Viscometry. - neglect Brownian motion. CHEM 305

Size: px
Start display at page:

Download "Viscometry. - neglect Brownian motion. CHEM 305"

Transcription

1 Viscometry When a macromolecule moves in solution (e.g. of water), it induces net motions of the individual solvent molecules, i.e. the solvent molecules will feel a force. - neglect Brownian motion.

2 To describe this force, let us consider two sheets of fluid, of area A A h dv dx F F = Aηdv dx η = viscosity

3 To measure viscosity, the capillary effect is used. The force for the movement of solvent depends on the hydrostatic pressure, i.e. dx x a F up = Pπa 2 For a small cylindrical sheet, at a radial distance x, the differential force will be l df up = 2Pπx dx If the fluid is flowing through the capillary at a steady state, this force must be balanced by a frictional force, i.e. F down = -A ηdv dx = - 2πxlηdv dx where the negative sign indicates that it is in the direction opposite to the applied force.

4 The net force on the sheet due to fluid motion is the differential force felt by the two sides of the sheet, i.e. df down = - 2πlη d[x(dv/dx)] dx dx These two differential forces (up and down) are equal, therefore Integrating this equation once gives 2Pπx dx = - 2πlη d[x(dv/dx)] dx dx Px = - lη d[x(dv/dx)] dx ½ Px 2 + c 1 = -ηlx (dv/dx) and again ¼ Px 2 + c 1 ln x + c 2 = -ηlv where c 1 and c 2 are integration constants.

5 The integration constants can be obtained by looking at the boundary conditions. 1) At x=0 ¼ Px 2 + c 1 ln x + c 2 = -ηlv - cannot be infinite!!! Therefore, c 1 = 0. 2) At x=a ¼ Pa 2 + c 2 = -ηlv Therefore, c 2 = - ¼ Pa 2. = 0 Thus we can write, v = P (a 2 x 2 ) 4ηl (flow velocity).

6 Unfortunately, flow velocity is not easily measured better to use the volume rate of flow, which is defined as a dv = 2πxv dx 0 dt a = πp (a 2 -x 2 ) x dx 0 2ηl dv = πpa 4 dt 8ηl Poiseuille s law

7 Measuring viscosity Ostwald viscometer Wilhelm Ostwald ( ) Nobel Laureate 1909 (for his work in catalysis, chemical balance, and Reaction rates)

8 A fluid of density ρ is allowed to fall from height h 1 to h 2, in a determined time t. The hydrostatic pressure felt by the solution is given by ρgh. Using the equation for the volume rate of flow, h 1 a dv = πp (a 2 -x 2 ) x dx dt 2ηl 0 h 2 we can determine the time required for the total volume V to flow by integrating. The result is a l h h 2 t = 8ηl dv/h. πgρa 4 h 1 The integral is a constant for a given apparatus, which is determined by measuring the time it takes for a solution of known density to fall from h 1 to h 2. Typically one uses the pure solvent in which the macromolecule will be studied subsequently.

9 Disadvantages 1) Large volume of solution is required. 2) Shearing forces generated by the flow gradient are large. Shear stress S = F/A = η (dv/dx) -can cause distortions in the coil distribution of flexible molecules, which in turn means that the viscosity can be altered. The average shear stress in a capillary viscometer can be determined by using the equation: where we know that c 1 = 0. ½ Px 2 + c 1 = -ηlx (dv/dx)

10 This allows us to write S x = η (dv/dx) = - Px 2l for a cylindrical sheet of fluid with radius x. To obtain the average shear stress, we need to integrate the expression over all sheets, i.e. a <S> = 2πxl dx Sx 0 a 2πxl dx 0 = 2πl (-P) x 2 dx = -P a 3 2l (2l)(3) 2πl x dx a 2 /2 <S> = - Pa 3l shear stress depends on the height of the capillary Assumption: that the pressure remains constant during capillary viscosity measurement not the case!

