limb darkening, absorption line formation.

5 Synopsis: High-Energy Astrophysics Supernova blast waves; shocks. Acceleration of particles to ultra-relativistic energies. Synchrotron emission; total power; spectrum; self-absorption; spectral ageing Accretion; properties of accretion discs Eddington luminosity; evidence for black holes. Relativistic jets; models of jet production; relativistic projection effects; Doppler boosting. Cosmic evolution of AGN; high-energy background radiation and cosmic accretion history of black holes. Bremsstrahlung; inverse-compton scattering; clusters of galaxies; Sunyaev-Zel dovich effect. Cosmic rays and very high energy gamma rays; Cherenkov telescopes.

6 Books Radiative Processes Radiative Processes in Astrophysics by Rybicki, George B., Lightman, Alan P., graduate level text, comprehensive. Physics and Chemistry of the Interstellar Medium by Sun Kwok. Physics of the Interstellar and Intergalactic Medium by Bruce Draine. High-Energy Astrophysics High Energy Astrophysics by Malcolm Longair. Very comprehensive, advanced undergrad/graduate level. The Physics of Extragalactic Radio Sources, David de Young Accretion Power in Astrophysics, Frank, King & Raine

7 Philosophy Many of the physical processes we will study in this course have exact mathematical descriptions which are either very lengthy, or can only be solved by numerical methods. My aim is to focus on showing you as many interesting advanced physics topics in the time available, and we will often make approximations justifiable approximations to get to a shorter mathematical description of the situation. You will learn a lot about how physics is actually done as a part of this process! But I will provide you with links to the relevant fully detailed research papers where possible.

8 Observing the whole EM spectrum (and beyond) Modern astronomical telescopes and detectors span the observational range from tens of metres in the radio to hundreds of TeV for the highest energy gamma rays. The classification of different astronomical wavebands is generally driven by the technology used in the detectors. Radio (from 10 MHz to 100 GHz) very highest spatial resolution because coherent detection of the EM field allows interferometry. Millimetre, sub-millimetre and far-infrared ( 0.3 mm to 10 µm). Bolometers onboard satellites and high-altitude terrestrial sites.

9 Infrared (10 µm to 1 µm) and optical (1 µm to 0.3 µm). Almost all of traditional astronomy. Most stars put out most of their energy in this range. Unsurprisingly the human eye is adapted to use these wavelengths! Ultraviolet (0.3 µm to 3 nm). Satellite-borne instruments are needed because the atmosphere is opaque now; but we can still use essentially ordinary telescopes. X-rays (3 nm to m; 0.4 kev to 100 kev). Satelliteand rocket-borne instruments are needed. Special grating-incidence mirrors are used to focus X-rays.

10 Gamma-rays ( 100 kev up to hundreds of GeV ). Again telescopes are satellite-borne. Use similar detectors to particle physics experiments. Very high-energy photons and particles entering the Earth s atmosphere produce Cherenkov radiation. This is detected by very large light bucket telescopes which don t need finely-figured mirrors. Beyond the EM spectrum: gravitational waves, neutrinos

11 W.M. Keck observatory, Mauna Kea, Hawai i.

12 Keck telescope 10-m segmented mirror.

13 European Southern Observatory, Cerro La Silla, Atacama Desert, Chile August 2011

14

15

16 Average optical/uv spectra of quasars Note non-blackbody spectrum with prominent emission lines.

17 Very Large Array in New Mexico. Radio interferometer, 73 MHz 43 GHz. 27 antennae, baselines up to 36 km.

18 The sky as it would appear if we could see at 1.4 GHz. Almost all the sources lie far beyond the Milky Way. (Credit: NRAO / AUI / NSF)

19 Radio spectra of some sources from the 3C survey Frequency / MHz

20 ROSAT (Röntgensatellit) X-ray observatory

21 ROSAT all-sky survey. Note the fairly uniform background which is caused by unresolved extragalactic point sources

22 X-ray zoom-in from the high-resolution Chandra satellite. We can now see the individual X-ray sources.

23 X-ray spectrum of intracluster plasma in the Coma cluster of galaxies Again note non-blackbody and emission lines.

24 Fermi Gamma-Ray Space Telescope, launched June

25

26 CTA - proposed array telescope for observing high-energy Cherenkov showers.

27 Primary!-ray ~ 10 km Particle Shower» Air-shower... ~ 100 m Cherenkov technique (figure from Prof J. Hinton, CTA collaboration).

