Hydrodynamic Characterisation

Size: px
Start display at page:

Download "Hydrodynamic Characterisation"

Transcription

1 Hydrodynamic Characterisation Viscometry SEC-MALLs Analytical Ultracentrifugation Stephen Harding, NCMH University of Nottingham

2 NCMH at Nottingham: An International Facility for characterising sizes/shapes and interactions of macromolecules in solution

3 Hydrodynamic characterisation 1. Viscosity 2. Heterogeneity, Molecular weight & distribution 3. Conformation in solution 1: Viscometry. 2: SEC-MALLs & analytical ultracentrifugation. 3: Viscometry, SEC-MALLs & analytical ultracentrifugation.

4 1. Viscosity by precision viscometry

5 Viscosity by Precision viscometry [η] Intrinsic viscosity, ml/g

6 Types of Viscometer: 1. U-tube (Ostwald or Ubbelohde) Ostwald Viscometer

7 Types of Viscometer: 1. U-tube (Ostwald or Ubbelohde) Extended Ostwald Viscometer

8 Auto-timer Coolant system Density meter Solution Water bath o C

9 Types of Viscometer: 2. Cone & Plate (Couette) Couette-type Viscometer

10 3. Rolling ball capillary viscometer

11 Definition of viscosity: For normal (Newtonian) flow behaviour: viscosity τ = (F/A) = η. (dv/dy) shear rate shear stress η = τ/(dv/dy) units: (dyn/cm 2 )/sec -1 At 20.0 o C, η(water) ~ 0.01P = dyn.sec.cm -2.. = POISE (P)

12 Viscosity of biomolecular solutions: A dissolved macromolecule will INCREASE the viscosity of a solution because it disrupts the streamlines of the flow:

13 We define the relative viscosity η r as the ratio of the viscosity of the solution containing the macromolecule, η, to that of the pure solvent in the absence of macromolecule, η o : η r = η/η o no units For a U-tube viscometer, η r = (t/t o ). (ρ/ρ o )

14 Reduced viscosity The relative viscosity depends (at a given temp.) on the concentration of macromolecule, the shape of the macromolecule & the volume it occupies. If we are going to use viscosity to infer on the shape and volume of the macromolecule we need to eliminate the concentration contribution. The first step is to define the reduced viscosity η red = (η r 1)/c If c is in g/ml, units of η red are ml/g

15 The Intrinsic Viscosity [η] The next step is to eliminate non-ideality effects deriving from exclusion volume, backflow and charge effects. We measure η red at a series of concentrations and extrapolate to zero concentration: [η] = Lim c 0 (η red) polysaccharide η red 200 units: ml/g (ml/g) 100 protein c (g/ml)

16 Concentration Extrapolation 2 main forms Huggins equation: η red = 1+ [ η] ( [ η] c) K H Kraemer equation: η inh [ η] ( [ η] c) = 1 K K 500 Viscosity, η red, η inh, [η ], ml/g Concentration, g/ml Huggins Kraemer

17 Another important relation is the SOLOMON-CIUTÂ approximation, which permits the approximate evaluation of [η] without a concentration extrapolation. [ η] [2( η rel 1) 2ln c nre l 1 ] Viscosity, η red, η inh, [η ], ml/g Concentration, g/ml Solomon-Ciutâ

18 M w (g/mol) [η] (ml/g) Glucose Myoglobin Ovalbumin Haemoglobin Tomato bushy stunt virus Fibrinogen Myosin Chitosan Chitosan GLOBULAR, SPHERES COILS, RODS

19 2. Heterogeneity & molecular weight: SEC-MALLs

20 Molecular Weight: Light scattering MALLs detector

21 Molecular Weight: Light scattering photodiode detectors incident beam transmitted beam

22 Molecular Weight: Zimm plot 10 6.(Kc/R θ ) 1/M w R g from slope sin 2 (θ/2) + kc (k=100)

23 Molecular Weight: SEC MALLS

24 Molecular Weight: SEC MALLS Colonic mucin Fogg FJJ et al, Biochemical Journal.1996

25

26 Can also couple a special type of viscometer on-line Differential pressure viscometer

27

28

29

30 Analytical Ultracentrifugation

31 Optima XLA/XLI

32

33 2 types of AUC Experiment: Sedimentation Velocity Sedimentation Equilibrium Centrifugal force Top view, sector of centrifuge cell Air Solvent Centrifugal force Diffusion Solution conc, c Rate of movement of boundary sed. coeff distance, r s o 20,w 1S=10-13 sec conc, c distance, r STEADY STATE PATTERN FUNCTION ONLY OF MOL. WEIGHT PARAMETERS

34 Sedimentation Velocity Centrifugal force Top view, sector of centrifuge cell Air Solvent Solution conc, c Rate of movement of boundary sed. coeff distance, r s o 20,w Sedimentation coefficient, S

35 Chitosan G213, 0.5 mg/ml meniscus Cell base

36 Chitosan G213, 0.5 mg/ml Sedimentation velocity g*(s) plot from analysis of the change with time of the whole concentration profile ls-g(s) (fringes Svedberg -1 ) s* (Svedberg)