11 To minimize shear stress, we can use a different type of viscometer, namely The relative viscosities of any two solutions is given by ω η 2 = ω 2 η 1 ω 1 The shear can be altered by changing the strength of the applied magnetic field. The shear stress is 10 4 less that in an Ostwald viscometer.

12 Effect of solute on viscosity The equations presented up to this stage all relate to the solvent. If we now include a solute, we have the complicated task of computing how a particle distorts the flow lines of a solution containing a velocity gradient. We start by calculating the energy per unit time needed to maintain the shear in the parallel plate system A F = Aηdv dx Energy = F v b = Ahη dv 2 t dx h dv dx F This allows us to define the viscosity of the rate of energy dissipation per unit volume (Ah) at unit shear (dv/dx = 1), de α η dt

13 Einstein showed that the rate of energy dissipation in a dilute macromolecular solution is defined by de dt solution = de (1 + νφ) dt solvent where φ is the fraction of the solution volume occupied by macromolecules and ν is a numerical factor related to the shape (like the Perrin factor, but not the same value ν = 2.5 for a sphere). Given that de/dt is proportional to the viscosity, we can write η r = η solution = 1 + νφ η 0 where η r is the relative viscosity and η 0 refers to the pure solvent. We can now define a specific viscosity as: η sp = η r 1 = νφ What does η sp mean physically?

14 We can further define an intrinsic viscosity as [η] = lim η sp = lim νφ c2 0 c 2 c2 0 c 2 Let us now rewrite φ in terms of a hydrated volume of the solute, V h. Recall φ is the volume fraction occupied by the solute molecules, i.e. Therefore, for a spherical solute, φ = V h N A c 2 M 2 η sp = 2.5 (V h N A c 2 ) and [η] = 2.5 (V h N A ) in cm3.g-1 M 2 M 2 or putting in the definition for the hydrated volume [η] = 2.5 (V 2 + δ 1 V 1 ) independent of molecular weight!!!!!!!!!!

15 Bovine serum albumin Hemoglobin Bushy stunt virus Lysozyme Ribonuclease A -all near spherical macromolecules - range of possible values for [η]: for DNA [η]=5000; for tropomyosin [η]=52

16 Effect of solute shape on viscosity As alluded to on the previous slide, the shape of the macromolecule has a large effect on the measured viscosity (DNA and tropomyosin which are rod-like particles vs. spherical particles). If the shape can be modelled as a rigid ellipsoid, then the intrinsic viscosity is defined as: [η] = ν (V h N A ) = ν (V 2 + δ 1 V 1 ) M 2 The factor ν is a Simha factor and is defined as: ν = (a/b) 2 + (a/b) for prolate ellipsoids 5[ln(a/b) 0.5] 15[ln(2a/b) 1.5] 15 b a ν = 16 a 15 b tan -1 (a/b) for oblate ellipsoids b a

17 Using viscosity to estimate molecular weight By combining viscosity with sedimentation or diffusion measurements, it should be possible to obtain a good estimate of molecular weight of a biomolecule, while eliminating most shape effects. Starting from the friction coefficient: f = 6πη 3V h 4π ⅓ F And combining it with the sedimentation coefficient: s = M 2 [1 - ρv 2 ] N A f ⅓ 6π 3 F = 4π M 2 [1 - ρv 2 ] V h 1/3 ηn A s

18 Using the definition for intrinsic viscosity: [η] = ν (V h N A ) M 2 We can divide the equation above (after taking the cube root) by the equation on the previous slide to yield: N A 1/3 ν 1/3 = [η] M 2 ⅓ ⅓ 6π 3 F 4π V h M 2 [1 - ρv 2 ] V h 1/3 ηn A s N 1/3 A ν 1/3 = [η] 1/3 ηn A s (162π 2 ) 1/3 F M 2/3 2 (1 V 2 ρ) Scheraga-Mandelkern equation β shape factor

