Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2

Size: px
Start display at page:

Download "Pb ( a ) = measure of the plausibility of proposition b conditional on the information stated in proposition a. & then using P2"

Transcription

1 Axioms for Probability Logic Pb ( a ) = measure of the plausibility of propositio b coditioal o the iformatio stated i propositio a For propositios a, b ad c: P: Pb ( a) 0 P2: Pb ( a& b ) = P3: Pb ( a) + P(~ b a) = P4: Pc ( & b a) = Pc ( b& a) Pb ( a) Properties Derived from Axioms P-P4 P5: (a) P(~ b a& b) = 0, (b) P( b a) [0,] Proof: (a) Follows from P3 with a ( a& b) & the usig P2 (b) Follows from P3 & P: Pb ( a) = P(~ b a) P: (a) Pc ( or b a) = Pc ( a) + Pb ( a) Pc ( & b a) (b) Pc ( or b a) = Pc ( a) + Pb ( a) if a implies that ( c& b ) is false, i.e. b ad c caot both be true ad so are mutually exclusive. (c) If propositio a implies that oly oe of the propositios b, b2,, b ca be true, i.e. they are mutually exclusive, the: Pb ( or b2 or or b a) = Pb ( a) = If, i additio, propositio a implies that oe must be true: Proof: (a) From De Morga s Law: c or b ~ (~ c& ~ b), so: Pc ( or b a) = P(~ (~ c& ~ b) a) P3 P(~ c&~ b a) P4 P(~ c ~ b& a) P(~ b a) = Pb ( a) =

2 P3 [ P( c ~ b& a)] P(~ b a) P4 P(~ b a) + P( c&~ b a) P3,4 P( b a) + P(~ b c& a) P( c a) P3 P( b a) + [ P( b c& a)] P( c a) P4 P( b a) + P( c a) P( b& c a) (b) Follows immediately sice Pc ( & b a ) = 0 (c) Exercise: Use Priciple of Mathematical Iductio P7: If propositio a implies that oe, ad oly oe, of the propositios b,, b is true, the: Proof: (a) (b) Pc ( a) = Pc ( & b a) [Margializatio Theorem] = = Pc ( a) = Pc ( b & a) Pb ( a) [Total Probability Theorem] (c) For =,, : Pb ( c& a) = = Pc ( b & a) Pb ( a) [Bayes Theorem] Pc ( b & a) Pb ( a) (a) Let b b or b2 or or b, the sice a implies b is true, a = a& b, so from P2: P4 Pb ( a ) = ad Pc ( & b a) Pc ( b& a) Pb ( a) = Pc ( a), so Pc ( a) = Pc ( & ( b or or b ) a) = P(( c& b) or or ( c& b ) a) Sice a implies that b ad b m caot both be true if m, it must be that ( c& b )&( c& b ) = c&( b & b ) is false, i.e. ( c& b ) ad ( c& b ) are mutually m m exclusive. From P ( c ) with = b c& b : P( c a) P( c& b a) = (b) Directly from (a) usig P4. (c) From (b), the deomiator o RHS is Pc ( a ), so we eed oly show that Pb ( c& a) Pc ( a) = Pc ( b & a) Pb ( a). This follows from P4 sice both are equal to Pb ( & c a) = Pc ( & b a). m

