Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN

Size: px
Start display at page:

Download "Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN"

Transcription

1 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN Flow phenomena of laminar split-oil flow in a curved horizontal channel M. Deli6,* P. Skerget," F. Irene* ^University ofmaribor, Faculty of Mechanical Engineering, Smetnova 17, SI Maribor, Slovenia * University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, Ljubljana, Slovenia ABSTRACT A curved, rectangular channel fed with lube oil was installed in the cylinder wall of an air cooled internal combustion engine. Inlet oil-flow is initially split into two asymmetrically curved branches. Different channel geometrical aspect ratios were used to determine flow pattern especially in the entry region of the channel. Results have shown pronunced influence of oil viscosity on the reverse flow in both channel branches. INTRODUCTION Due to different thermal loads of the engine cylinder with peak value in the vicinity of the exhaust channel, there is pronouced asymmetric circumferential temperature distribution in the cylinder wall. This temperature ovalty can be minimized by controled intensity of the local cooling, which can be obtained by introducing a curved square cross-section oil channel in the upper, thermally most loaded part of an air cooled engine cylinder. The cooling oil jet is initially split into two asymmetrical branch flows which leave the channel through a common outlet. Partial oil flows are not identical; the larger portion flows through the region of pronouced local cylinder temperatures and takes away more heat. The smaller oil-flow cools down cooler part of the cylinder wall. For correct realisation of cooling it is necessary to know the local thermo-hydraulic conditions in the channel. Conditions in the channel can be defined numerically or experimentally. The problem was solved numerically, because the numerical solution is economicaly more favourable. With the numerical solution it is also easier to change boundary conditions and introduce geometrical changes. Modification of the channel thickness represents a significant influence on the functionality. Because of that the thermo-hydraulic conditions in the

2 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN Advanced Computational Methods in Heat Transfer channel essentially change. Therefore the calculations for three different channel croos sections were made. We also investigated influence of mass flow on heat transfer. The FEM mesh of an engine cylinder and position of the oil channel for different version are shown in figure 1 [4,5]. DOH5 Figure 1: FEM mesh and position of the channels in the cylinder PROBLEM DEFINITION In the calculations the comparison between three different channel cross sections were made: on the inlet mass flow, which corresponds to volume flow of 5//mm is given, on outflow reference pressure is prescribed, and on the walls the velocity vanishes. On the pipes adiabatic boundary conditions are given, and on all other solid walls constant surface temperature T = IIQ C is given. Temperature of the inflow fluid is given at 100 C. In the calculations where the influence of oil mass flow was analysed, on the inflow the mass flow which corespond to volume flow of 3, 5 and 7 //ram are given. At the iner wall constant surface temperature T = 150*C, and for the outer wall constant surface temperature T = 145^C is given. On the all other walls adiabatic boundary conditions are given. Temperature of the inflow fluid is given at 97 C. To solve the problem, a TASCflow 2.4 computer program was used. The code is based on finite volume method, solving differential equations of transport phenomena in incompressible fluid flow. This equations are basics conservation balances of mass, momentum and energy. The material properties of the fluid (oil) such as specific heat, thermal conductivity and density are given by the following expressions: [6],

3 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN Advanced Computational Methods in Heat Transfer c, (T) = T -, [kg it J A(T) = T [ ], L TTLJ\ J p (T) = ( (T - 20)) ^. (1) (2) (3) In the calculations where the different channel cross sections were compared, the following expression for dynamic viscosity was used: = ( (4) and for calculations where the influence of mass flow was investigated the oil viscosity was given with 7?(T) = ( T* T ) 10"' [Pa s] (5) In all expressions temperature T is given in *C. To test the convergence of the numerical results more meshes were applied with the finest one of nodes for all three cases. 1 4>io outflow q = o 47 [mm] di DOH3 II 139 DOH4 139 DOH5 II 139 do h M Figure 2: Geometry of engine cylinder oil channels and boundary conditions