28 Active galaxies: broad-band spectra

29 Observed spectrum of high-energy particles hitting the atmosphere.

30

31 Gravitational waves

32 Surface brightness/specific intensity Traditionally in astronomy the observed flux of stars is given in magnitudes: m star = fluxvega 2.5 log 10 flux star mes fainter than Vega through a so, a star 100 times fainter than Vega through a V-band filter has V = 5. However this does not express the flux as a physical quantity. One of the most commonly-used physical units is the Jansky (Jy, named after the discoverer of radio waves from the Milky Way): 1 Jy = W Hz 1 m 2 -ban i.e. the units are power collected per square metre of telescope collecting area per unit bandwidth of the receiving device. As a yardstick, Vega has a flux density of about 3600 Jy at 500 nm. (For fun: The faintest stars the human eye can see at a dark site are about magnitude 6. How much power does the eye receive from them? How many photons does it take to trigger a light- sensitive cell in the eye? Take the integration time to be 20 ms and the starlight to be spread over 10 cells in the eye.)

33 In virtually all of optical astronomy stars are effectively point sources (their angular size is much smaller than the 1 arcsec limit imposed by atmospheric turbulence). However when we look at the diffuse interstellar medium, or at extragalactic sources, often we deal with objects whose angular extent can be resolved, and this leads us to a perhaps more fundamental quantity, the surface brightness or specific intensity. This is the flux density per solid angle, and has SI units of Power developed in the detector, per unit bandwidth of the detector, W Hz -1 m -2 Sr -1 per square metre of telescope collecting area, per unit solid angle of sky from which the telescope is collecting energy. This is also sometimes called simply brightness and the formal SI term is spectral radiance. Notation is conventionally Iν. You will often also see it in units such as Jansky per square arcsec, or Jansky per square arcminute.

34 Hand-held infrared thermometer measures temperature via σt 4. Thermocouples were the traditional devices used for this purpose, but they are unsuitable for continuous measurement because they rapidly dissolve.

35 Receiver bandwidth Delta nu Beam solid angle Omega Antenna area A Power received by system

36 Brightness and temperature Thought experiment: take two cavities of different size and shape, but both filled with black-body radiation at the same temperature T. Suppose there is an aper- ture between the cavities and that in this aperture there is a filter which transmits only through some narrow range of frequencies. T T We know from the Zeroth Law that there is no heat transfer between box 1 and box 2 so Iν,1 = Iν,2 i.e. for black-body radiation Iν can only be a function of T and ν. So brightness and temperature are intimately linked. The brightness of a black- body as a function of frequency is given by the Planck function. Filter

37 frequency is given by the Planck func B = 2h 3 1 h exp 1 c 2 k B T This you will be familiar with the B ν blackbody, as the Iν we just defined. here is the same thing, for a It gives the flux per unit frequency through an element of area from an element of solid angle. So if we know Iν for an astronomical object from observation, we can calculate the temperature of a blackbody that would have the same brightness at that frequency: the brightness temperature. Jargon alert: Pedantically, one should use Bν when referring to the brightness of a black-body and Iν when referring to the brightness of an object with an arbitrary spectrum. But don t be surprised if you sometimes see them interchanged. That s astronomers for you. I learned very early the difference between knowing the name of something and knowing something. - Feynman

38 Extremes of brightness Most stars radiate approximately as black-bodies, ranging from 3000 K for M- type red dwarfs to K for O-type supergiants. We will spend a lot of time in the next few weeks discussing the wealth of physics can can be derived from the emission and absorptions features where stellar spectra deviate form the black-body. But when we go to both long (radio) and short (X-ray) wavelengths, we find objects which have brightnesses far in excess of those achieved by blackbody processes in stars. Broadly speaking, when we move on to high-energy astrophysics in the second half of term, we will encompasses physical process and objects where the energies and temperatures involved are far in excess of those observed in normal stellar systems (often implying that the energy source is not nuclear fusion). And we often find cases where the temperatures and densities of the material involved lend themselves to spectral energy distributions that are greatly different from a black-body.

39

40

Major Option C1 Astrophysics. C1 Astrophysics

Major Option C1 Astrophysics. C1 Astrophysics C1 Astrophysics Course co-ordinator: Julien Devriendt jeg@astro.ox.ac.uk C1 offers a total of ~40 lectures on five themes covering a broad range of topics in contemporary astrophysics. Each theme takes

More information

High-Energy Astrophysics

High-Energy Astrophysics M.Phys. & M.Math.Phys. High-Energy Astrophysics Garret Cotter garret.cotter@physics.ox.ac.uk High-Energy Astrophysics MT 2016 Lecture 2 High-Energy Astrophysics: Synopsis 1) Supernova blast waves; shocks.