37 Chitosan (3.2 mg/ml) + HA (0.8 mg/ml) ls-g(s) s*

38 Sedimentation velocity g*(s) plot: starch Tester R, Patel T, Harding, S. Carbohydrate Research, 2006

39 2 types of AUC Experiment: Sedimentation Velocity Sedimentation Equilibrium Centrifugal force Top view, sector of centrifuge cell Air Solvent Centrifugal force Diffusion Solution conc, c Rate of movement of boundary sed. coeff distance, r s o 20,w 1S=10-13 sec conc, c distance, r STEADY STATE PATTERN FUNCTION ONLY OF MOL. WEIGHT PARAMETERS

40 M* analysis of sedimentation equilibrium Creeth JM & Harding SE J. Biochem. Biophys. Meth., 1982

41 Extraction of M w,app from sedimentation equilibrium and MSTAR analysis Chitosan G213 M w,app cell bottom

42 Extraction of M w,app from sedimentation equilibrium and MSTAR analysis xanthan M w = ( )x10 6 g/mol

43 SEC - sedimentation equilibrium mol. wt distribution: alginate Ball A, Harding SE & Mitchell J, Int. J. Biol. Macromol., 1988

44 3. Conformation in solution

45 Conformation in solution 1. Experimental data required Molecular weight: SEC-MALLs reinforced by sed. equilibrium [η], s, R g 2. Modelling strategies General conformation type (rod, coil or sphere etc.) Asymmetry, hydration, branching and flexibility Persistence length

46 Sedimentation Velocity Centrifugal force Top view, sector of centrifuge cell Air Solvent Solution conc, c Rate of movement of boundary sed. coeff distance, r s o 20,w + concentration dependence parameter k s

47 Citrus pectin mg/ml s = 1.21 S 2.04 mg/ml s = 1.36 S 1.40 mg/ml s = 1.49 S 1.13 mg/ml s = 1.56 S 0.79 mg/ml s = 1.61 S 0.23 mg/ml s = 1.99 S ls-g(s) (fringes s -1 ) Sedimentation coefficient (Svedberg)

48 s o 20,w and k s extraction 8.5x10 12 s 0 8.0x ,b = 2.04 (0.07) S k s = 270 (25) mlg x /s (Svedberg -1 ) 1/s 20,w sec x x x x10 12 slope=k s /s o 20,w 5.0x x /s o 20,w x x x x x10-3 Concentration (gml -1 ) Concentration g/ml

49 Molecular Weight: Zimm plot 10 6.(Kc/R θ ) 1/M w R g from slope sin 2 (θ/2) + kc (k=100)

50 Haug Triangle

51 Sphere [η] ~ M 0 Rod [η] ~ M 1.8 Coil [η] ~ M s o 20,w ~ M0.67 R g ~ M 0.33 s o 20,w ~ M0.15 R g ~ M 1.0 s o 20,w ~ M R g ~ M

52 Mark-Houwink-Kuhn-Sakurada Power law plot Galactomannans a=

53 Change in Conformation Rollings, J in Laser Light Scattering in Biochemistry (Harding, Sattelle and Bloomfield eds). 1992

54 Sphere [η] ~ M 0 Rod [η] ~ M 1.8 Coil [η] ~ M s o 20,w ~ M0.67 R g ~ M 0.33 s o 20,w ~ M0.15 R g ~ M 1.0 s o 20,w ~ M R g ~ M k s /[η] ~1.6 k s /[η] <1 k s /[η] ~1.6

55 Conformation Zoning: Zone A: Extra-rigid rod: schizophyllan Zone B: Rigid Rod: xanthan Zone C: Semi-flexible coil: pectin Zone D: Random coil: dextran, pullulan Zone E: Highly branched: amylopectin, glycogen

56 Conformation Zoning: 3.5 log (10-11 k s M L ) A B C D E Pavlov et al. Trends in Analytical Chemistry,1997 log (10 12 [s]/m L )

57 3.5 Bovine glycogen A B Pectins Pullulans 2.0 log (10-11 k s M L ) C D E log (10 12 [s]/m L )

58 Worm-like Chain Flexibility parameter: Persistence length L p Contour Length Kuhn-statistical length λ -1 = 2L p

59 Worm-like Chain Flexibility parameter: Persistence length L p Theoretical limits: Random coil L p = 0 Rigid rod L p = infinity Practical limits: Random coil L p ~ 1-2nm Rigid rod L p ~ 200nm

60 [ ] 2 1/ 2 1/ 3 1/ 0 3 1/ 0 3 1/ 2 2 w L p L w M M L B M A M Φ + Φ = η ( ) = / / p L w p L w A L L M M A A L M M N v M s πη ρ Bushin-Bohdanecky relation Yamakawa-Fujii relation

61 800 Global plot: xyloglucan 700 M L (g. mol -1. nm -1 ) L p (nm) Patel et al, Carbohydrate Polymers, 2007

62 Flexibilities of carbohydrate polymers Carbohydrate Polymer Pullulan Heparin Amylose Cellulose Pectin (69% esterified) Pectin (0% esterified) DNA Schizophyllan Scleroglucan Xanthan L p (nm)