4 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN Advanced Computational Methods in Heat Transfer RESULTS The numerical results obtained for heat transfer with empirical expressions for Nusselt number (Nu) [2] were compared. For average Nu number, the expression: (^]RePr Nu = ^ r (6) was used, and for local Nu number: i The constant 3.66 in equation (6) is changed to consider the relation between the edges of the channel cross section and it is for relation 14 : 3.2 (DOH3), for relation 18 : 2 (DOHS), and for relation 37 : 1 (DOH4). In both expressions hydraulic diameter (<4 = 4A/O) is considered, where A and O are area and circumference of the channel crosssection. Re (Re v dhp/rj) and Pr (Pr c^7]/x) are Reynolds and Prandtl numbers. Influence of the curvature was considered with relations: (7), NU;R = Nux6n, (8) where e^ is correction factor for the relative curvature, given by expression: e«= ^, (9) ri where R is the radius of the curvature. Numerical results were treated with expressions where and - adh otxdh,,_\ Nu = and Nux = r, (10) A A 1 ri a = - I a^dx (11) t Jo Temperature difference is given by equation ATm = T,-Tm, (13) where T, is a wall temperature and T^ is the mean temperature at the cross section. The mean inflow (T^t,) and outflow (7^) temperature from the channel was determined by Tm - ^"2 (14) me.

5 Different channel cross-sections computational Methods in Heat Transfer 119 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN Figure 3 presents streamlines in the channel DOH5. At given geometry, material properties and boundary conditions the procentual parts of mass flows and Re number throught the branches are presented in table 1. II II "». [%] DOH3 DOH4 DOH mi [%] Re, Rei Table 1: Parts of mass flow and Re number in the both branches Figure 3: Streamlines of the channel oil flow (DOH5) Figure 4: Velocity distribution in inlet region at 1/4, 2/4 and 3/4 height of the channel (DOH5)

6 Trig,riii,R^s Transactions and on Engineering Rei are Sciences the mass vol 12, flows 1996 and WIT Re Press, numbers through ISSN the shorter and longer branch. On Figure 5, the influence of impinging jet and channel contraction from longitudional section is clearly evident. Because of the impinging oil jet, circulation is impeded in longitudinal and cross-section, which additionaly increases heat flux throught the wall of the channel. In the Figures 6 and 7, the average cross heat transfer throught both branches of the channel (DOH5) is shown. numerical results equation (6) + influence of curvature (8) numericni equation (7) + influence of curvature (8) ANGLE Figure 5: Nu and Nu^ along the shorter branch of the channel DOH5 * Nu Nu numerical results equation (6) -f influence of curvature (8) numericni equation (7) + influence of curvature (8) _ '* ANGLE Figure 6: Nu and Nu^ along the longer branch of the channel DOHb

7 Advanced Computational Methods in Heat Transfer 121 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN It is evident that the numerical results are in good agreement with the results obtained from equations (6) and (7), which were selected for comparison with numerical results. The greatest values are on the inflows in the branches and then the heat transfer decreases toward the outlet outflow, where because of extension of the channel (see Fig. 2) and with the thinning of the boundary layer - heat transfer instantly increases. Through the shorter branch of the channel, Nu number has higher values because of the greater mass flow and the shorter branch of channel (boundary layer development), and with that the cooling is more intensive on the thermically more loaded part of the engine cylinder. On contractions and extensions of the channel, the velocity boundary layer becomes thinner. This is the reason for the strong increase of heat fluxes. Figure 7 presents a comparison of average heat fluxes at circumference for different cross section channel. Higher heat transfer in the thinner channel is the consequence of larger velocity gradients, which are conditioned by channel thickness (lover edge of cross section). In the vicinity of inflow and outflow the channel is extended (sharp change of the geometry), therefore local maxima of heat flux occour on contractions and extension of the channel. On the graph is evident influence of inflow jet from curve convexity on the inflow region. x channel DOH3 - channel DOH4 4- channel DOH ANGLE Figure 7: Average heat flux along the channel for different cross sections

8 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN Advanced Computational Methods in Heat Transfer Different mass flows Cooling can be also controled with changing the mass flow. The boundary conditions used for this calculations are cloaser to the real boundary conditions, then in the previous calculations. Dynamic viscosity is given with expresion (5) (motor oil). This expresion give the lower value of dynamic viscosity then equation 4, therefor the Re number in this calculations is higher. The geometry of the channel corresponds with the geometry of the channel DOH3 (14 x 3.2mm) from previus calculation and for the computation same mesh was used. At the higher flow rates, the velocityfieldis more disturbed and therefore longer way for developing velocity end temperature profiles is needed. The procentual parts of mass flows trought both branches are presented in the followig table. m/ Re. V = 3 //rain V = 5 //rain V = 7 //rain , Table 2: Parts of mass flow and Re number in the both branches From table is evident, that at higher mass flows, fluid is not distributed between the channel branches, becouse one part of fluid flow circulated in the channel,therefor flow change direction in longer branch. From the Figure 8 it is clean that the flow in longer branch is completly stagnant for the inflow volume flow of //rain. On Figure 8 the part of mass flow throught the longer branch is shown. ;[%) f\o " Icy -21 change of fl< DW direction in longer branche *«.. "... *#... *** V [1/min] Figure 8: Part of mass flow throught the longer branch Figure 9 represents the inlet region at 1/4, 2/4 and 3/4 height of the channel. The velocity gradients near the inner wall are larger then in the previous