3 Derivatio of Kolmogorov s Axioms for Probability Measure of a Set Recall that the axioms for probability logic are expressed i terms of propositios a, b, ad c as: P: Pb ( a) 0 P2: Pb ( a& b ) = P3: Pb ( a) + P(~ b a) = P4: Pc ( & b a) = Pc ( b& a) Pb ( a) These axioms imply the property: P: Pc ( or b a) = Pc ( a) + Pb ( a) Pc ( & b a) Cosider a real-valued quatity whose value x is ucertai but we ow that x X, the set of possible values of the quatity, ad assume that X is fiite. Let π deote the propositio that specifies the probability model for the quatity, so π states that x X ad gives the probability (degree of plausibility) of the quatity havig the value x for each x X. Let A X, the from axiom P: K: Px ( Aπ ) 0 From axiom P2: K2: Px ( X π ) = (sice π states x X) Also, Px ( A B π ) = Px ( Aor x B π ) = Px ( A π ) + Px ( B π) Px ( A& x B π) = Px ( A π ) + Px ( B π) Px ( A B π) If AB, X are disjoit, i.e. A B= φ (ullset), the x A ad x B are mutually exclusive, so: K3: Px ( A B π ) = Px ( A π) + Px ( B π) Itroduce the shorteed otatio PA ( ) for Px ( Aπ ) where A X, i.e. leave coditioig o π as implicit, the we ca rewrite the above as: K : PA ( ) 0, A X K2 : PX ( ) = K3 : PA ( B) = PA ( ) + PB ( ), AB, Xwith A B= φ These are lie A. Kolmogorov s axioms i Foudatios of the Theory of Probability, 950. I fact, we could defie a real-valued fuctio P, called a probability measure, o

4 all the subsets of X by: PA ( ) = Px ( A π ), A X. We would the have exactly Kolmogorov s axioms K -K3 i terms of his probability measure. I Kolmogorov s presetatio, the set fuctio PA ( ) is ot give a operatioal iterpretatio. Probability logic gives it a iterpretatio i terms of the degree of plausibility that the ucertai quatity has a value x A, coditioal o the probability model specified by the propositio π. We have ot yet applied axiom P4, but: Px ( A B π ) = Px ( A& x B π ) = Px ( A x B& π ) Px ( B π ) Itroduce the abbreviated otatio agai, the: PA ( B) = PA ( BPB ) ( ) ote that i ay probability Pb ( a ), propositio a caot be self-cotradictory, so we caot have: PB ( ) = Px ( Bπ ) = 0 because this meas that π ~( x B) ad so the propositio ( x B& π ) appearig as coditioig iformatio would be self-cotradictory. Thus, PB ( ) > 0 ad so: PA ( B) PAB ( ) = PB ( ) I Kolmogorov s approach, this appears as a defiitio of coditioal probability, but i the probability logic approach, all probabilities are coditioal from the outset ad so the correspodig result appears as axiom P4. ote: I Kolmogorov s approach, the ucertai-valued variable x is called a radom variable, the set of X of possible values of x is called the sample space ad the subsets of X are called evets. We have little use for this termiology because probability logic has a much wider scope it s domai is propositios. Also, we try to avoid the vague words determiistic ad radom i aalyzig systems ad atural pheomea, usually preferrig istead complete iformatio ad icomplete (or partial) iformatio, respectively. Whe there is missig iformatio, we choose a probability model to give the probability of each possibility i a set of coceived possibilities.

5 Probability Models for Discrete Variables Def If the set X of possible values of a variable x is fiite, the the variable is discrete (Termiology is also used if X is coutably ifiite, but we here we focus o fiite X ). Covetio: Itroduce the shorteed otatio: PA ( π ) = Px ( A π ), A X, i.e. thi of A as also represetig the propositio that x A. Also, write: Px ( ) for P( x ), x X, A= x. π { } π i.e. whe subset { } Here, π is a propositio specifyig the probability model for the quatity whose ucertai value x is a discrete variable. Thus, π specifies the set X of possible values of x ad some fuctio f : X [0,] such that Px ( π ) = f( x), x X. Let X { x,, x } = { x } ad let A X, the by repeated use of K3: = because sigleto sets { } { } P( A π ) = P( x π ) x A = Px ( π ) = f( x) x A x A x ad { xm}, m, are disjoit (i.e. propositios x = x ad x = x m are mutually exclusive). I particular, usig K2:, x X = = PX ( π) = Px ( π) = f( x) so this ormalizatio property must be satisfied by the probability model.