63 Next time: how we can use hydrodynamics to study polysaccharide interactions

64 Follow up bibliography: Outline introduction to the techniques: Tombs, M.P. and Harding S.E. (1997) An Introduction to Polysaccharide Biotechnology Taylor & Francis, London Chapter 1 Viscometry: Harding, S.E. (1997). The Intrinsic Viscosity of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysics and Molecular Biology (T.L. Blundell ed.) 68, Light Scattering: Harding, S.E., Sattelle, D.B. & Bloomfield, VA. Eds (1992) Laser Light Scattering in Biochemistry Royal Soc. Chem. Cambridge Chapters by Wyatt and Rollings Analytical ultracentrifugation: Harding, S.E. (2005) Analysis of polysaccharides by ultracentrifugation: size, conformation and interactions in solution. in Advances in Polymer Science (Polysaccharides I: Structure, Characterisation and Use) Ed. T. Heinze, 186, Chap. 5.

The physical characterisation of polysaccharides in solution. Stephen Harding University of Nottingham

The physical characterisation of polysaccharides in solution. Stephen Harding University of Nottingham The physical characterisation of polysaccharides in solution Stephen Harding University of Nottingham The physical characterisation of polysaccharides in solution Viscometry SEC-MALLs Analytical Ultracentrifugation

More information

SEC MALLs and AUC. 2. Conformation and flexibility Viscometry,

SEC MALLs and AUC. 2. Conformation and flexibility Viscometry, 1. Molecular weight distribution analysis SEC MALLs and AUC 2. Conformation and flexibility Viscometry, AUC, Light scattering Lecture 4. Analytical l Ultracentrifugation t ti I: Molecular weight and conformation

More information

SEC MALLs and AUC. 2. Conformation and flexibility Viscometry,

SEC MALLs and AUC. 2. Conformation and flexibility Viscometry, 1. Molecular weight distribution analysis SEC MALLs and AUC 2. Conformation and flexibility Viscometry, AUC, Light scattering Lecture 5 Analytical Ultracentrifugation II: interactions Steve Harding Free

More information

The effect of the degree of esterification on the hydrodynamic properties of citrus pectin

The effect of the degree of esterification on the hydrodynamic properties of citrus pectin Food Hydrocolloids 14 (2000) 227 235 www.elsevier.com/locate/foodhyd The effect of the degree of esterification on the hydrodynamic properties of citrus pectin G.A. Morris a, *, T.J. Foster b, S.E. Harding

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry N N N Cu + BR - N Lecture 7 Decomposition of Thermal Initiator k d I 2 R Efficiency factor ( f ): CN N N CN di-tert-butylperoxide AIBN di-tert-butylperoxalate f = 0.65 f = 0.75

More information

Viscometry. - neglect Brownian motion. CHEM 305

Viscometry. - neglect Brownian motion. CHEM 305 Viscometry When a macromolecule moves in solution (e.g. of water), it induces net motions of the individual solvent molecules, i.e. the solvent molecules will feel a force. - neglect Brownian motion. To

More information

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation

Measuring the size and shape of macromolecules. Hydrodynamics: study of the objects in water How do the move? Translation Rotation Measuring the size and shape of macromolecules Hydrodynamics: study of the objects in water How do the move? Translation Rotation 1) Movement with no external forcefree diffusion 2) Movement under the

More information

Sem /2007. Fisika Polimer Ariadne L. Juwono

Sem /2007. Fisika Polimer Ariadne L. Juwono Chapter 8. Measurement of molecular weight and size 8.. End-group analysis 8.. Colligative property measurement 8.3. Osmometry 8.4. Gel-permeation chromatography 8.5. Ultracentrifugation 8.6. Light-scattering

More information

Polymers Reactions and Polymers Production (3 rd cycle)

Polymers Reactions and Polymers Production (3 rd cycle) EQ, Q, DEQuim, DQuim nd semester 017/018, IST-UL Science and Technology of Polymers ( nd cycle) Polymers Reactions and Polymers Production (3 rd cycle) Lecture 5 Viscosity easurements of the viscosity

More information

Molecular Weight Distribution Evaluation of Polysaccharides and Glycoconjugates Using Analytical Ultracentrifugation

Molecular Weight Distribution Evaluation of Polysaccharides and Glycoconjugates Using Analytical Ultracentrifugation Feature Article Molecular Weight Distribution Evaluation of Polysaccharides and Glycoconjugates Using Analytical Ultracentrifugation Stephen E. Harding,* Ali Saber Abdelhameed, Gordon A. Morris We review

More information

Instruction for practical work No 2. The Determination of Viscosity-Average Molecular Weight of Polymers

Instruction for practical work No 2. The Determination of Viscosity-Average Molecular Weight of Polymers Instruction for practical work No 2 The Determination of Viscosity-Average Molecular Weight of Polymers THEORETICAL PART Molecular weight of polymers Molecular weight is one of the most fundamental parameters

More information

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions José García de la Torre, Departament of Physical Chemistry University of Murcia, Spain jgt@um.es