9 Advanced Computational Methods in Heat Transfer 123 Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN example (Fig. 4), because of lower dynamic viscosity. Also the horizontal circulation is more intensive and propagates further in short branch of the channel. Figure 9: Velocity distribution in inlet region at 1/4, 2/4 and 3/4 height of the channel (V 5 //mm) On the figures 10 and 11 the average heat fluxes along the inner and outer wall for all three channels are shown. It is resonable that the higher values for heat fluxes are the consequece of higher mass flow. The maxima of heat fluxes are on the place of impinging oil jet and on the contractions of the channel. - V = 7 //ram + V = 5 //ram x V = 3 //ram 60' H ANGLE Figure 10: Average heat flux along the inner wall of the channel

10 124 Advanced Computational Methods in Heat Transfer Transactions on Engineering Sciences vol 12, 1996 WIT Press, ISSN V = 7 //ram f V = 5 //ram x V = 3 //ram ANGLE Figure 11: Average heat flux along the outer wall of the channel CONCLUSIONS With additional oil cooling temperature loads and their circumferential ovalty on diesel engine cylinder can be reduced. Numerical results are in good agreement with empirical expressions. In the inlet and outlet region fluid is mixed due to the influence of inflow jet. Developing of velocity and thermal boundary layer increase intensity of heat transfer. Maximum values of heat fluxes are on the place of impinging oil jet and on the contractions of the channel (inlet). REFERENCES [1] M. Delic, P. Skerget, I. ZaganNumerical and experimental validation of thermo-hydraulic conditions in the narrow channels, Advanced Computational Methods in Heat Transfer III, Southampton 1994 [2] S. P. Sukhatme:Correlations in Single-Phase Convection Heat Transfer, Heat Transfer Equipment Design, Hemisphere, 1988 [3] TASCflow User Documentation - Version 2.4, March 1995 [4] F. TrencrAnaliza temperaturnega stanja na valju zracno hlajenega motorja, Ph.D., Ljubljana, 1991 [5] F. TrencrAnalysis of Combined Air-Oil Cooling Effectiveness of Diesel Engine Cylinders, Strojniski vestnik, Ljubljana, 1995 [6] R. Vicic:Studij toplotnih tokov na modelu oljnega kanala v segmentu valja zracno hlajenega motorja, M.Sc, Ljubljana, 1992

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Arunanshu Chakravarty 1* 1 CTU in Prague, Faculty of Mechanical Engineering, Department of Process Engineering,Technická

More information

Vertical Mantle Heat Exchangers for Solar Water Heaters

Vertical Mantle Heat Exchangers for Solar Water Heaters for Solar Water Heaters Y.C., G.L. Morrison and M. Behnia School of Mechanical and Manufacturing Engineering The University of New South Wales Sydney 2052 AUSTRALIA E-mail: yens@student.unsw.edu.au Abstract

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani Department of Industrial Engineering - University of Parma Excerpt from the Proceedings of the 2012 COMSOL

More information

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)

FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

1.060 Engineering Mechanics II Spring Problem Set 4

1.060 Engineering Mechanics II Spring Problem Set 4 1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani* 1 1 Department of Industrial Engineering - University of Parma Parco Area delle Scienze 181/A I-43124 Parma,

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Physics to PDE. Tutorial

Physics to PDE. Tutorial Physics to PDE Tutorial 1 1. Exercise Heat Transfer: Heat conduction in the steady state 2. Exercise Structural Mechanics: Bending test 3. Exercise Electrodynamics: Plate capacitor 4. Exercise Fluid Dynamics:

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

Heat Transfer from An Impingement Jet onto A Heated Half-Prolate Spheroid Attached to A Heated Flat Plate

Heat Transfer from An Impingement Jet onto A Heated Half-Prolate Spheroid Attached to A Heated Flat Plate 1 nd International Conference on Environment and Industrial Innovation IPCBEE vol.35 (1) (1) IACSIT Press, Singapore Heat Transfer from An Impingement Jet onto A Heated Half-Prolate Spheroid Attached to