19 Not very sensitive to shape Ref: Cantor and Schimmel, p. 652

20 The parameter β is not very sensitive to shape but since M 2 α (β ) -3/2, the molecular weight derived from the Scheraga-Mandelkern equation should be accurate to within 10%. For most practical applications, the intrinsic viscosity is used to determine the molecular weight by solving the equation: [η] = k M a where k and a are constants specific to the system. E.g. DNA (rod-like macromolecules) [η] α M 1.8 whereas for coils [η] α M 0.5 to M 1.0

21 Summary: Transport processes - Diffusion - Electrophoresis -Sedimentation: - sedimentation velocity - equilibrium ultracentrifugation - Viscosities All of these methods can be used to yield information on the molecular weight of a biomolecule. E.g. Lysozyme Method Chemical structure Sedimentation and diffusion Sedimentation equilibrium Viscosity (Scheraga-Mandelkern) Molecular weight g. mol

22 Sedimentation and diffusion s = M [1 - ρv 2 ] D = kt = RT N A f f N A f M = srt D [1 - ρv 2 ] Svedberg equation f /f min = [ (V 2 + δ 1 V 1 ) V 2 ]1/3 F

23 Sedimentation equilibrium c 2 (x) = c 2 (x 0 ) exp {[M 2 (1-V 2 ρ) ω 2 /2RT] (x 2 -x 02 )} ln c 2 slope α M 2 x

24 Viscosity [η] = ν (V h N A ) M 2 N 1/3 A ν 1/3 = [η] 1/3 ηn A s (162π 2 ) 1/3 F M 2/3 2 (1 V 2 ρ) Scheraga-Mandelkern equation β shape factor

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation Measuring the size and shape of macromolecules Hydrodynamics: study of the objects in water How do the move? Translation Rotation 1) Movement with no external forcefree diffusion 2) Movement under the

More information

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored First let s just consider fluid flow, where the fluid

More information

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diusion I. Introduction A. There are a group o biophysical techniques that are based on transport processes. 1. Transport processes

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

Hydrodynamic Characterisation

Hydrodynamic Characterisation Hydrodynamic Characterisation Viscometry SEC-MALLs Analytical Ultracentrifugation Stephen Harding, NCMH University of Nottingham NCMH at Nottingham: An International Facility for characterising sizes/shapes

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2008

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2008 Lecture /1/8 University of Washington Department of Chemistry Chemistry 45 Winter Quarter 8 A. Analysis of Diffusion Coefficients: Friction Diffusion coefficients can be measured by a variety of methods

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

On the hydrodynamic diffusion of rigid particles

On the hydrodynamic diffusion of rigid particles On the hydrodynamic diffusion of rigid particles O. Gonzalez Introduction Basic problem. Characterize how the diffusion and sedimentation properties of particles depend on their shape. Diffusion: Sedimentation:

More information

The physical characterisation of polysaccharides in solution. Stephen Harding University of Nottingham

The physical characterisation of polysaccharides in solution. Stephen Harding University of Nottingham The physical characterisation of polysaccharides in solution Stephen Harding University of Nottingham The physical characterisation of polysaccharides in solution Viscometry SEC-MALLs Analytical Ultracentrifugation

More information

FORMULA SHEET. General formulas:

FORMULA SHEET. General formulas: FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

More information

Measuring S using an analytical ultracentrifuge. Moving boundary

Measuring S using an analytical ultracentrifuge. Moving boundary Measuring S using an analytical ultracentrifuge Moving boundary [C] t = 0 t 1 t 2 0 top r bottom 1 dr b r b (t) r b ω 2 = S ln = ω 2 S (t-t dt r b (t o ) o ) r b = boundary position velocity = dr b dt

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

Viscosity and Brownian Motion

Viscosity and Brownian Motion Summary Viscosity and Brownian Motion In this combined experiment, the final goal is to determine the size of beads that display Brownian motion in a given solution of glycerol in water. In one part of