More information

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored

Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored Hydrodynamics: Viscosity and Diffusion Hydrodynamics is the study of mechanics in a liquid, where the frictional drag of the liquid cannot be ignored First let s just consider fluid flow, where the fluid

More information

Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector

Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector Investigating the Relationship Between the Rheological Properties of Hyaluronic Acid and its Molecular Weight and Structure using Multidetector SEC and SEC-MALS Presented by Bassem Sabagh, PhD Technical

More information

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Dr. Christoph Johann Wyatt Technology Europe GmbH 2010 Copyright Wyatt Technology Europe GmbH All Rights reserved 1 Introduction Overview The Nature of Scattered Light: Intensity of scattered light Angular

More information

Light scattering Small and large particles

Light scattering Small and large particles Scattering by macromolecules E B Incident light Scattered Light particle Oscillating E field from light makes electronic cloud oscillate surrounding the particle Intensity: I E Accelerating charges means

More information

THE SOLUTION CONFORMATION OF NOVEL ANTIBODY FRAGMENTS STUDIED USING THE PROTEOMELAB XL-A ANALYTICAL ULTRACENTRIFUGE

THE SOLUTION CONFORMATION OF NOVEL ANTIBODY FRAGMENTS STUDIED USING THE PROTEOMELAB XL-A ANALYTICAL ULTRACENTRIFUGE APPLICATION INFORMATION Peter J. Morgan, Olwyn D. Byron, Stephen E. Harding Department of Applied Biochemistry and Food Science University of Nottingham Sutton Bonington, U. K. Introduction One of the

More information

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I)

CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) CHARACTERIZATION OF BRANCHED POLYMERS IN SOLUTION (I) Overview: General Properties of Macromolecules in Solution Molar Mass Dependencies Molar Mass Distributions Generalized Ratios Albena Lederer Leibniz-Institute

More information

Analysis of Polysaccharides by Ultracentrifugation. Size, Conformation and Interactions in Solution

Analysis of Polysaccharides by Ultracentrifugation. Size, Conformation and Interactions in Solution Adv Polym Sci (2005) 186: 211 254 DOI 10.1007/b136821 Springer-Verlag Berlin Heidelberg 2005 Published online: 1 September 2005 Analysis of Polysaccharides by Ultracentrifugation. Size, Conformation and

More information

Physicochemical Studies on Xylinan ( Acetan) Hydrodynamic Characterization by Analytical Ultracentrifugation and Dynamic Light Scattering

Physicochemical Studies on Xylinan ( Acetan) Hydrodynamic Characterization by Analytical Ultracentrifugation and Dynamic Light Scattering ~~ Stephen E. Harding* University of Nottingham Department of Applied Biochemistry and Food Science Sutton Bonington LE12 5RD, United Kingdom Gisela Berth Norwegian Biopolymer Laboratory (NOBIPOL) Department

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Facile One-Spot Synthesis of Highly Branched Polycaprolactone Nam

More information

Part 8. Special Topic: Light Scattering

Part 8. Special Topic: Light Scattering Part 8. Special Topic: Light Scattering Light scattering occurs when polarizable particles in a sample are placed in the oscillating electric field of a beam of light. The varying field induces oscillating

More information

Question 1. Identify the sugars below by filling in the table below (except shaded areas). Use the page or a separate sheet

Question 1. Identify the sugars below by filling in the table below (except shaded areas). Use the page or a separate sheet Question 1. Identify the sugars below by filling in the table below (except shaded areas). Use the page or a separate sheet Sugar name aworth projection(s) of the corresponding pyranose form (Six membered

More information

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download)

COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) COURSE MATERIAL: Unit 3 (Part 1) Polymer Science LT8501 (Click the link Detail to download) Dr. Debasis Samanta Senior Scientist & AcSIR Assistant Professor Polymer Science & Technology Department., CSIR-CLRI,

More information

Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research?

Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research? Benefit of light scattering technologies (RALS/LALS/MALS) and multidetection characterization in life science research? Bert Postma Business Support Separations and MicroCal Size Exclusion Chromatography

More information

ARTICLE IN PRESS. Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis

ARTICLE IN PRESS. Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis ARTICLE IN PRESS FOOD HYDROCOLLOIDS Food Hydrocolloids 22 (8) 1435 1442 www.elsevier.com/locate/foodhyd Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis Gordon A.

More information

Kolligative Eigenschaften der Makromolekülen

Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften der Makromolekülen Kolligative Eigenschaften (colligere = sammeln) Gefrierpunkterniedrigung, Siedepunkterhöhung, Dampfdruckerniedrigung, Osmotischer Druck Kolligative Eigenschaften

More information

On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: a short review

On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: a short review On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: a short review Gordon A. Morris 1, Gary G. Adams and Stephen E. arding 2 1 Chemical and Biological

More information

Determination of shape parameter of nanocrystalline cellulose rods

Determination of shape parameter of nanocrystalline cellulose rods Determination of shape parameter of nanocrystalline cellulose rods Yaman Boluk and Liyan Zhao Cellulose and Hemicellulose Program Forest Products Alberta Research Council June 25, 2009 2009 International