6 Example to Illustrate Cocepts Suppose a gambler offers you a wager that i rolls of a die, a appears more tha some specified o times. Before acceptig the wager, you wat to compute the probability that you will wi, so you mae a stochastic predictive aalysis. Let x deote the umber of s i rolls, the you wat to compute: P(You wi π ) = P( x o π ) where π specifies o appropriate probability model. You reaso that o a roll, each face is equally plausible to appear (i.e. you see o reaso to believe ay umber o the die to be more liely to show up). Also, you feel that owig what umber appeared o a roll has o ifluece o what will appear o the ext roll, i.e. the iformatio from oe roll is irrelevat to predictig what will happe o aother roll. Therefore, you choose the biomial model, so π represets the propositio that the set of possible values for x is X = 0,,, ad that: { } 5 ( x )( ) ( ) x x P( x π ) =, x X where ( )! = x ( x )! x (a combiatorial coefficiet).! x A 0,, o X ad so P(You wi π )=P(A π)= P(x π). You wi if { } After computig this probability, you are told that the gambler is dishoest ad may have a altered die. He showed you oly oe face ad it was a, so you ow woder whether oe or more of the other five faces have a. You decide to revise your predictive aalysis as follows. [To mae this sceario plausible, assume you oly see the top face o each roll] Let π specify the biomial probability model for the case where exactly faces o the die have a, the for =,.., : P( x ) ( ) x x x, x X whereθ = is the probability of rollig a six. [ote that for π, all faces are s, so x= with certaity, i.e. P( x π ) = δ x, the Kroecer delta]. Sice you are usure which propositio π, =,...,, is the appropriate oe to assume true, you choose a probability model for these propositios: P π M = g θ, =,..., ( ) ( ) π = θ ( θ ) where M is a propositio specifyig each π ad your choice of probability model, g ( θ ). ow you calculate: ( ) P(You wi M) P( A M) P x M = = ad use the Total Probability Theorem P7(b) to get: x A x A

7 ( ) ( π & ) ( π ) P x M = P x M P M = because M implies that oe, ad oly oe, of π,..., π is true. ote that the first factor is the predictio of the th model ad the secod factor is the probability of the th model. Also, P( x π & M) = P( x π ) because π states the probability of each x X ad hece M is irrelevat, i.e. P( x π K ) is idepedet of M. otes: ) Whe we write P( c b& a) P( c a) =, we are statig that, give a, the iformatio stated by b is irrelevat to the probability of c, i.e. probabilistic idepedece is about iformatio idepedece ad should ot be cofused with causal idepedece whe the propositios refer to the occurrece of actual evets. 2) There are may possible choices for M. You may feel that each π is equally plausible, so: P( π M) =, =,...,. But you may feel that the gambler is uliely to have a die with o every face because you would get suspicious if every roll gave a, so you choose P( π M) to be a decreasig fuctio of, subject to the costrait: = P ( π M) = Your calculated probability of wiig, ad hece your decisio whether to wager with the gambler, is coditioal o your choice of M ad this is iescapable. You caot get certaity i the choice of π i the absece of iformatio about how may faces of the die have a. You could tae differet choices for M, say M j, j =,... J, ad let M specify a probability model for them, i.e. PM ( M) = h( j), j=,..., J, the: J ( ) ( j) ( j ) P x M = P x M P M M [Total Probability Theorem] j= 3) π specifies a probability model for x: P( x π ) = f( x), x X ad M specifies a probability model for the π : ( π ) ( θ ) P M = g, =,.... j

8 However, itroducig the otatio of ( ) ad ( ) because we ca use P( x π ) ad P( M) f x g θ is really uecessary π istead i our aalysis. Usig Data to Update the Probability of Probability Models We use the gamblig example to examie how we ca use data D to lear more about the probability models. Suppose the gambler says after 2 rolls givig a 3 ad a that if you wat, you ca icrease your bet. Therefore, you wish to calculate how iformatio from data D= { x=, = 2} chages your probability of wiig, based o your choice of the class of probability models for x specified by M, as before. With A' {0,,..., o }: = P( You wi D, M) P( A' D, M) P( x' D, M) = = x' A' where the shorthad D, M meas D & M (a commo covetio) ad x ' = umber of s i (-2) rolls of the die is x '. From the Total Probability Theorem: P x' D, M = P x' π P π D, M ( ) ( ) ( ) = 2 x' because P( x' π, D, M) = P( x' π ) = ( ) θ ( θ ) x ' 2 x' (i.e. D ad M are irrelevat because π specifies the probability of the same form as before except that the origial probability P( M) to P( π D, M) because of the ew iformatio specified by D. Applyig Bayes Theorem P7(c) (with b = π, c= Dad a= M) : P π D, M = c P D π, M P π, M, =,... x ' ). This has π is updated ( ) ( ) ( ) where c = P( D π, M) P( π M) (it esures that P( π D M) = 2 P( D π, M) = θ ( θ) P M = g, =,..., ( π ) ( θ ) Thus, Bayes Theorem gives: P π D, M = 2cθ θ g θ ( ) ( ) ( ) [ Posterior to data] [ Ifluece of data] [ Prior to data], = ) ad:

9 [ote that P ( D M ) π, 0 =, as expected, sice you ow ow that ot all faces of the die have a ]. Substitutig: ( ' D, M) P x We say that ( ', ) = 5 = 2 x' + θ θ θ x ' 5 θ θ θ = x' ( ) g ( ) ( ) g ( ) P x D M is the posterior predictive probability ad ( ) P x M is the prior predictive probability, meaig after ad before, respectively, the iformatio i the data is utilized.

PROBABILITY LOGIC: Part 2

PROBABILITY LOGIC: Part 2 James L Bec 2 July 2005 PROBABILITY LOGIC: Part 2 Axioms for Probability Logic Based o geeral cosideratios, we derived axioms for: Pb ( a ) = measure of the plausibility of propositio b coditioal o the

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Introduction to Probability. Ariel Yadin. Lecture 2

Introduction to Probability. Ariel Yadin. Lecture 2 Itroductio to Probability Ariel Yadi Lecture 2 1. Discrete Probability Spaces Discrete probability spaces are those for which the sample space is coutable. We have already see that i this case we ca take

More information

As stated by Laplace, Probability is common sense reduced to calculation.

As stated by Laplace, Probability is common sense reduced to calculation. Note: Hadouts DO NOT replace the book. I most cases, they oly provide a guidelie o topics ad a ituitive feel. The math details will be covered i class, so it is importat to atted class ad also you MUST

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

What is Probability?

What is Probability? Quatificatio of ucertaity. What is Probability? Mathematical model for thigs that occur radomly. Radom ot haphazard, do t kow what will happe o ay oe experimet, but has a log ru order. The cocept of probability

More information

4 Mathematical Induction

4 Mathematical Induction 4 Mathematical Iductio Examie the propositios for all, 1 + + ( + 1) + = for all, + 1 ( + 1) for all How do we prove them? They are statemets ivolvig a variable ruig through the ifiite set Strictly speakig,

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Homework 9. (n + 1)! = 1 1

Homework 9. (n + 1)! = 1 1 . Chapter : Questio 8 If N, the Homewor 9 Proof. We will prove this by usig iductio o. 2! + 2 3! + 3 4! + + +! +!. Base step: Whe the left had side is. Whe the right had side is 2! 2 +! 2 which proves

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Introduction to Probability. Ariel Yadin. Lecture 7

Introduction to Probability. Ariel Yadin. Lecture 7 Itroductio to Probability Ariel Yadi Lecture 7 1. Idepedece Revisited 1.1. Some remiders. Let (Ω, F, P) be a probability space. Give a collectio of subsets K F, recall that the σ-algebra geerated by K,

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Mathematical Induction

Mathematical Induction Mathematical Iductio Itroductio Mathematical iductio, or just iductio, is a proof techique. Suppose that for every atural umber, P() is a statemet. We wish to show that all statemets P() are true. I a

More information

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) =

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) = COMPSCI 230: Discrete Mathematics for Computer Sciece April 8, 2019 Lecturer: Debmalya Paigrahi Lecture 22 Scribe: Kevi Su 1 Overview I this lecture, we begi studyig the fudametals of coutig discrete objects.