More information

SEC MALLs and AUC. 2. Conformation and flexibility Viscometry,

SEC MALLs and AUC. 2. Conformation and flexibility Viscometry, 1. Molecular weight distribution analysis SEC MALLs and AUC 2. Conformation and flexibility Viscometry, AUC, Light scattering Lecture 4. Analytical l Ultracentrifugation t ti I: Molecular weight and conformation

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

The principals of rheology In pharmaceutical technology

The principals of rheology In pharmaceutical technology The principals of rheology In pharmaceutical technology Dr. Aleksandar Széchenyi University of Pécs Gyógyszertechnológiai és Biofarmáciai Intézet Institute of Pharmaceutical Technology and Biopharmacy

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics Chem 341, Fall, 2014 1 Frictional coefficients Consider a particle moving with velocity v under the influence of some external force F (say a graviational or electrostatic external

More information

Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

More information

Fluid mechanics and living organisms

Fluid mechanics and living organisms Physics of the Human Body 37 Chapter 4: In this chapter we discuss the basic laws of fluid flow as they apply to life processes at various size scales For example, fluid dynamics at low Reynolds number

More information

University of Washington Department of Chemistry Chemistry 355 Spring Quarter 2005

University of Washington Department of Chemistry Chemistry 355 Spring Quarter 2005 University of Washington Department of Chemistry Chemistry 55 Spring Quarter 5 Homework Assignment 7: Due no later than 5: pm on 5/14/4 8., 8.6, 8.1 8.) According to text equation 16, after N jumps the

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2005

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2005 Lecture /4/ University of Washington Department of Chemistry Chemistry 4 Winter Quarter A. Polymer Properties of DNA When a linear polymer like DNA becomes long enough it can no longer be treated as a

More information

Solution structure and dynamics of biopolymers

Solution structure and dynamics of biopolymers Solution structure and dynamics of biopolymers Atomic-detail vs. low resolution structure Information available at different scales Mobility of macromolecules in solution Brownian motion, random walk,

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2014 January 29, 2014 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction

EXPERIMENT 17. To Determine Avogadro s Number by Observations on Brownian Motion. Introduction EXPERIMENT 17 To Determine Avogadro s Number by Observations on Brownian Motion Introduction In 1827 Robert Brown, using a microscope, observed that very small pollen grains suspended in water appeared

More information

Analytical Ultracentrifugation. by: Andrew Rouff and Andrew Gioe

Analytical Ultracentrifugation. by: Andrew Rouff and Andrew Gioe Analytical Ultracentrifugation by: Andrew Rouff and Andrew Gioe Partial Specific Volume (v) Partial Specific Volume is defined as the specific volume of the solute, which is related to volume increase

More information

Equilibrium Sedimentation & Sedimentation Velocity: Random Walks in the presence of forces.

Equilibrium Sedimentation & Sedimentation Velocity: Random Walks in the presence of forces. New Posts at the Course Website: Origin Assignment 3 on Analytical Ultracentrifugation (due 3/2/12) Problem Set Data (xls file) Resource Booklet (R7) on Analytical Ultracentrifugation Equilibrium Sedimentation

More information

There are 6 parts to this exam. Parts 1-3 deal with material covered since the midterm exam. Part 4-6 cover all course material.

There are 6 parts to this exam. Parts 1-3 deal with material covered since the midterm exam. Part 4-6 cover all course material. Chemistry 453 March 9, 03 Enter answers in a lue ook Final Examination Key There are 6 parts to this exam. Parts -3 deal with material covered since the midterm exam. Part 4-6 cover all course material.