More information

Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan

Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan Carbohydrate Polymers 44 (2001) 261±268 www.elsevier.com/locate/carbpol Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison

More information

Solution Properties of Poly(dimethyl siloxane)

Solution Properties of Poly(dimethyl siloxane) Solution Properties of Poly(dimethyl siloxane) EBRU AYLİN BÜYÜKTANIR, ZUHAL KÜÇÜKYAVUZ Department of Chemistry, Middle East Technical University, Ankara 06531, Turkey Received 31 January 2000; revised

More information

How DLS Works: Interference of Light

How DLS Works: Interference of Light Static light scattering vs. Dynamic light scattering Static light scattering measures time-average intensities (mean square fluctuations) molecular weight radius of gyration second virial coefficient Dynamic

More information

KEMS448 Physical Chemistry Advanced Laboratory Work. Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol

KEMS448 Physical Chemistry Advanced Laboratory Work. Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol KEMS448 Physical Chemistry Advanced Laboratory Work Viscosity: Determining the Molecular Mass of Polyvinyl Alcohol 1 Introduction The internal friction in fluids, or viscosity, is caused by the cohesion

More information

VISCOSITY OF HYDROXYPROPYL CELLULOSE SOLUTIONS IN NON-ENTANGLED AND ENTANGLED STATES

VISCOSITY OF HYDROXYPROPYL CELLULOSE SOLUTIONS IN NON-ENTANGLED AND ENTANGLED STATES CELLULOSE CHEMISTRY AND TECHNOLOGY VISCOSITY OF HYDROXYPROPYL CELLULOSE SOLUTIONS IN NON-ENTANGLED AND ENTANGLED STATES MARIA BERCEA * and PATRICK NAVARD ** * Petru Poni Institute of Macromolecular Chemistry,

More information

Branching Revealed: Characterizing Molecular Structure in Synthetic and Natural Polymers by Multi-Angle Light Scattering

Branching Revealed: Characterizing Molecular Structure in Synthetic and Natural Polymers by Multi-Angle Light Scattering AN03 Branching Revealed: characterizing molecular structure in synthetic and natural polymers 1 Branching Revealed: Characterizing Molecular Structure in Synthetic and Natural Polymers by Multi-Angle Light

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg

Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Static and dynamic light scattering. Cy Jeffries EMBL Hamburg Introduction. The electromagnetic spectrum. visible 10-16 10-10 10-8 10-4 10-2 10 4 (l m) g-rays X-rays UV IR micro wave Long radio waves 400

More information

6. Lichtstreuung (2) Statische Lichtstreuung

6. Lichtstreuung (2) Statische Lichtstreuung 6. Lichtstreuung (2) Statische Lichtstreuung What is Light Scattering? Blue sky, red sunset Automobile headlights in fog Laser beam in a smoky room Reading from an illuminated page Dust particles in beamer

More information

Optimizing GPC Separations

Optimizing GPC Separations Optimizing GPC Separations Criteria for Solvent Selection True sample solubility (Polarity and Time dependant) Compatibility with columns Avoid non-size exclusion effects (eg adsorption by reverse phase

More information

An Introductions to Advanced GPC Solutions

An Introductions to Advanced GPC Solutions An Introductions to Advanced GPC Solutions Alan Brookes Sales Manager GPC Instruments EMEAI 9 th April 2014 Agilent GPC/SEC Solutions 1 Introduction to Polymers Polymers are long chain molecules produced

More information

Measuring S using an analytical ultracentrifuge. Moving boundary

Measuring S using an analytical ultracentrifuge. Moving boundary Measuring S using an analytical ultracentrifuge Moving boundary [C] t = 0 t 1 t 2 0 top r bottom 1 dr b r b (t) r b ω 2 = S ln = ω 2 S (t-t dt r b (t o ) o ) r b = boundary position velocity = dr b dt

More information

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion

Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diffusion Chem 406 Biophysical Chemistry Lecture 1 Transport Processes, Sedimentation & Diusion I. Introduction A. There are a group o biophysical techniques that are based on transport processes. 1. Transport processes

More information

Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures

Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures Journal of Polymer and Biopolymer Physics Chemistry, 2014, Vol. 2, No. 2, 37-43 Available online at http://pubs.sciepub.com/jpbpc/2/2/2 Science and Education Publishing DOI:10.12691/jpbpc-2-2-2 Mark-Houwink

More information

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC)

Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC) Gel Permeation Chromatography (GPC) or Size Exclusion Chromatography (SEC) Size Exclusion Chromatography (SEC) is a non-interaction based separation mechanism in which compounds are retained for different

More information

Introduction to polyelectrolytes and polysaccharide characterization

Introduction to polyelectrolytes and polysaccharide characterization Introduction to polyelectrolytes and polysaccharide characterization M.Rinaudo Biomaterials Applications Grenoble (France) Guadalajara, Mexico, 2-4 May 2017 Program 1.- Introduction to natural polymers

More information

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination

Chapter 3. Molecular Weight. 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination Chapter 3 Molecular Weight 1. Thermodynamics of Polymer Solution 2. Mol Wt Determination 1. Weight, shape, and size of polymers monomer oligomer polymer dimer, trimer, --- telomer ~ oligomer from telomerization