More information

New physics is learnt from extreme or fundamental things

New physics is learnt from extreme or fundamental things New physics is learnt from extreme or fundamental things New physics is learnt from extreme or fundamental things The Universe is full of extremes and is about as fundamental as it gets! New physics is

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Discovering Dusty Galaxies July 7, 2016 CCAT-prime: next generation telescope CCAT Site on C. Chajnantor Me, at 18,400 feet

More information

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics? High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation Robert Laing Lectures: Week 1: M 10, T 9 Timetable Week 2: M 10, T 9, W 10 Week 3: M 10, T 9, W 10 Week 4: M 10, T 9,

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 CCAT: 25 meter submm telescope CCAT Site on C. Chajnantor Me, at 18,400

More information

International Olympiad on Astronomy and Astrophysics (IOAA)

International Olympiad on Astronomy and Astrophysics (IOAA) Syllabus of International Olympiad on Astronomy and Astrophysics (IOAA) General Notes 1. Extensive contents in basic astronomical concepts are required in theoretical and practical problems. 2. Basic concepts

More information

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics Professor Garret Cotter garret.cotter@physics.ox.ac.uk Office 756 in the DWB & Exeter College Radiative

More information

Extragalactic Astronomy

Extragalactic Astronomy Extragalactic Astronomy Topics: Milky Way Galaxies: types, properties, black holes Active galactic nuclei Clusters and groups of galaxies Cosmology and the expanding universe Formation of structure Galaxies

More information

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil Telescopes Collecting Light The simplest means of observing the Universe is the eye. The human eye is sensitive to light with a wavelength of about 400 and 700 nanometers. In a dark-adapted eye, the iris

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc. Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset Chapter 6 Telescopes: Portals of Discovery Agenda Announce: Read S2 for Thursday Ch. 6 Telescopes 6.1 Eyes and Cameras: Everyday Light Sensors How does your eye form an image? Our goals for learning How

More information

Lecture Fall, 2005 Astronomy 110 1

Lecture Fall, 2005 Astronomy 110 1 Lecture 13+14 Fall, 2005 Astronomy 110 1 Important Concepts for Understanding Spectra Electromagnetic Spectrum Continuous Spectrum Absorption Spectrum Emission Spectrum Emission line Wavelength, Frequency

More information

Chapter 6 Telescopes: Portals of Discovery

Chapter 6 Telescopes: Portals of Discovery Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How does your eye form an image? How do we record images? How does your eye form an image?

More information

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline Lecture Outline 5.1 Basic Properties of Light and Matter Chapter 5: Light: The Cosmic Messenger Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP Cherenkov Telescope Array A SENSITIVE PROBE OF EXTREME UNIVERSE ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP 2015 1 The CTA Observatory SST ( 4m) LST ( 23m) MST ( 12m) South North

More information

Universe Now. 2. Astronomical observations

Universe Now. 2. Astronomical observations Universe Now 2. Astronomical observations 2. Introduction to observations Astronomical observations are made in all wavelengths of light. Absorption and emission can reveal different things on different

More information

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes? Chapter 6 Telescopes: Portals of Discovery What are the most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light

More information

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies ! ASTR 1120 General Astronomy: Stars & Galaxies On to Telescopes!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift)

More information

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light. Telescopes Portals of Discovery Chapter 6 Lecture The Cosmic Perspective 6.1 Eyes and Cameras: Everyday Light Sensors How do eyes and cameras work? Seventh Edition Telescopes Portals of Discovery The Eye

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

ASTR 1120 General Astronomy: Stars & Galaxies

ASTR 1120 General Astronomy: Stars & Galaxies ASTR 1120 General Astronomy: Stars & Galaxies!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift) "ODA# Detecting

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Introduction Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk January 2012 Today s introduction - The sky at different

More information

Multi-wavelength Astronomy

Multi-wavelength Astronomy astronomy Multi-wavelength Astronomy Content What do we measure Multi-wavelength approach Data Data Mining Virtual Observatory Hands on session Larmor's formula Maxwell's equations imply that all classical

More information

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 24 Studying the Sun 24.1 The Study of Light Electromagnetic Radiation Electromagnetic radiation includes gamma rays, X-rays, ultraviolet light, visible

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1:

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1: Astr 323: Extragalactic Astronomy and Cosmology Spring Quarter 2014, University of Washington, Željko Ivezić Lecture 1: Review of Stellar Astrophysics 1 Understanding Galaxy Properties and Cosmology The

More information

Search for TeV Radiation from Pulsar Tails

Search for TeV Radiation from Pulsar Tails Search for TeV Radiation from Pulsar Tails E. Zetterlund 1 1 Augustana College, Sioux Falls, SD 57197, USA (Dated: September 9, 2012) The field of very high energy astrophysics is looking at the universe

More information

A Random Walk Through Astrometry

A Random Walk Through Astrometry A Random Walk Through Astrometry Astrometry: The Second Oldest Profession George H. Kaplan Astronomical Applications Department Astrometry Department U.S. Naval Observatory Random Topics to be Covered

More information

1 Lecture, 2 September 1999

1 Lecture, 2 September 1999 1 Lecture, 2 September 1999 1.1 Observational astronomy Virtually all of our knowledge of astronomical objects was gained by observation of their light. We know how to make many kinds of detailed measurements

More information

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes Lecture Outline Chapter 3 Telescopes Images can be formed through reflection or refraction. Reflecting mirror Chapter 3 Telescopes Refracting lens Units of Chapter 3 Optical Telescopes Telescope Size High-Resolution

More information

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Telescopes Portals of Discovery 2014 Pearson Education, Inc. Telescopes Portals of Discovery CofC Observatory 6.1 Eyes and Cameras: Everyday Light Sensors Our goals

More information

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!! Reminders! Website: http://starsarestellar.blogspot.com/ Lectures 1-15 are available for download as study aids. Reading: You should have Chapters 1-14 read. Read Chapters 15-17 by the end of the week.

More information

High-Energy Astrophysics

High-Energy Astrophysics Part C Major Option Astrophysics High-Energy Astrophysics Garret Cotter garret@astro.ox.ac.uk Office 756 DWB Michaelmas 2012 Lecture 6 Today s lecture Synchrotron emission Part III Synchrotron self-absorption

More information

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc. Chapter 6 Lecture The Cosmic Perspective Seventh Edition Telescopes Portals of Discovery Telescopes Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning: How do eyes

More information

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 Telescopes Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Learning Objectives Upon completing this chapter you should be able to: 1. Classify the

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 5 Astronomy Today 8th Edition Chaisson/McMillan Chapter 5 Telescopes Units of Chapter 5 5.1 Optical Telescopes 5.2 Telescope Size 5.3 Images and Detectors 5.4 High-Resolution Astronomy

More information

Astro 1050 Wed. Feb. 18, 2015

Astro 1050 Wed. Feb. 18, 2015 Astro 1050 Wed. Feb. 18, 2015 Today: Begin Chapter 5: Light the Cosmic Messenger For Friday: Study for Test #1 Be sure to bring green bubble sheet, #2 pencil and a calculator. 1 Chapter 5: Light, the Cosmic

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

3145 Topics in Theoretical Physics - radiation processes - Dr J Hatchell. Multiwavelength Milky Way

3145 Topics in Theoretical Physics - radiation processes - Dr J Hatchell. Multiwavelength Milky Way Multiwavelength Milky Way PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Textbooks Main texts Rybicki & Lightman Radiative

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st.

Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st. Announcements HW #3: Available online now. Due in 1 week, Nov 3rd, 11pm. Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st. Evening Observing: next

More information

ASTR 2310: Chapter 6

ASTR 2310: Chapter 6 ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

More information

@astro_stephi. Telescopes. CAASTRO in the Classroom: National Science Week Stephanie Bernard, University of Melbourne

@astro_stephi. Telescopes. CAASTRO in the Classroom: National Science Week Stephanie Bernard, University of Melbourne @astro_stephi Telescopes CAASTRO in the Classroom: National Science Week 2017 Stephanie Bernard, University of Melbourne About me NASA, ESA NASA, JPL The first telescopes Invented in 1600s in the Netherlands

More information

Earth s Atmosphere & Telescopes. Atmospheric Effects

Earth s Atmosphere & Telescopes. Atmospheric Effects Earth s Atmosphere & Telescopes Whether light is absorbed by the atmosphere or not depends greatly on its wavelength. Earth s atmosphere can absorb certain wavelengths of light so much that astronomers

More information

Chapter 5 Telescopes

Chapter 5 Telescopes Chapter 5 Telescopes Units of Chapter 5 Telescope Design Images and Detectors The Hubble Space Telescope Telescope Size High-Resolution Astronomy Radio Astronomy Interferometry Space-Based Astronomy Full-Spectrum