More information

Biomolecular hydrodynamics

Biomolecular hydrodynamics Biomolecular hydrodynamics David Case Rutgers, Spring, 2009 February 1, 2009 Why study hydrodynamical methods? The methods we study in this section are low resolution ones one studies diffusional motion

More information

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity

Chapter 1. Governing Equations of GFD. 1.1 Mass continuity Chapter 1 Governing Equations of GFD The fluid dynamical governing equations consist of an equation for mass continuity, one for the momentum budget, and one or more additional equations to account for

More information

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity.

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity. 9.7 CENTRIFUGATION The centrifuge is a widely used instrument in clinical laboratories for the separation of components. Various quantities are used for the description and the calculation of the separation

More information

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer Diffusion 051333 Unit operation in gro-industry III Department of Biotechnology, Faculty of gro-industry Kasetsart University Lecturer: Kittipong Rattanaporn 1 Outline Definition and mechanism Theory of

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Transport Properties

Transport Properties EDR = Engel, Drobny, Reid, Physical Chemistry for the Life Sciences text Transport Properties EDR Chapter 24 "I have said that the Brownian movement is explained...by the incessant movement of the molecules

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain Question 1 i To start, we recognize the following relationships on the stress and strain γ = γ k + γ 2 1 τ = G k γ k + μ k γ k = μ 2 γ 2 Therefore, the following relationships are also true γ = γ k + γ

More information

Determination of shape parameter of nanocrystalline cellulose rods

Determination of shape parameter of nanocrystalline cellulose rods Determination of shape parameter of nanocrystalline cellulose rods Yaman Boluk and Liyan Zhao Cellulose and Hemicellulose Program Forest Products Alberta Research Council June 25, 2009 2009 International

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions José García de la Torre, Departament of Physical Chemistry University of Murcia, Spain jgt@um.es

More information

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name:

Chem/Biochem 471 Exam 2 11/14/07 Page 1 of 7 Name: Page 1 of 7 Please leave the exam pages stapled together. The formulas are on a separate sheet. This exam has 5 questions. You must answer at least 4 of the questions. You may answer all 5 questions if

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

Diffusion. Spring Quarter 2004 Instructor: Richard Roberts. Reading Assignment: Ch 6: Tinoco; Ch 16: Levine; Ch 15: Eisenberg&Crothers

Diffusion. Spring Quarter 2004 Instructor: Richard Roberts. Reading Assignment: Ch 6: Tinoco; Ch 16: Levine; Ch 15: Eisenberg&Crothers Chemistry 24b Spring Quarter 2004 Instructor: Richard Roberts Lecture 2 RWR Reading Assignment: Ch 6: Tinoco; Ch 16: Leine; Ch 15: Eisenberg&Crothers Diffusion Real processes, such as those that go on

More information

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction...

Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction... Transport phenomena 1/16 Transport (kinetic) phenomena: diffusion, electric conductivity, viscosity, heat conduction... Flux of mass, charge, momentum, heat,...... J = amount (of quantity) transported

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Week 8. Topics: Next deadline: Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6.

Week 8. Topics: Next deadline: Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6. 8/1 Topics: Week 8 Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6.) Pulsatile flow (Study guide 15. Section 12.7.) Next deadline: Friday October 31

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2

C C C C 2 C 2 C 2 C + u + v + (w + w P ) = D t x y z X. (1a) y 2 + D Z. z 2 This chapter provides an introduction to the transport of particles that are either more dense (e.g. mineral sediment) or less dense (e.g. bubbles) than the fluid. A method of estimating the settling velocity

More information

CHAPTER 19 Molecules in Motion. 1. Matter transport is driven by concentration gradient.

