Lectures on Stochastic System Analysis and Bayesian Updating

Size: px
Start display at page:

Download "Lectures on Stochastic System Analysis and Bayesian Updating"

Transcription

1 Lectures o Stochastic System Aalysis ad Bayesia Updatig Jue 29-July James L. Beck, Califoria Istitute of Techology Jiaye Chig, Natioal Taiwa Uiversity of Sciece & Techology Siu-Kui (Iva) Au, Nayag Techological Uiversity, Sigapore

2 Overview of Robust Stochastic System Aalysis 1.1: Stochastic System Modelig Class(es) of probabilistic iput-output models for system to address ucertaities i system modelig (robust aalysis) Termiology: System = real thig; Model =idealized mathematical model of system 1.2: Prior System Aalysis Ucertaities i system iput also addressed Reliability aalysis to compute failure probabilities 1.3: Posterior System Aalysis Bayesia updatig of models i class based o system data Updated reliability aalysis

3 1.1: Stochastic System Modelig Predictive model: Gives probabilistic iput-output relatio for system depedig o model parameters: p( Y U, θ) u (kow) Iput (ukow) N I System U = { u R : k = 0,..., } k N O Y = { y R : k = 1,..., } k Ucertai y Output where iput (if available) ad output time histories:

4 Stochastic System Modelig (Cotiued) Usually have a set of possible predictive probability models to represet system: { py ( U, θ) : θ Θ R } Nomial prior predictive model: Select sigle model, e.g. most plausible model i set But there is ucertaity i which model gives most accurate predictios that should ot be igored N p

5 Stochastic System Modelig (Cotiued) Robust prior predictive model: Select p( θ M) to quatify the plausibility of each model i set, the from Total Probability Theorem: p( Y U, M) = p( Y U, θ) p( θ M) dθ M Here, deotes the class of probability models, i.e. it specifies the fuctioal forms of & p( θ M More about choosig, the prior PDF, later p( θ M) py ( U, θ) )

6 Stochastic System Model: Example 1 Complete system iput kow: Defie determiistic iput-output model for θ Θ R N p u Iput Ucertai predictio error: q ( U, θ) System ( U, θ) Model for predictio-error time history gives Ca take predictio errors as zero-mea Gaussia & idepedet i time (maximum etropy distributio), so Y is Gaussia with mea q ( U, θ) ad covariace matrix Σ(θ) v = y q Ucertai Output y p ( Y U, θ)

7 Stochastic System Model: Example 2 Complete system iput ot kow: Defie state-space dyamic model for system by: Ucertai state: (kow) u Ucertai Iput w System Output y (ukow) ( 1, 1, 1, θ = F x u w ) x y = H( x, u, θ) + Ucertai output: Probability models for missig iformatio (i.e. iitial state x0 ad time histories of ukow iput w ad predictio error v ), defie p( Y U, θ) v

8 First-Excursio Problem: Aalysis Model Dyamical System U ( t; Z ) Stochastic E xcitatio Y Ucertai Respose 1( t; Z ),..., Ym ( t; Z ) Spectrum Liear filter Gaussia White Noise Z Evelope fuctio e(t )

9 1.2: Prior System Aalysis Total Iput Ucertaity: Choose probability model over set of possible system iputs: p( U U) Nomial prior predictive aalysis: Fid the probability that system output lies i specified set F usig omial model: PY ( F U, θ) = PY ( F U, θ) pu ( U) du Y F Reliability problem correspods to defiig failure (= specified uacceptable performace of system) Primary computatioal tools for complex dyamical systems are advaced stochastic simulatio methods (more later) ad Rice s out-crossig theory for simpler systems

10 First-Excursio Problem Ucertai excitatio U Dyamical System Ucertai respose Y (; tu),..., Y (; tu) 1 m m P(Failure) = P( { Y( t; U) > b for some t o [0, T]}) i= 1 i i