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 4: The Electromagnetic Spectrum 1 Understanding Stellar and Galaxy Properties, and Cosmology Four

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. Happy Thursday! The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5. The exposures were made with a digital

More information

Science 30 Unit C Electromagnetic Energy

Science 30 Unit C Electromagnetic Energy Science 30 Unit C Electromagnetic Energy Outcome 2: Students will describe the properties of the electromagnetic spectrum and their applications in medical technologies, communication systems and remote-sensing

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

Lecture Outline: Chapter 5: Telescopes

Lecture Outline: Chapter 5: Telescopes Lecture Outline: Chapter 5: Telescopes You don t have to know the different types of optical reflecting and refracting telescopes. It is important to understand the difference between imaging, photometry,

More information

= λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere

= λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 5 Tues 30 Jan 07 zeus.colorado.edu/astr1040-toomre toomre Topics for Today Twinkle and absorption by our atmosphere

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Astrophysics with GLAST: dark matter, black holes and other astronomical exotica Greg Madejski Stanford Linear Accelerator Center and Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Outline:

More information

GALAXIES 626 Spring Introduction: What do we want to learn?

GALAXIES 626 Spring Introduction: What do we want to learn? GALAXIES 626 Spring 2007 Introduction: What do we want to learn? The light of the universe is in discrete chunks: Why? How did we get from the tiny density fluctuations at recombination to the beautifully

More information

Science advances by a combination of normal science and discovery of anomalies.

Science advances by a combination of normal science and discovery of anomalies. Science advances by a combination of normal science and discovery of anomalies. Many revolutions come from long periods of normal science reinforced by exceptional science. example: accelerating universe

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light

Light Pollution. Atmospheric Seeing. Seeing Through the Atmosphere. Atmospheric Absorption of Light Lec 8: 2 FEB 2012 ASTR 130 - Introductory Astronomy II (Chapter 6) LAST TIME - Optics and Telescopes Basic Functions of a Telescope Reflecting v. Refracting Affects of the Atmosphere TODAY Modern Astronomical

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors PHYS 1403 Introduction to Astronomy Light and Telescope Chapter 6 Todays Topics Astronomical Detectors Radio Telescopes Why we need space telescopes? Hubble Space Telescopes Future Space Telescopes Astronomy

More information

Summary. Week 7: 10/5 & 10/ Learning from Light. What are the three basic types of spectra? Three Types of Spectra

Summary. Week 7: 10/5 & 10/ Learning from Light. What are the three basic types of spectra? Three Types of Spectra Week 7: 10/5 & 10/7 Capturing that radiation Chapter 6 (Telescopes & Sensors) Optical to Radio Summary What are we sensing? Matter! Matter is made of atoms (nucleus w/ protons, neutrons & cloud of electrons

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

Special Topics in Nuclear and Particle Physics

Special Topics in Nuclear and Particle Physics Special Topics in Nuclear and Particle Physics Astroparticle Physics Lecture 5 Gamma Rays & x-rays Sept. 22, 2015 Sun Kee Kim Seoul National University Gamma ray astronomy gamma ray synchrotron radition

More information

Assignments. For Mon. 1 st Midterm is Friday, Oct. 12. Read Ch. 6 Optionally do MT1-sample-problems

Assignments. For Mon. 1 st Midterm is Friday, Oct. 12. Read Ch. 6 Optionally do MT1-sample-problems Assignments For Mon. Read Ch. 6 Optionally do MT1-sample-problems 1 st Midterm is Friday, Oct. 12 Chapter 5 Light: The Cosmic Messenger Thermal Radiation 1. Hotter objects emit photons with a higher average

More information

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 6 Optics and Telescopes By reading this chapter, you will learn 6 1 How a refracting telescope uses a lens to form an image

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium Physics and Chemistry of the Interstellar Medium Sun Kwok The University of Hong Kong UNIVERSITY SCIENCE BOOKS Sausalito, California * Preface xi The Interstellar Medium.1.1 States of Matter in the ISM

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

OBSERVATIONAL ASTROPHYSICS AND DATA ANALYSIS. Vitaly Neustroev

OBSERVATIONAL ASTROPHYSICS AND DATA ANALYSIS. Vitaly Neustroev OBSERVATIONAL ASTROPHYSICS AND DATA ANALYSIS Vitaly Neustroev Contact details Location: FY 272 Telephone: 5531930 Email: vitaly.neustroev@oulu.fi Web: http://cc.oulu.fi/~vneustro/ Content Observational