CHAPTER 19 Molecules in Motion. 1. Matter transport is driven by concentration gradient. CHAPTER 19 Molecules in Motion I. Transport in Gases. A. Fick s Law of Diffusion. 1. Matter transport is driven by concentration gradient. Flux (matter) = J m = D dn dz N = number density of particles

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION

VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION Author: dr Marek Studziński Editor: dr hab. Agnieszka Ewa Wiącek Task 11 VISCOSITY MEASUREMENT MEAN MOLECULAR MASS DETERMINATION I. Aim of the task

More information

Dynamic Meteorology - Introduction

Dynamic Meteorology - Introduction Dynamic Meteorology - Introduction Atmospheric dynamics the study of atmospheric motions that are associated with weather and climate We will consider the atmosphere to be a continuous fluid medium, or

More information

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1

Viscosity and Polymer Melt Flow. Rheology-Processing / Chapter 2 1 Viscosity and Polymer Melt Flow Rheology-Processing / Chapter 2 1 Viscosity: a fluid property resistance to flow (a more technical definition resistance to shearing) Remember that: τ μ du dy shear stress

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

Introduction to techniques in biophysics.

Introduction to techniques in biophysics. Introduction to techniques in biophysics. Goal : resolve the structure and functions of biological objects applying physical approaches 1 At molecular level 1.1 Long-range goal: 1.1.1 complete structure

More information

8.6 Drag Forces in Fluids

8.6 Drag Forces in Fluids 86 Drag Forces in Fluids When a solid object moves through a fluid it will experience a resistive force, called the drag force, opposing its motion The fluid may be a liquid or a gas This force is a very

More information

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their:

Lecture 2. Lecture 1. Forces on a rotating planet. We will describe the atmosphere and ocean in terms of their: Lecture 2 Lecture 1 Forces on a rotating planet We will describe the atmosphere and ocean in terms of their: velocity u = (u,v,w) pressure P density ρ temperature T salinity S up For convenience, we will

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

KEMS448 Physical Chemistry Advanced Laboratory Work. Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol

KEMS448 Physical Chemistry Advanced Laboratory Work. Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol KEMS448 Physical Chemistry Advanced Laboratory Work Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol 1 Introduction The internal friction in fluids, or viscosity, is caused by the cohesion

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2

g (z) = 1 (1 + z/a) = 1 1 ( km/10 4 km) 2 1.4.2 Gravitational Force g is the gravitational force. It always points towards the center of mass, and it is proportional to the inverse square of the distance above the center of mass: g (z) = GM (a

More information

The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of

The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of Charge Example 26.3 in the text uses integration to find the electric field strength at a radial distance r in the plane

More information

9/10/2018. An Infinite Line of Charge. The electric field of a thin, uniformly charged rod may be written:

9/10/2018. An Infinite Line of Charge. The electric field of a thin, uniformly charged rod may be written: The Electric Field of a Finite Line of Charge The Electric Field of a Finite Line of Charge Example 26.3 in the text uses integration to find the electric field strength at a radial distance r in the plane

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

Nicholas Cox, Pawel Drapala, and Bruce F. Finlayson Department of Chemical Engineering, University of Washington, Seattle, WA, USA.

Nicholas Cox, Pawel Drapala, and Bruce F. Finlayson Department of Chemical Engineering, University of Washington, Seattle, WA, USA. Transport Limitations in Thermal Diffusion Nicholas Cox, Pawel Drapala, and Bruce F. Finlayson Department of Chemical Engineering, University of Washington, Seattle, WA, USA Abstract Numerical simulations

More information

By: Ashley and Christine Phy 200 Professor Newman 4/13/12

By: Ashley and Christine Phy 200 Professor Newman 4/13/12 By: Ashley and Christine Phy 200 Professor Newman 4/13/12 What is it? Technique used to settle particles in solution against the barrier using centrifugal acceleration Two Types of Centrifuges Analytical

More information

Introduction and Fundamental Concepts (Lectures 1-7)

Introduction and Fundamental Concepts (Lectures 1-7) Introduction and Fundamental Concepts (Lectures -7) Q. Choose the crect answer (i) A fluid is a substance that (a) has the same shear stress at a point regardless of its motion (b) is practicall incompressible