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

Heat Transfer Analysis of Machine Tool Main Spindle

Heat Transfer Analysis of Machine Tool Main Spindle Technical Paper Heat Transfer Analysis of Machine Tool Main Spindle oshimitsu HIRASAWA Yukimitsu YAMAMOTO CAE analysis is very useful for shortening development time and reducing the need for development

More information

Calculations on a heated cylinder case

Calculations on a heated cylinder case Calculations on a heated cylinder case J. C. Uribe and D. Laurence 1 Introduction In order to evaluate the wall functions in version 1.3 of Code Saturne, a heated cylinder case has been chosen. The case

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

NUMERICAL ANALYSIS OF INSTALLATION EFFECTS IN CORIOLIS FLOWMETERS: SINGLE AND TWIN TUBE CONFIGURATIONS

NUMERICAL ANALYSIS OF INSTALLATION EFFECTS IN CORIOLIS FLOWMETERS: SINGLE AND TWIN TUBE CONFIGURATIONS Title: NUMERICAL ANALYSIS OF INSTALLATION EFFECTS IN CORIOLIS FLOWMETERS: SINGLE AND TWIN TUBE CONFIGURATIONS Authors: G. Bobovnik a*, J. Kutin a, N. Mole b, B. Štok b and I. Bajsić a a Laboratory of Measurements

More information

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases Scotton P. Rossi D. University of Padova, Department of Geosciences Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions

Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions Advanced Computational Methods in Heat Transfer X 25 Numerical simulation of fluid flow in a monolithic exchanger related to high temperature and high pressure operating conditions F. Selimovic & B. Sundén

More information

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Optimization

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source 17 Related Analogies 17.1 Basic Concepts The differential equation used in a finite element study in one discipline often appears in a different discipline, but with a different physical meaning for the

More information

Improving the Cooling Process for Electronics using Synthetic Jets

Improving the Cooling Process for Electronics using Synthetic Jets Improving the Cooling Process for Electronics using Synthetic Jets Damian Gaona Vaughn College of Aeronautics and Technology, United States, damian.gaona@vaughn.edu Mentors: Amir Elzawawy, PhD Vaughn College

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI THERMAL SCIENCE: Year 014, Vol. 18, No., pp. 479-49 479 NUMERICAL INVESTIGATION OF ENTROPY GENERATION IN LAMINAR FORCED CONVECTION FLOW OVER INCLINED BACKWARD AND FORWARD FACING STEPS IN A DUCT UNDER BLEEDING

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Flow characteristics of curved ducts

Flow characteristics of curved ducts Applied and Computational Mechanics 1 (007) 55-64 Flow characteristics of curved ducts P. Rudolf a *, M. Desová a a Faculty of Mechanical Engineering, Brno University of Technology,Technická,616 69 Brno,

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 HW # 7 prob. 2 Hot water at 50C flows through a steel pipe (thermal conductivity 14 W/m-K) of 100 mm outside diameter and 8 mm wall thickness. During winter,

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD International Journal of Thermal Technologies ISSN 2277-4114 213 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Research Article Numerical Analysis of a Helical Coiled

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

Lesson 37 Transmission Of Air In Air Conditioning Ducts

Lesson 37 Transmission Of Air In Air Conditioning Ducts Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7 ectures on Nuclear Power Safety ecture No 7 itle: hermal-hydraulic nalysis of Single-Phase lows in Heated hannels Department of Energy echnology KH Spring 005 Slide No Outline of the ecture lad-oolant

More information

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles

Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles Journal of Mathematics and Statistics Original Research Paper Numerical Investigation on Turbulent Forced Convection in Heating Channel Inserted with Discrete V-Shaped Baffles 1 Amnart Boonloi and 2 Withada

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Temperature distribution and heat flow across the combustion chamber wall.