More information

~ λ / D. Diffraction Limit 2/7/17. Topics for Today. Problems in Looking Through Our Atmosphere. ASTR 1040: Stars & Galaxies

~ λ / D. Diffraction Limit 2/7/17. Topics for Today. Problems in Looking Through Our Atmosphere. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Gran Telescopio Canarias, La Palma 10.4m Topics for Today What our atmosphere does to light Magic of adaptive optics Radio telescopes: many dishes make a big one (interferometry

More information

Review: Properties of a wave

Review: Properties of a wave Radiation travels as waves. Waves carry information and energy. Review: Properties of a wave wavelength (λ) crest amplitude (A) trough velocity (v) λ is a distance, so its units are m, cm, or mm, etc.

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines ASTR 1040 Accel Astro: Stars & Galaxies Topics for Today Basic principles of eyes, camera, telescopes Twinkle and absorption by our atmosphere What light gets through, what does not Next lecture: Telescopes

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Reading Clicker Q. Spectroscopy analyzing the light. What light gets through? Instruments in the Focal Plane. ASTR 1040 Accel Astro: Stars & Galaxies

Reading Clicker Q. Spectroscopy analyzing the light. What light gets through? Instruments in the Focal Plane. ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TAs: Nicholas Nelson, Zeeshan Parkar Lecture 5 Tues 26 Jan 2010 zeus.colorado.edu/astr1040-toomre toomre Topics for Today What light does and does

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

Telescopes. Lecture 7 2/7/2018

Telescopes. Lecture 7 2/7/2018 Telescopes Lecture 7 2/7/2018 Tools to measure electromagnetic radiation Three essentials for making a measurement: A device to collect the radiation A method of sorting the radiation A device to detect

More information

Detecting High Energy Cosmic Rays with LOFAR

Detecting High Energy Cosmic Rays with LOFAR Detecting High Energy Cosmic Rays with LOFAR Andreas Horneffer for the LOFAR-CR Team LOFAR CR-KSP: Main Motivation Exploring the sub-second transient radio sky: Extensive Air showers as guaranteed signal

More information

Extreme high-energy variability of Markarian 421

Extreme high-energy variability of Markarian 421 Extreme high-energy variability of Markarian 421 Mrk 421 an extreme blazar Previous observations outstanding science issues 2001 Observations by VERITAS/Whipple 10 m 2001 Light Curve Energy spectrum is

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Multiwavelength Astronomy (things that have called my attention over the years)

Multiwavelength Astronomy (things that have called my attention over the years) Multiwavelength Astronomy (things that have called my attention over the years) Luis F. Rodríguez, CRyA, UNAM, Morelia Until a few decades ago, an observational astronomer could survive knowing only about

More information

Astronomy is remote sensing

Astronomy is remote sensing Astronomy is remote sensing We cannot repeat (or change) the Universe in a controlled environment. We cannot make planets, stars, or galaxies. We cannot make the vacuum of space, nor the shape of spacetime

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Birth Life Death Part I: Stellar Atmospheres Part I: Stellar Atmospheres Jan. 23: Intro and Overview of Observational Data (Chapters 3 and 5) Jan. 28: Basics of Stellar

More information

ASTR-1010: Astronomy I Course Notes Section VI

ASTR-1010: Astronomy I Course Notes Section VI ASTR-1010: Astronomy I Course Notes Section VI Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

1/29/14. Topics for Today. UV, X-rays and Gamma-rays. Atmospheric Absorption of Light. Why bother with other light? ASTR 1040: Stars & Galaxies

1/29/14. Topics for Today. UV, X-rays and Gamma-rays. Atmospheric Absorption of Light. Why bother with other light? ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies Gran Telescopio Canarias, La Palma 10.4m Topics for Today What our atmosphere does to light Magic of adaptive optics Radio telescopes: many dishes make a big one (interferometry

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

Introduction to High Energy Astrophysics

Introduction to High Energy Astrophysics Introduction to High Energy Astrophysics Books 2011 2006 - for the history of the subject 1 The Sky in Different Astronomical Wavebands The context for high energy astrophysics Optical Infrared Millimetre-submillimetre

More information

Measuring Light waves

Measuring Light waves Measuring Light waves We normally measure wavelengths (λ) using nanometers (nm) 1 nm = 10-9 m 400-700 nm Increasing wavelengths (λ)! Visible light has wavelengths between 400-700 nm! To detect other types

More information