More information

Application compendium. Authors. Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography

Application compendium. Authors. Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography Application compendium Authors Greg Saunders, Ben MacCreath Agilent Technologies, Inc. A guide to multi-detector gel permeation chromatography Contents Introduction...3 Why do multi-detector GPC/SEC?...4

More information

Material Characteristics

Material Characteristics Material Characteristics technology: domains interface body surface supermolecular structures hydro colloids chemistry: states crystalline amorphous gel / glass dissolved Starch: granules formed by molecules

More information

Relation between Huggins Constant and CompatibilityGof Binary Polymer Mixtures in the Aqueous Ternary Systems

Relation between Huggins Constant and CompatibilityGof Binary Polymer Mixtures in the Aqueous Ternary Systems Macromolecular Research, Vol. 1, No., pp 4650 (004) Notes Relation between Huggins Constant and CompatibilityGof Binary Polymer Mixtures in the Aqueous Ternary Systems Isamu Inamura*, Makoto Kittaka, Tatsuya

More information

Methods 54 (2011) Contents lists available at ScienceDirect. Methods. journal homepage:

Methods 54 (2011) Contents lists available at ScienceDirect. Methods. journal homepage: Methods 54 (2011) 136 144 Contents lists available at ScienceDirect Methods journal homepage: www.elsevier.com/locate/ymeth Extended Fujita approach to the molecular weight distribution of polysaccharides

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Vacuum Degasser Pump and Pulse Controller Autosampler Solvent and Filter In-Line Filter Column Oven and Columns Injection Loop Sample Source Detector 1 Detector 2 Detector 3 Waste

More information

Setting the Standard for GPC. Complete Guide for GPC / SEC / GFC Instrumentation and Detection Technologies. The Right Instrument for Your Application

Setting the Standard for GPC. Complete Guide for GPC / SEC / GFC Instrumentation and Detection Technologies. The Right Instrument for Your Application TM Setting the Standard for GPC Complete Guide for GPC / SEC / GFC Instrumentation and Detection Technologies The Right Instrument for Your Application Viscotek is the global leader in Gel Permeation /

More information

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments

Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments Latest Developments in GPC Analysis of Adhesive and Sealant Polymers Mark Pothecary PhD Americas Product Manager Malvern Instruments Molecular weight The most fundamental molecular property that controls

More information

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques

How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques How Molecular Weight and Branching of Polymers Influences Laser Sintering Techniques Dr. Bernd Tartsch Malvern Instruments GmbH Rigipsstr. 19, D-71083 Herrenberg Tel: +49-703-97 770, Fax: +49-703-97 854

More information

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No.6: PHYSICAL CHEMISTRY-II (Statistical Subject PHYSICAL Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 34, Method for determining molar mass - I CHE_P6_M34 Table of Contents 1. Learning Outcomes 2. Introduction

More information

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations P.H.S. Santos a, M.A. Carignano b, O.H. Campanella a a Department of Agricultural and Biological Engineering, Purdue University,

More information

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC

Advanced GPC. GPC On Tour, Barcelona, 28 th February The use of Advanced Detectors in GPC Advanced GPC GPC On Tour, Barcelona, 28 th February 2012 The use of Advanced Detectors in GPC 1 What does Conventional GPC give? Molecular weight averages Relative to the standards used Mw Weight Average

More information

Laboratory course TBT 4135 BIOPOLYMERS. Autumn Prof. Bjørn E. Christensen

Laboratory course TBT 4135 BIOPOLYMERS. Autumn Prof. Bjørn E. Christensen Laboratory course TBT 4135 BIOPOLYMERS Autumn 2013 Prof. Bjørn E. Christensen Gaston Courtade, stud.assistant Ann-Sissel Ulset, technician and lab guru TBT 4135 Biopolymer chemistry lab week 41-43 The

More information

Page 1 of 5. Is it alright to estimate dñ/dc in SLS measurements?

Page 1 of 5. Is it alright to estimate dñ/dc in SLS measurements? Page 1 of 5 Is it alright to estimate dñ/dc in SLS measurements? Due to the complexity of measuring the specific refractive index increment (dñ/dc), static light scattering molecular weight measurements

More information

There are 6 parts to this exam. Parts 1-3 deal with material covered since the midterm exam. Part 4-6 cover all course material.

There are 6 parts to this exam. Parts 1-3 deal with material covered since the midterm exam. Part 4-6 cover all course material. Chemistry 453 March 9, 03 Enter answers in a lue ook Final Examination Key There are 6 parts to this exam. Parts -3 deal with material covered since the midterm exam. Part 4-6 cover all course material.

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Tools to Characterize and Study Polymers.