Temperature distribution and heat flow across the combustion chamber wall. ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΝ ΚΥΛΙΝΔΡΟ (J.B. Heywood: Internal Combustion Engine Fundamentals McGraw Hill 1988) Temperature distribution and heat flow across the combustion chamber wall. Throughout each engine

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

Chapter 6 Fundamental Concepts of Convection

Chapter 6 Fundamental Concepts of Convection Chapter 6 Fundamental Concepts of Convection 6.1 The Convection Boundary Layers Velocity boundary layer: τ surface shear stress: s = μ u local friction coeff.: C f y y=0 τ s ρu / (6.) (6.1) Thermal boundary

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10 Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

More information

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China

Y. L. He and W. Q. Tao Xi an Jiaotong University, Xi an, China. T. S. Zhao Hong Kong University of Science and Technology, Kowloon, Hong Kong, China Numerical Heat Transfer, Part A, 44: 399 431, 2003 Copyright # Taylor & Francis Inc. ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407780390206625 STEADY NATURAL CONVECTION IN A TILTED LONG CYLINDRICAL

More information

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 1 CHAPTER FOUR The Detailed Model In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 3, one would have to build several heat exchanger prototypes, and then

More information

THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY. Corresponding author;

THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY. Corresponding author; THREE-DIMENSIONAL MIXED CONVECTION HEAT TRANSFER IN A PARTIALLY HEATED VENTILATED CAVITY Hicham DOGHMI 1 *, Btissam ABOURIDA 1, Lahoucin BELARCHE 1, Mohamed SANNAD 1, Meriem OUZAOUIT 1 1 National School

More information

ANALYSIS OF HEAT AND MASS TRANSFER OF THE DIFFERENT MOIST OBJECT GEOMETRIES WITH AIR SLOT JET IMPINGING FOR FORCED CONVECTION DRYING Doğan Engin ALNAK a, Koray KARABULUT b* a Cumhuriyet University, Technology

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer. Week 12 Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER

MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Suranaree J. Sci. Technol. Vol. 17 No. 2; April - June 2010 139 MIXED CONVECTION IN A SQUARE CAVITY WITH A HEAT-CONDUCTING HORIZONTAL SQUARE CYLINDER Md. Mustafizur Rahman 1 *, M. A. Alim 1 and Sumon Saha

More information

Axial profiles of heat transfer coefficients in a liquid film evaporator

Axial profiles of heat transfer coefficients in a liquid film evaporator Axial profiles of heat transfer coefficients in a liquid film evaporator Pavel Timár, Ján Stopka, Vladimír Báleš Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food Technology,

More information

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations 1 Ganapathi Harish, 2 C.Mahesh, 3 K.Siva Krishna 1 M.Tech in Thermal Engineering, Mechanical Department, V.R Siddhartha Engineering

More information

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES Proceedings of the International Conference on Mechanical Engineering 2 (ICME2) 8-2 December 2, Dhaka, Bangladesh ICME-TH-6 FALLING FILM FLOW ALONG VERTICAL PLATE WITH TEMPERATURE DEPENDENT PROPERTIES

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information

Title: NUMERICAL ANALYSIS OF INSTALLATION EFFECTS IN CORIOLIS FLOWMETERS: A CASE STUDY OF A SHORT

Title: NUMERICAL ANALYSIS OF INSTALLATION EFFECTS IN CORIOLIS FLOWMETERS: A CASE STUDY OF A SHORT Title: NUMERICAL ANALYSIS OF INSTALLATION EFFECTS IN CORIOLIS FLOWMETERS: A CASE STUDY OF A SHORT STRAIGHT TUBE FULL-BORE DESIGN Authors: G. Bobovnik a*, J. Kutin a, N. Mole b, B. Štok b and I. Bajsić

More information

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004)

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004) Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p. 765 770 (July 2004) TECHNICAL REPORT Experimental and Operational Verification of the HTR-10 Once-Through Steam Generator (SG) Heat-transfer

More information

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 216 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Comparative

More information

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2413-2424 2413 EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY by Hicham DOGHMI *, Btissam ABOURIDA, Lahoucin BELARCHE, Mohamed

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

Transport phenomenon in a jet type mold cooling pipe

Transport phenomenon in a jet type mold cooling pipe Computational Methods and Experimental Measurements XIV 437 Transport phenomenon in a jet type mold cooling pipe H. Kawahara 1 & T. Nishimura 2 1 Shipping Technology, Oshima National College of Maritime

More information

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Dr.Kailash Mohapatra 1, Deepiarani Swain 2 1 Department of Mechanical Engineering, Raajdhani Engineering College, Bhubaneswar, 751017,