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Topic 5: Basics of Probability

Topic 5: Basics of Probability Topic 5: Jue 1, 2011 1 Itroductio Mathematical structures lie Euclidea geometry or algebraic fields are defied by a set of axioms. Mathematical reality is the developed through the itroductio of cocepts

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY

UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY UNIT 2 DIFFERENT APPROACHES TO PROBABILITY THEORY Structure 2.1 Itroductio Objectives 2.2 Relative Frequecy Approach ad Statistical Probability 2. Problems Based o Relative Frequecy 2.4 Subjective Approach

More information

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18

Discrete Mathematics and Probability Theory Spring 2013 Anant Sahai Lecture 18 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2013 Aat Sahai Lecture 18 Iferece Oe of the major uses of probability is to provide a systematic framework to perform iferece uder ucertaity. A

More information

Different kinds of Mathematical Induction

Different kinds of Mathematical Induction Differet ids of Mathematical Iductio () Mathematical Iductio Give A N, [ A (a A a A)] A N () (First) Priciple of Mathematical Iductio Let P() be a propositio (ope setece), if we put A { : N p() is true}

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter & Teachig Material.

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probability. Set defiitios 2. Set operatios 3. Probability itroduced through sets ad relative frequecy 4. Joit ad coditioal probability 5. Idepedet evets 6. Combied experimets 7. Beroulli trials

More information

Quick Review of Probability

Quick Review of Probability Quick Review of Probability Berli Che Departmet of Computer Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Refereces: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chapter 2 & Teachig

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 6 9/24/2008 DISCRETE RANDOM VARIABLES AND THEIR EXPECTATIONS Cotets 1. A few useful discrete radom variables 2. Joit, margial, ad

More information

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and MATH01 Real Aalysis (2008 Fall) Tutorial Note #7 Sequece ad Series of fuctio 1: Poitwise Covergece ad Uiform Covergece Part I: Poitwise Covergece Defiitio of poitwise covergece: A sequece of fuctios f

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

2.4 Sequences, Sequences of Sets

2.4 Sequences, Sequences of Sets 72 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.4 Sequeces, Sequeces of Sets 2.4.1 Sequeces Defiitio 2.4.1 (sequece Let S R. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For each

More information

Random Walks in the Plane: An Energy-Based Approach. Three prizes offered by SCM

Random Walks in the Plane: An Energy-Based Approach. Three prizes offered by SCM Société de Calcul Mathématique S Mathematical Modellig Compay, Corp Tools for decisio help sice 995 Radom Wals i the Plae: Eergy-Based pproach Three prizes offered by SCM Berard Beauzamy ugust 6 I. Itroductio

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

STA 348 Introduction to Stochastic Processes. Lecture 1

STA 348 Introduction to Stochastic Processes. Lecture 1 STA 348 Itroductio to Stochastic Processes Lecture 1 1 Admiis-trivia Istructor: Sotirios Damouras Proouced Sho-tee-ree-os or Sam Cotact Ifo: email: sotirios.damouras@utoroto.ca Office hours: SE/DV 4062,

More information

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1

PH 425 Quantum Measurement and Spin Winter SPINS Lab 1 PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the z-axis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured

More information

Here are some examples of algebras: F α = A(G). Also, if A, B A(G) then A, B F α. F α = A(G). In other words, A(G)

Here are some examples of algebras: F α = A(G). Also, if A, B A(G) then A, B F α. F α = A(G). In other words, A(G) MATH 529 Probability Axioms Here we shall use the geeral axioms of a probability measure to derive several importat results ivolvig probabilities of uios ad itersectios. Some more advaced results will

More information

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3

4x 2. (n+1) x 3 n+1. = lim. 4x 2 n+1 n3 n. n 4x 2 = lim = 3 Exam Problems (x. Give the series (, fid the values of x for which this power series coverges. Also =0 state clearly what the radius of covergece is. We start by settig up the Ratio Test: x ( x x ( x x

More information

1 Generating functions for balls in boxes

1 Generating functions for balls in boxes Math 566 Fall 05 Some otes o geeratig fuctios Give a sequece a 0, a, a,..., a,..., a geeratig fuctio some way of represetig the sequece as a fuctio. There are may ways to do this, with the most commo ways

More information

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient Problem 4: Evaluate by egatig actually u-egatig its upper idex We ow that Biomial coefficiet r { where r is a real umber, is a iteger The above defiitio ca be recast i terms of factorials i the commo case