Tools to Characterize and Study Polymers. Tools to Characterize and Study Polymers. Overview. 1. Osmometry.. Viscosity Measurements. 3. Elastic and Inelastic Light Scattering. 4. Gel-Permeation Chromatography. 5. Atomic Force Microscopy. 6. Computer

More information

cell, in which boundaries are formed under the stabilizing influence of

cell, in which boundaries are formed under the stabilizing influence of VOL. 38, 1952 CHEMISTRY: PICKELS ET AL. 943 AN ULTRACENTRIFUGE CELL FOR PRODUCING BOUNDARIES SYNTHETICALL Y B Y A LA YERING TECHNIQUE By E. G. PICKELS, W. F. HARRINGTON AND H. K. SCHACHMAN SPECIALIZED

More information

Analytical Ultracentrifugation. by: Andrew Rouff and Andrew Gioe

Analytical Ultracentrifugation. by: Andrew Rouff and Andrew Gioe Analytical Ultracentrifugation by: Andrew Rouff and Andrew Gioe Partial Specific Volume (v) Partial Specific Volume is defined as the specific volume of the solute, which is related to volume increase

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci 3.014 Materials Laboratory Dec. 9 th Dec.14 th, 2004 Lab Week 4 Module α 3 Polymer Conformation Lab. Instructor : Francesco Stellacci OBJECTIVES 9 Review random walk model for polymer chains 9 Introduce

More information

Statistical Thermodynamics Exercise 11 HS Exercise 11

Statistical Thermodynamics Exercise 11 HS Exercise 11 Exercise 11 Release: 412215 on-line Return: 1112215 your assistant Discussion: 1512215 your tutorial room Macromolecules (or polymers) are large molecules consisting of smaller subunits (referred to as

More information

The principals of rheology In pharmaceutical technology

The principals of rheology In pharmaceutical technology The principals of rheology In pharmaceutical technology Dr. Aleksandar Széchenyi University of Pécs Gyógyszertechnológiai és Biofarmáciai Intézet Institute of Pharmaceutical Technology and Biopharmacy

More information

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain Question 1 i To start, we recognize the following relationships on the stress and strain γ = γ k + γ 2 1 τ = G k γ k + μ k γ k = μ 2 γ 2 Therefore, the following relationships are also true γ = γ k + γ

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Low temperature solution behaviour of Methylophilus methylotrophus electron transferring flavoprotein: a study by analytical ultracentrifugation

Low temperature solution behaviour of Methylophilus methylotrophus electron transferring flavoprotein: a study by analytical ultracentrifugation Eur Biophys J (1997) 25: 411 416 Springer-Verlag 1997 ARTICLE Helmut Cölfen Stephen E. Harding Emma K. Wilson Nigel S. Scrutton Donald J. Winzor Low temperature solution behaviour of Methylophilus methylotrophus

More information

How to measure the shear viscosity properly?

How to measure the shear viscosity properly? testxpo Fachmesse für Prüftechnik 10.-13.10.2016 How to measure the shear viscosity properly? M p v Rotation Capillary Torsten Remmler, Malvern Instruments Outline How is the Shear Viscosity defined? Principle

More information

RHEOLOGY OF BRANCHED POLYMERS

RHEOLOGY OF BRANCHED POLYMERS RHEOLOGY OF BRANCHED POLYMERS Overview: The Tube Model Shear and elongational viscosity Albena Lederer Leibniz-Institute of Polymer Research Dresden Member of Gottfried Wilhelm Leibniz Society WGL Hohe

More information

GRAFT COPOLYMERS OF STYRENE AND METHYL METHACRYLATE

GRAFT COPOLYMERS OF STYRENE AND METHYL METHACRYLATE GRAFT COPOLYMERS OF STYRENE AND METHYL METHACRYLATE PART 11: VISCOSITY ABSTRACT A study of the viscosity behavior of the graft copolymers described in Part I has been made with dilute solutions in benzene

More information

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA

Introduction to Dynamic Light Scattering with Applications. Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Introduction to Dynamic Light Scattering with Applications Onofrio Annunziata Department of Chemistry Texas Christian University Fort Worth, TX, USA Outline Introduction to dynamic light scattering Particle

More information

Chap. 2. Molecular Weight and Polymer Solutions

Chap. 2. Molecular Weight and Polymer Solutions Chap.. Molecular Weight and Polymer Solutions. Number Average and Weight Average Molecular Weight A) Importance of MW and MW Distribution M.W. physical properties As M.W., toughness, viscosity ) Optimum

More information

By: Ashley and Christine Phy 200 Professor Newman 4/13/12

By: Ashley and Christine Phy 200 Professor Newman 4/13/12 By: Ashley and Christine Phy 200 Professor Newman 4/13/12 What is it? Technique used to settle particles in solution against the barrier using centrifugal acceleration Two Types of Centrifuges Analytical

More information

Lecture 5: Macromolecules, polymers and DNA

Lecture 5: Macromolecules, polymers and DNA 1, polymers and DNA Introduction In this lecture, we focus on a subfield of soft matter: macromolecules and more particularly on polymers. As for the previous chapter about surfactants and electro kinetics,

More information

Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating. Bert Nijhof Technical Paper-7603

Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating. Bert Nijhof Technical Paper-7603 Relationship of Rheological Behavior and Molecular Architecture for LDPE Designed for Extrusion Coating Bert Nijhof Technical Paper-7603 Introduction LDPE produced commercially for first time in 1939 Process