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations

Laminar Boundary Layers. Answers to problem sheet 1: Navier-Stokes equations Laminar Boundary Layers Answers to problem sheet 1: Navier-Stokes equations The Navier Stokes equations for d, incompressible flow are + v ρ t + u + v v ρ t + u v + v v = 1 = p + µ u + u = p ρg + µ v +

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

Particles, drops, and bubbles. Lecture 3

Particles, drops, and bubbles. Lecture 3 Particles, drops, and bubbles Lecture 3 Brownian Motion is diffusion The Einstein relation between particle size and its diffusion coefficient is: D = kt 6πηa However gravitational sedimentation tends

More information

Chapter 5. Methods for the Separation and Characterization of Macromolecules

Chapter 5. Methods for the Separation and Characterization of Macromolecules Chapter 5 Methods for the Separation and Characterization of Macromolecules 1 5.1 General Principles Diversity, Complexity and Dynamics of macromolecular structure 1. Protein exit, under physiological

More information

Flux - definition: (same format for all types of transport, momentum, energy, mass)

Flux - definition: (same format for all types of transport, momentum, energy, mass) Fundamentals of Transport Flu - definition: (same format for all types of transport, momentum, energy, mass) flu in a given direction Quantity of property being transferred ( time)( area) More can be transported

More information

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009

Final Exam for Physics 176. Professor Greenside Wednesday, April 29, 2009 Print your name clearly: Signature: I agree to neither give nor receive aid during this exam Final Exam for Physics 76 Professor Greenside Wednesday, April 29, 2009 This exam is closed book and will last

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering

Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering Fundamentals of Transport Processes Prof. Kumaran Indian Institute of Science, Bangalore Chemical Engineering Module No # 05 Lecture No # 25 Mass and Energy Conservation Cartesian Co-ordinates Welcome

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1 MTE STATICS Example Problem P. Beer & Johnston, 004 by Mc Graw-Hill Companies, Inc. The structure shown consists of a beam of rectangular cross section (4in width, 8in height. (a Draw the shear and bending

More information

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW 4.1 Introduction Boundary layer concept (Prandtl 1904): Eliminate selected terms in the governing equations Two key questions (1) What are the

More information

E&M. 1 Capacitors. January 2009

E&M. 1 Capacitors. January 2009 E&M January 2009 1 Capacitors Consider a spherical capacitor which has the space between its plates filled with a dielectric of permittivity ɛ. The inner sphere has radius r 1 and the outer sphere has

More information

Chapter 1 Survey of Biomolecular Hydrodynamics

Chapter 1 Survey of Biomolecular Hydrodynamics On-Line Biophysics Textbook Volume: Separations and Hydrodynamics Todd M. Schuster, editor Chapter 1 Survey of Biomolecular Hydrodynamics Victor A. Bloomfield Department of Biochemistry, Molecular Biology,

More information

Modeling of a centrifuge experiment: the Lamm equations

Modeling of a centrifuge experiment: the Lamm equations Modeling of a centrifuge experiment: the Lamm equations O. Gonzalez and J. Li UT-Austin 29 October 2008 Problem statement Setup Consider an experiment in which a 2-component solution (solute + solvent)

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Lecture 10: Brownian Motion, Random Walk & Diffusion Side Chains of Amino Acids

Lecture 10: Brownian Motion, Random Walk & Diffusion Side Chains of Amino Acids Lecture 10: Brownian Motion, Random Walk & Diffusion Side Chains of Amino Acids Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu) PHYS 461 & 561, Fall 2009-2010 1 Stochastic Processes: Brownian Motion

More information

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. January 20, 2015, 5:00 p.m. to 8:00 p.m. UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination January 20, 2015, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Sediment transport and river bed evolution

Sediment transport and river bed evolution 1 Chapter 1 Sediment transport and river bed evolution 1.1 What is the sediment transport? What is the river bed evolution? System of the interaction between flow and river beds Rivers transport a variety

More information