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

2 Geometric interpretation of complex numbers

2 Geometric interpretation of complex numbers 2 Geometric iterpretatio of complex umbers 2.1 Defiitio I will start fially with a precise defiitio, assumig that such mathematical object as vector space R 2 is well familiar to the studets. Recall that

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger. Homewor 1 Solutios Math 171, Sprig 2010 Hery Adams The exercises are from Foudatios of Mathematical Aalysis by Richard Johsobaugh ad W.E. Pfaffeberger. 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that

More information

Section 4.3. Boolean functions

Section 4.3. Boolean functions Sectio 4.3. Boolea fuctios Let us take aother look at the simplest o-trivial Boolea algebra, ({0}), the power-set algebra based o a oe-elemet set, chose here as {0}. This has two elemets, the empty set,

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19 CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016 subcaptiofot+=small,labelformat=pares,labelsep=space,skip=6pt,list=0,hypcap=0 subcaptio ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, /6/06. Self-cojugate Partitios Recall that, give a partitio λ, we may

More information

Exercises 1 Sets and functions

Exercises 1 Sets and functions Exercises 1 Sets ad fuctios HU Wei September 6, 018 1 Basics Set theory ca be made much more rigorous ad built upo a set of Axioms. But we will cover oly some heuristic ideas. For those iterested studets,

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Math 140A Elementary Analysis Homework Questions 1

Math 140A Elementary Analysis Homework Questions 1 Math 14A Elemetary Aalysis Homewor Questios 1 1 Itroductio 1.1 The Set N of Natural Numbers 1 Prove that 1 2 2 2 2 1 ( 1(2 1 for all atural umbers. 2 Prove that 3 11 (8 5 4 2 for all N. 4 (a Guess a formula

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

L = n i, i=1. dp p n 1

L = n i, i=1. dp p n 1 Exchageable sequeces ad probabilities for probabilities 1996; modified 98 5 21 to add material o mutual iformatio; modified 98 7 21 to add Heath-Sudderth proof of de Fietti represetatio; modified 99 11

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

1 Games in Normal Form (Strategic Form)

1 Games in Normal Form (Strategic Form) 1 Games i Normal Form Strategic Form) A Game i Normal strategic) Form cosists of three compoets: 1 A set of players For each player, a set of strategies called actios i textbook) The iterpretatio is that

More information

Math 220A Fall 2007 Homework #2. Will Garner A

Math 220A Fall 2007 Homework #2. Will Garner A Math 0A Fall 007 Homewor # Will Garer Pg 3 #: Show that {cis : a o-egative iteger} is dese i T = {z œ : z = }. For which values of q is {cis(q): a o-egative iteger} dese i T? To show that {cis : a o-egative

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

Chapter 1 : Combinatorial Analysis

Chapter 1 : Combinatorial Analysis STAT/MATH 394 A - PROBABILITY I UW Autum Quarter 205 Néhémy Lim Chapter : Combiatorial Aalysis A major brach of combiatorial aalysis called eumerative combiatorics cosists of studyig methods for coutig

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Lectures 1 5 Probability Models

Lectures 1 5 Probability Models Lectures 1 5 Probability Models Aalogy with Geometry: abstract model for chace pheomea Laguage ad Symbols of Chace Experimets: Sample space S, cosistig of all possible outcomes (elemets e, f,..., evets

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Sequences, Series, and All That

Sequences, Series, and All That Chapter Te Sequeces, Series, ad All That. Itroductio Suppose we wat to compute a approximatio of the umber e by usig the Taylor polyomial p for f ( x) = e x at a =. This polyomial is easily see to be 3

More information

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 5 STATISTICS II. Mea ad stadard error of sample data. Biomial distributio. Normal distributio 4. Samplig 5. Cofidece itervals

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n.

Alternating Series. 1 n 0 2 n n THEOREM 9.14 Alternating Series Test Let a n > 0. The alternating series. 1 n a n. 0_0905.qxd //0 :7 PM Page SECTION 9.5 Alteratig Series Sectio 9.5 Alteratig Series Use the Alteratig Series Test to determie whether a ifiite series coverges. Use the Alteratig Series Remaider to approximate

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information