11 Prior System Aalysis (Cotiued) Robust prior predictive aalysis: PY ( F UM, ) = PY ( F U, θ) p( θ M) dθ Robust reliability if defies failure Primary computatioal tools: Y F Stochastic simulatio, e.g. importace samplig with ISD at peak(s) of itegrad (eeds optimizatio) Asymptotic approximatio w.r.t. curvature of the peak(s) of itegrad (eeds optimizatio) Huge differeces possible betwee omial ad robust failure probabilities

12 Prior System Aalysis (Cotiued) Asymptotic approximatio itroduced i: Papadimitriou, Beck ad Katafygiotis (1997). Asymptotic expasios for reliability ad momets of ucertai systems. (at website) Au, Papadimitriou ad Beck (1999). Reliability of Ucertai Dyamical Systems with Multiple Desig Poits (at website) Comparisos betwee omial ad robust failure probabilities available i: Papadimitriou, Beck & Katafygiotis (2001). Updatig Robust Reliability usig Structural Test Data. (at website)

13 1.3: Posterior System Aalysis Available System Data: Update by Bayes Theorem: D N N N = { U, Y } p( θ D, M) = cp( Y U, θ) p( θ M) Optimal posterior predictive model: Select most plausible model i class based o data, i.e. that maximizes the posterior PDF (if uique) θˆ N N N Optimal posterior predictive aalysis: PY ( F U, ˆ θ) = PY ( F U, ˆ θ) pu ( U) du Difficulties: No-covex multi-dimesioal optimizatio ( parameter estimatio ); igores model ucertaity

14 Posterior System Aalysis (Cotiued) Robust posterior predictive model: Use all predictive models i class weighted by their updated probability (exact solutio based o probability axioms): p( Y U, D,M) = p( Y U, θ) p( θ D, M) dθ N Robust posterior predictive aalysis: Primary computatioal tools are MCMC simulatio methods ad asymptotic approximatio w.r.t. sample size N PY ( F U, D ) = N,M PY ( F U, θ) p( θ D N,M ) dθ N

15 Posterior System Aalysis (Cotiued) Asymptotic approximatio for large N for robust posterior predictive aalysis (Beck & Katafygiotis 1998; Papadimitriou, Beck & Katafygiotis both at website) P( Y F U, D,M) = P( Y F U, θ) p( θ D,M) dθ N K k= 1 wpy ( F U, ˆ θ ) k k Assumes system is idetifiable based o the data, i.e. fiite umber of MPVs ˆ θ ˆ θ ˆ 1, 2,..., θ K that locally maximize posterior PDF, so eed to do optimizatio; uses Laplace s method for asymptotic approximatio (see later) N

16 Posterior System Aalysis (Cotiued) w k The weights are proportioal to the volume uder the peak of the posterior PDF at ad sum to uity (see Beck & Katafygiotis 1998) Globally idetifiable case (K=1) justifies usig MPV for posterior predictive model whe there is large amouts of data: Gives a rigorous justificatio for doig predictios with MPV model (or MLE, sice θˆ is isesitive to choice of prior) Error i approximatio is O( 1/ N ) θˆk p( Y U, D N,M) p( Y U, ˆ) θ θˆ

17 Posterior System Aalysis (Cotiued) Uidetifiable case correspods to a cotiuum of MPVs lyig o a lower dimesioal maifold i the parameter space Iterest i this case is drive by fiite-elemet model updatig Asymptotic approximatio for posterior predictive model for large amout of data is a itegral over this maifold feasible if it is low dimesio (<4?) (Katafygiotis ad Lam (2002); Papadimitriou, Beck ad Katafygiotis (2001) - both at website) All MPV models give similar predictios at observed DOFs but may be quite differet at uobserved DOFs