More information

EFFECT OF INLET AND OUTLET LOCATIONS ON TRANSVERSE MIXED CONVECTION INSIDE A VENTED ENCLOSURE

EFFECT OF INLET AND OUTLET LOCATIONS ON TRANSVERSE MIXED CONVECTION INSIDE A VENTED ENCLOSURE Effect of Inlet and Outlet Locations on Transverse Mixed Convection 7 EFFECT OF INLET AND OUTLET LOCATIONS ON TRANSVERSE MIXED CONVECTION INSIDE A VENTED ENCLOSURE Sumon Saha *, Md. Tofiqul Islam, Mohammad

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: June 13, 2008 time: 14.00-17.00 Note: There are 4 questions in total. The first one consists of independent subquestions. If possible and necessary, guide numbers

More information

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid E. Tejaswini 1*, B. Sreenivasulu 2, B. Srinivas 3 1,2,3 Gayatri Vidya Parishad College of Engineering

More information

Cooling of a multi-chip power module

Cooling of a multi-chip power module Cooling of a multi-chip power module G. CAMMARAA, G. PERONE Department of Industrial Engineering University of Catania Viale A. Doria 6, 953 Catania IALY gcamma@dii.unict.it, gpetrone@dii.unict.it Abstract:

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Numerical Study on Heat Transfer Enhancement in a Rectangular Duct with V-Shaped Ribs

Numerical Study on Heat Transfer Enhancement in a Rectangular Duct with V-Shaped Ribs 1285 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 70, 2018 Guest Editors: Timothy G. Walmsley, Petar S. Varbanov, Rongxin Su, Jiří J. Klemeš Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-67-9;

More information

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Vol. 2, No. 4 Modern Applied Science Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Dr. Kaliannan Saravanan Professor & Head, Department of Chemical Engineering Kongu Engineering

More information

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS Binoj K. George 1, Jacob Kuriakose 2 1Student, M. A. College of Engineering, Kothamangalam 2Asst. Prof, M. A. College

More information

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder 326 Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder Qiusheng LIU, Katsuya FUKUDA and Zheng ZHANG Forced convection transient

More information

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD

SIMULATION OF MIXED CONVECTIVE HEAT TRANSFER USING LATTICE BOLTZMANN METHOD International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 2180-1606 (Online); Volume 2, pp. 130-143, July-December 2010 Universiti Malaysia Pahang DOI: http://dx.doi.org/10.15282/ijame.2.2010.3.0011

More information

ANALYSIS OF FLOW IN A CONCENTRIC ANNULUS USING FINITE ELEMENT METHOD

ANALYSIS OF FLOW IN A CONCENTRIC ANNULUS USING FINITE ELEMENT METHOD Nigerian Journal of Technology (NIJOTECH) Vol 35, No 2, April 2016, pp 344 348 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 wwwnijotechcom

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

A CFD Simulation Study on Pressure Drop and Velocity across Single Flow Microchannel Heat Sink

A CFD Simulation Study on Pressure Drop and Velocity across Single Flow Microchannel Heat Sink A CFD Simulation Study on Pressure Drop and Velocity across Single Flow Microchannel Heat Sink A. A. Razali *,a and A. Sadikin b Faculty of Mechanical Engineering and Manufacturing, Universiti Tun Hussein

More information

Experimental Study of Heat Transfer Analysis in Vertical Rod Bundle of Sub Channel with a Hexagonal on Small Modular Reactor

Experimental Study of Heat Transfer Analysis in Vertical Rod Bundle of Sub Channel with a Hexagonal on Small Modular Reactor International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Experimental Study of Heat Transfer Analysis in Vertical Rod Bundle of Sub Channel with a Hexagonal on Small Modular Reactor Syawaluddin

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

NUMERICAL INVESTIGATION ON THE CONVECTIVE HEAT TRANSFER IN A SPIRAL COIL WITH RADIANT HEATING

NUMERICAL INVESTIGATION ON THE CONVECTIVE HEAT TRANSFER IN A SPIRAL COIL WITH RADIANT HEATING Djordjević, M. Lj., et al.: Numerical Investigation on the Convective Heat Transfer in S1215 NUMERICAL INVESTIGATION ON THE CONVECTIVE HEAT TRANSFER IN A SPIRAL COIL WITH RADIANT HEATING by Milan Lj. DJORDJEVI]

More information

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE

SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE Computational Thermal Sciences, 3 (1): 63 72 (2011) SELF-SUSTAINED OSCILLATIONS AND BIFURCATIONS OF MIXED CONVECTION IN A MULTIPLE VENTILATED ENCLOSURE M. Zhao, 1, M. Yang, 1 M. Lu, 1 & Y. W. Zhang 2 1

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information