More information

CHARACTERIZATION OF BRANCHED POLYMERS

CHARACTERIZATION OF BRANCHED POLYMERS CHARACTERIZATIN F BRANCHED PLYMERS verview: Properties Branching topology Branching degree Albena Lederer Leibniz-Institute of Polymer Research Dresden Member of Gottfried Wilhelm Leibniz Society WGL Hohe

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

UltraScan Workshop/Bioc5083 Hydrodynamic Methods

UltraScan Workshop/Bioc5083 Hydrodynamic Methods UltraScan Workshop/Bioc5083 Hydrodynamic Methods Borries Demeler, Ph.D. Department of Biochemistry May/June 2013 Analytical Ultracentrifugation Background What can be learned from AUC? Excellent method

More information

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370 Chapter 2 The Chemistry of Biology Dr. Ramos BIO 370 2 Atoms, Bonds, and Molecules Matter - all materials that occupy space and have mass Matter is composed of atoms. Atom simplest form of matter not divisible

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

Characterisation of Viscosity and Molecular Weight of Fractionated NR

Characterisation of Viscosity and Molecular Weight of Fractionated NR Characterisation of Viscosity and Molecular Weight of Fractionated NR ENG A.H. Science & Technology Innovation Centre, Ansell Shah Alam, Malaysia (e-mail: engah@ap.ansell.com) Abstract Viscosity of a rubber

More information

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK Polymer Dynamics Tom McLeish Durham University, UK (see Adv. Phys., 51, 1379-1527, (2002)) Boulder Summer School 2012: Polymers in Soft and Biological Matter Schedule Coarse-grained polymer physics Experimental

More information

Analysis of Fragile Ultra-High Molar Mass. d Chromatography. Amandaa K. Brewer October 22, 2015

Analysis of Fragile Ultra-High Molar Mass. d Chromatography. Amandaa K. Brewer October 22, 2015 Analysis of Fragile Ultra-High Molar Mass Polymers by Hydrodynamic d Chromatography Amandaa K. Brewer October 22, 2015 Ultra-High Molar Mass Polymers and Colloids Particle size and shape of polymers and

More information

A GENERAL METHOD FOR MODELING MACROMOLECULAR SHAPE IN SOLUTION

A GENERAL METHOD FOR MODELING MACROMOLECULAR SHAPE IN SOLUTION A GENERAL METHOD FOR MODELING MACROMOLECULAR SHAPE IN SOLUTION A Graphical (ll-g) Intersection Procedure for Triaxial Ellipsoids STEPHEN E. HARDING Department ofapplied Biochemistry and Food Science, University

More information

Solution Properties of Water Poly(ethylene glycol) Poly(N-vinylpyrrolidone) Ternary System

Solution Properties of Water Poly(ethylene glycol) Poly(N-vinylpyrrolidone) Ternary System Polymer Journal, Vol. 36, No. 2, pp. 108 113 (2004) Solution Properties of Water Poly(ethylene glycol) Poly(N-vinylpyrrolidone) Ternary System Isamu INAMURA, Yuji JINBO, y;yy Makoto KITTAKA, and Ai ASANO

More information

Light Scattering Study of Poly (dimethyl siloxane) in Liquid and Supercritical CO 2.

Light Scattering Study of Poly (dimethyl siloxane) in Liquid and Supercritical CO 2. Supplemental Information. Light Scattering Study of Poly (dimethyl siloxane) in Liquid and Supercritical CO 2. Pascal André, Sarah L. Folk, Mireille Adam, Michael Rubinstein, and Joseph M. DeSimone Technical

More information

Protein folding. Today s Outline

Protein folding. Today s Outline Protein folding Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem: Prediction

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2008

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2008 Lecture /1/8 University of Washington Department of Chemistry Chemistry 45 Winter Quarter 8 A. Analysis of Diffusion Coefficients: Friction Diffusion coefficients can be measured by a variety of methods

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

CH5716 Processing of Materials

CH5716 Processing of Materials CH5716 Processing of Materials Ceramic Thick Film Processing Lecture MC5 Slurry Characterisation Specific Surface Area Powder size & specific surface area (area per unit wt) closely related As particle

More information

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4. Entanglements Zero-shear viscosity vs. M (note change of slope) M < M e Rouse slope 3.4 M > M e Edwards degennes Doi slope 1 Berry + Fox, 1968 Question: Which factors affect the Me: T, P, M, flexibility,

More information

UNIT 1: BIOCHEMISTRY

UNIT 1: BIOCHEMISTRY UNIT 1: BIOCHEMISTRY UNIT 1: Biochemistry Chapter 6.1: Chemistry of Life I. Atoms, Ions, and Molecules A. Living things consist of atoms of different elements 1. An atom is the smallest basic unit of matter

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

The Illumination of Structure using Light Scattering. Michael Caves Product Technical Specialist for Biophysical Characterisation

The Illumination of Structure using Light Scattering. Michael Caves Product Technical Specialist for Biophysical Characterisation The Illumination of Structure using Light Scattering Michael Caves Product Technical Specialist for Biophysical Characterisation Light Scattering Laser Scattered light Detector Scattered light intensity

More information