18 Posterior System Aalysis (Cotiued) Stochastic Simulatio approaches: Very challegig because most of probability cotet of posterior PDF is cocetrated i a small volume of parameter space (IS does ot work) But potetial of avoidig difficult o-covex multi-dimesioal optimizatio ad hadlig uidetifiable case i higher dimesios Markov Chai Mote Carlo simulatio (e.g. Metropolis-Hastigs algorithm) shows promise (more later)

19 Commets The framework ad computatioal tools give a powerful approach to stochastic system aalysis ad yet it is ot widely used i egieerig why ot? Obstacle: may people are comfortable with p ( Y U, θ) p( θ M) but ot with because they iterpret probability as the relative frequecy of iheretly radom evets i the log ru

20 Commets The two mai themes for the remaiig lectures: Developmet of probability logic which gives a rigorous framework i which probabilities of models makes sese Developmet of a set of computatioal tools to provide efficiet algorithms for hadlig the highdimesioal algorithms eeded for prior ad posterior stochastic predictive system aalysis

21 Probability Logic Primarily due to: R.T. Cox 1946, 1961: The Algebra of Probable Iferece E.T. Jayes 1983, 2003: Probability Theory The Logic of Sciece Major cotributors to developmet of ideas: T. Bayes 1763: A essay towards solvig a problem i the doctrie of chaces P.S. Laplace 1812: Aalytical Theory of Probability H. Jeffreys 1931: Scietific Iferece 1939: Theory of Probability

22 Quote from James Clerk Maxwell (1850): The actual sciece of logic is coversat at preset oly with thigs either certai, impossible or etirely doubtful, oe of which (fortuately) we have to reaso o. Therefore the true logic of this world is the calculus of probabilities, which takes accout of the magitude of the probability which is, or ought to be, i a reasoable ma s mid.

23 Itroductio Features of Probability Logic Probability logic is a quatitative approach to plausible reasoig whe available iformatio is icomplete; it geeralizes biary Boolea logic Framework based o probability axioms ad o other adhoc criteria or cocepts Uses Cox-Jayes iterpretatio of probability as quatifyig plausibility of statemets coditioal o specified iformatio Probability models are used to stad i for missig iformatio; they are (lack of) kowledge models

24 Itroductio (Cotiued) Features of Probability Logic Careful trackig of all coditioig iformatio sice all probabilities are coditioal o probability models ad other specified iformatio Meaigful to talk about probability of probability models, a essetial aspect of Bayesia aalysis Ivolves itegratios over high-dimesioal iput ad model parameter spaces; computatioal tools for this will be give ad are also beig actively developed by may researchers Framework is geeral but our focus is primarily o dyamical systems

25 Decisio Makig uder Ucertaity/Icomplete Iformatio (e.g. Egieerig System Desig) System Models ad Probability Models [Kowledge models for missig iformatio] Iformatio Processig [Axioms for Calculus of Probability] Decisio Makig [Predicted Decisio Variables] Iformatio processig should be doe i such a way that kow iformatio is ot lost ad spurious iformatio is ot added

26

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Sequential Monte Carlo Methods - A Review. Arnaud Doucet. Engineering Department, Cambridge University, UK

Sequential Monte Carlo Methods - A Review. Arnaud Doucet. Engineering Department, Cambridge University, UK Sequetial Mote Carlo Methods - A Review Araud Doucet Egieerig Departmet, Cambridge Uiversity, UK http://www-sigproc.eg.cam.ac.uk/ ad2/araud doucet.html ad2@eg.cam.ac.uk Istitut Heri Poicaré - Paris - 2

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution America Joural of Theoretical ad Applied Statistics 05; 4(: 6-69 Published olie May 8, 05 (http://www.sciecepublishiggroup.com/j/ajtas doi: 0.648/j.ajtas.05040. ISSN: 6-8999 (Prit; ISSN: 6-9006 (Olie Mathematical

More information

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory 6th Iteratioal Workshop o Aalysis of Dyamic Measuremets Jue -3 0 Göteorg Swede A Simplified Derivatio of Scalar Kalma Filter usig Bayesia Proaility Theory Gregory Kyriazis Imetro - Electrical Metrology

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

PROBABILITY LOGIC: Part 2

PROBABILITY LOGIC: Part 2 James L Bec 2 July 2005 PROBABILITY LOGIC: Part 2 Axioms for Probability Logic Based o geeral cosideratios, we derived axioms for: Pb ( a ) = measure of the plausibility of propositio b coditioal o the

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

Basics of Probability Theory (for Theory of Computation courses)

Basics of Probability Theory (for Theory of Computation courses) Basics of Probability Theory (for Theory of Computatio courses) Oded Goldreich Departmet of Computer Sciece Weizma Istitute of Sciece Rehovot, Israel. oded.goldreich@weizma.ac.il November 24, 2008 Preface.

More information

STOCHASTIC ANALYSIS, MODEL AND RELIABILITY UPDATING OF COMPLEX SYSTEMS WITH APPLICATIONS TO STRUCTURAL DYNAMICS. Thesis by. Sai Hung Cheung.

STOCHASTIC ANALYSIS, MODEL AND RELIABILITY UPDATING OF COMPLEX SYSTEMS WITH APPLICATIONS TO STRUCTURAL DYNAMICS. Thesis by. Sai Hung Cheung. STOCHASTIC ANALYSIS, MODEL AND RELIABILITY UPDATIN OF COMPLEX SYSTEMS WITH APPLICATIONS TO STRUCTURAL DYNAMICS Thesis by Sai Hug Cheug I Partial Fulfillmet of the Requiremets for the degree of Doctor of

More information

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems Cotets i latter part PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Liear Dyamical Systems What is differet from HMM? Kalma filter Its stregth ad limitatio Particle Filter Its simple

More information

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight)

Tests of Hypotheses Based on a Single Sample (Devore Chapter Eight) Tests of Hypotheses Based o a Sigle Sample Devore Chapter Eight MATH-252-01: Probability ad Statistics II Sprig 2018 Cotets 1 Hypothesis Tests illustrated with z-tests 1 1.1 Overview of Hypothesis Testig..........

More information

4. Understand the key properties of maximum likelihood estimation. 6. Understand how to compute the uncertainty in maximum likelihood estimates.

4. Understand the key properties of maximum likelihood estimation. 6. Understand how to compute the uncertainty in maximum likelihood estimates. 9.07 Itroductio to Statistics for Brai ad Cogitive Scieces Emery N. Brow Lecture 9: Likelihood Methods I. Objectives 1. Review the cocept of the joit distributio of radom variables.. Uderstad the cocept

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Teaching Mathematics Concepts via Computer Algebra Systems

Teaching Mathematics Concepts via Computer Algebra Systems Iteratioal Joural of Mathematics ad Statistics Ivetio (IJMSI) E-ISSN: 4767 P-ISSN: - 4759 Volume 4 Issue 7 September. 6 PP-- Teachig Mathematics Cocepts via Computer Algebra Systems Osama Ajami Rashaw,

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Chapter 8 Estimatig with Cofidece 8.1 Cofidece Itervals: The Basics 8.2 8.3 Estimatig

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2

Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2 Axioms for Probability Logic Pb ( a ) = measure of the plausibility of propositio b coditioal o the iformatio stated i propositio a For propositios a, b ad c: P: Pb ( a) 0 P2: Pb ( a& b ) = P3: Pb ( a)

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.

MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. XI-1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI-2 (1075) STATISTICAL DECISION MAKING Advaced

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS R775 Philips Res. Repts 26,414-423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

L = n i, i=1. dp p n 1

L = n i, i=1. dp p n 1 Exchageable sequeces ad probabilities for probabilities 1996; modified 98 5 21 to add material o mutual iformatio; modified 98 7 21 to add Heath-Sudderth proof of de Fietti represetatio; modified 99 11

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

GUIDELINES ON REPRESENTATIVE SAMPLING

GUIDELINES ON REPRESENTATIVE SAMPLING DRUGS WORKING GROUP VALIDATION OF THE GUIDELINES ON REPRESENTATIVE SAMPLING DOCUMENT TYPE : REF. CODE: ISSUE NO: ISSUE DATE: VALIDATION REPORT DWG-SGL-001 002 08 DECEMBER 2012 Ref code: DWG-SGL-001 Issue

More information

Scheduling under Uncertainty using MILP Sensitivity Analysis

Scheduling under Uncertainty using MILP Sensitivity Analysis Schedulig uder Ucertaity usig MILP Sesitivity Aalysis M. Ierapetritou ad Zheya Jia Departmet of Chemical & Biochemical Egieerig Rutgers, the State Uiversity of New Jersey Piscataway, NJ Abstract The aim

More information

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions America Joural of heoretical ad Applied Statistics 6; 5(4): -7 http://www.sciecepublishiggroup.com/j/ajtas doi:.648/j.ajtas.654.6 ISSN: 6-8999 (Prit); ISSN: 6-96 (Olie) Miimax Estimatio of the Parameter

More information

Comparison of Methods for Estimation of Sample Sizes under the Weibull Distribution

Comparison of Methods for Estimation of Sample Sizes under the Weibull Distribution Iteratioal Joural of Applied Egieerig Research ISSN 0973-4562 Volume 12, Number 24 (2017) pp. 14273-14278 Research Idia Publicatios. http://www.ripublicatio.com Compariso of Methods for Estimatio of Sample

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

STA6938-Logistic Regression Model

STA6938-Logistic Regression Model Dr. Yig Zhag STA6938-Logistic Regressio Model Topic -Simple (Uivariate) Logistic Regressio Model Outlies:. Itroductio. A Example-Does the liear regressio model always work? 3. Maximum Likelihood Curve

More information

Available online at ScienceDirect. Physics Procedia 57 (2014 ) 48 52

Available online at  ScienceDirect. Physics Procedia 57 (2014 ) 48 52 Available olie at www.sciecedirect.com ScieceDirect Physics Procedia 57 (214 ) 48 52 27th Aual CSP Workshops o Recet Developmets i Computer Simulatio Studies i Codesed Matter Physics, CSP 214 Applicatio

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments

LECTURE NOTES 9. 1 Point Estimation. 1.1 The Method of Moments LECTURE NOTES 9 Poit Estimatio Uder the hypothesis that the sample was geerated from some parametric statistical model, a atural way to uderstad the uderlyig populatio is by estimatig the parameters of

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l

SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l SRC Techical Note 1997-011 Jue 17, 1997 Tight Thresholds for The Pure Literal Rule Michael Mitzemacher d i g i t a l Systems Research Ceter 130 Lytto Aveue Palo Alto, Califoria 94301 http://www.research.digital.com/src/

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation

II. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso product-momet correlatio

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

Lecture 11: Channel Coding Theorem: Converse Part

Lecture 11: Channel Coding Theorem: Converse Part EE376A/STATS376A Iformatio Theory Lecture - 02/3/208 Lecture : Chael Codig Theorem: Coverse Part Lecturer: Tsachy Weissma Scribe: Erdem Bıyık I this lecture, we will cotiue our discussio o chael codig

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010 A Note o Effi ciet Coditioal Simulatio of Gaussia Distributios A D D C S S, U B C, V, BC, C April 2010 A Cosider a multivariate Gaussia radom vector which ca be partitioed ito observed ad uobserved compoetswe

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc)

Classification of problem & problem solving strategies. classification of time complexities (linear, logarithmic etc) Classificatio of problem & problem solvig strategies classificatio of time complexities (liear, arithmic etc) Problem subdivisio Divide ad Coquer strategy. Asymptotic otatios, lower boud ad upper boud:

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

AN INTERIM REPORT ON SOFT SYSTEMS EVALUATION

AN INTERIM REPORT ON SOFT SYSTEMS EVALUATION AN INTERIM REPORT ON SOFT SYSTEMS EVALUATION Viljem Rupik INTERACTA, LTD, Busiess Iformatio Processig Parmova 53, Ljubljaa 386 01 4291809, e-mail: Viljem.Rupik@siol.et Abstract: As applicatio areas rapidly

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Chapter 6. Sampling and Estimation

Chapter 6. Sampling and Estimation Samplig ad Estimatio - 34 Chapter 6. Samplig ad Estimatio 6.. Itroductio Frequetly the egieer is uable to completely characterize the etire populatio. She/he must be satisfied with examiig some subset

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR) ISSN 2307-4531 (Prit & Olie) http://gssrr.org/idex.php?joural=jouralofbasicadapplied ---------------------------------------------------------------------------------------------------------------------------

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1

n n i=1 Often we also need to estimate the variance. Below are three estimators each of which is optimal in some sense: n 1 i=1 k=1 i=1 k=1 i=1 k=1 MATH88T Maria Camero Cotets Basic cocepts of statistics Estimators, estimates ad samplig distributios 2 Ordiary least squares estimate 3 3 Maximum lielihood estimator 3 4 Bayesia estimatio Refereces 9

More information

ANALYSIS OF EXPERIMENTAL ERRORS

ANALYSIS OF EXPERIMENTAL ERRORS ANALYSIS OF EXPERIMENTAL ERRORS All physical measuremets ecoutered i the verificatio of physics theories ad cocepts are subject to ucertaities that deped o the measurig istrumets used ad the coditios uder

More information

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead)

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead) Lecture 4 Homework Hw 1 ad 2 will be reoped after class for every body. New deadlie 4/20 Hw 3 ad 4 olie (Nima is lead) Pod-cast lecture o-lie Fial projects Nima will register groups ext week. Email/tell

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences Discrete Dyamics i Nature ad Society Article ID 210761 4 pages http://dxdoiorg/101155/2014/210761 Research Article A Uified Weight Formula for Calculatig the Sample Variace from Weighted Successive Differeces

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

x a x a Lecture 2 Series (See Chapter 1 in Boas)

x a x a Lecture 2 Series (See Chapter 1 in Boas) Lecture Series (See Chapter i Boas) A basic ad very powerful (if pedestria, recall we are lazy AD smart) way to solve ay differetial (or itegral) equatio is via a series expasio of the correspodig solutio

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

Probability and Information Theory for Language Modeling. Statistical Linguistics. Statistical Linguistics: Adult Monolingual Speaker

Probability and Information Theory for Language Modeling. Statistical Linguistics. Statistical Linguistics: Adult Monolingual Speaker Probability ad Iformatio Theory for Laguage Modelig Statistical vs. Symbolic NLP Elemetary Probability Theory Laguage Modelig Iformatio Theory Statistical Liguistics Statistical approaches are clearly

More information

CSE 527, Additional notes on MLE & EM

CSE 527, Additional notes on MLE & EM CSE 57 Lecture Notes: MLE & EM CSE 57, Additioal otes o MLE & EM Based o earlier otes by C. Grat & M. Narasimha Itroductio Last lecture we bega a examiatio of model based clusterig. This lecture will be

More information

5 : Exponential Family and Generalized Linear Models

5 : Exponential Family and Generalized Linear Models 0-708: Probabilistic Graphical Models 0-708, Sprig 206 5 : Expoetial Family ad Geeralized Liear Models Lecturer: Matthew Gormley Scribes: Yua Li, Yichog Xu, Silu Wag Expoetial Family Probability desity

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function Australia Joural of Basic ad Applied Scieces, (6) November 26, Pages: 24-248 AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:99-878 EISSN: 239-844 Joural home page: www.ajbasweb.com Bayesia iferece

More information