SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l


 Austin Atkinson
 1 years ago
 Views:
Transcription
1 SRC Techical Note Jue 17, 1997 Tight Thresholds for The Pure Literal Rule Michael Mitzemacher d i g i t a l Systems Research Ceter 130 Lytto Aveue Palo Alto, Califoria Copyright cdigital Equipmet Corporatio All rights reserved
2 Abstract We cosider the threshold for the solvability of radom ksat formulas (for k 3) usig the pure literal rule. We demostrate how this threshold ca be foud by usig differetial equatios to determie the appropriate limitig behavior of the pure literal rule. 1 Itroductio We cosider the problem of the performace of the pure literal rule i solvig a radom kcnf satisfiability problem for k 3. The probability space k m, is the set of all formulas i cojuctive ormal form i variables with m clauses each cotaiig k literals. For example, the followig formula is a member of 4,3 : (x 1 x ) (x 3 x ) (x x 3 ) ( x 1 x 3 ). Whe we speak of a radom formula, or more specifically of radom k CNF formula with m clauses ad variables, we shall mea a formula chose uiformly at radom from k m,. Note that a alterative way of thikig of such a formula is that we radomly fill each of the mk holes with oe of the literals, each chose idepedetly ad uiformly at radom. The pure literal rule is a heuristic for satisfyig a CNF formula that works as follows. A pure literal is oe whose complemet does ot appear i the formula (ote that a literal ad its complemet ca both be pure, i our uderstadig). As log as there is a pure literal available, set a pure literal to the value 1 (true), remove all clauses cotaiig that literal, ad cotiue. The pure literal rule is the most coservative strategy, i that it oly assigs a value to a variable that will obviously maitai the satisfiability of the formula. Threshold behavior for the pure literal rule has bee studied by Broder, Frieze, ad Upfal [1], who foud that for sufficietly large a radom 3 CNF formula with (approximately) 1.63 clauses ca be solved by the pure literal rule with high probability, ad a radom 3CNF formula with 1.7 clauses is ot solvable by the pure literal rule with high probability. We expad upo their work here by fidig a exact threshold by cosiderig the limitig behavior as usig differetial equatios. These equatios ca also be thought of as describig the expected behavior of the system for large fiite values of. (For more o this approach, see also for example [3, 4, 5, 6, 7, 8].) The questio of the performace of the pure literal rule is related to the more geeral questio of fidig thresholds for the satisfiability of radom ksat formulas; see, for example, []. We ote that this prelimiary ote sketches the developmet of the appropriate differetial equatios ad their solutio. The justificatio that these differetial equatios accurately represet the behavior of the pure literal rule 1
3 is ot fully clarified, although it is easily checked usig argumets from [1] ad [4] or [8], for example. A full versio to be prepared i cojuctio with the authors of [1] will provide more complete details. The Equatios We shall thik of the pure literal rule i the followig maer: at each time step, if there is a pure literal available, a pure literal is chose uiformly at radom from all pure literals. That literal ad its egatio are the deleted (removed from cosideratio), ad all the clauses cotaiig the pure literal are deleted. I the followig, all the variables are scaled by a factor of, the umber of variables i the formula. This is useful i writig the appropriate differetial equatios. Hece (as will be see below) if we iitially have 10 clauses, we will represet this by a variable with value 10. We shall describe the pure literal rule as a process ruig from time 0 to 1. The variables we shall use are fuctios of time described as follows: L(t) : the scaled umber of udeleted literals remaiig X i (t) : the scaled umber of udeleted literals appearig i times i the formula C(t) : the scaled umber of clauses; that is, the umber of clauses remaiig divided by A(t) : the average umber of clauses i which a literal chose uiformly at radom from all literals appears We may drop the explicit depedece o t whe the meaig is clear. Note that X 0 (t) is the scaled umber of pure literals at time t. IfX 0 (t) = 0 while C(t) >0, the the pure literal rule fails to fid a solutio; the pure literals have ru out while clauses still remai. If, however, X 0 goes to 0 oly as C goes to 0 (ad ecessarily as t goes to 1), the the pure literal rule will succeed o a radom formula with high probability. Hece our goal is to determie how X 0 behaves as we vary the ratio m/. I particular, we shall show that for some costat c k, X 0 stays above 0 o the iterval t [0, 1) if m/ < c k ad it falls below 0 for some t < 1ifm/ > c k. We shall ow determie equatios that describe the limitig behavior as ad m/ is held fixed. The iitial values for C ad X i are easily determied: C(0) = m mk ad, lettig µ =, X i(0) = e µ µ i, sice i the i! limit as goes to ifiity, the distributio of the umber of times a literal approaches the Poisso distributio. To set up the differetial equatios, we assume for each block of time (which ca be though of as 1/) we choose a pure literal uiformly at radom ad remove it ad its egatio. Note that this assumes that X 0 (t) >0, ad the differetial equatios do ot hold oce X 0 (t) 0. I fact whe X 0 = 0 the system stops.
4 It is clear that dl =, sice at each step, two literals are removed. Hece, as L 0 =, we have L = t. Whe a radom pure literal is chose, the expected umber of times it appears i the formula is simply the average umber of clauses a radom variable appears i (up to a O( 1 ) additive error). Oe ca see this by otig that ay give pure literal is equally likely to be ay of the remaiig variables; the fact that its egatio appears 0 times does ot affect the coditioal distributio of its umber of appearaces, give the curret state (X 0 (t), X 1 (t),...). (The O( 1 ) discrepacy is caused by the fact that a pure literal is slightly less likely that a radom literal to appear 0 times, as we kow that oe literal, its egatio, appears 0 times; this, however, oly chages thigs by a O( 1 ) term, which ca be safely dismissed i the limit as. From ow o, we igore this discrepacy i establishig the differetial equatios.) Hece dc i 0 = A = ix i. L Makig use of the idetity = i 0 ix i, which expresses the total umber of remaiig variables i the formula i two differet ways, ad our kowledge of the form of L, we may rewrite this as dc = t, from which it is easily derived that C = C 0 (1 t) k/. The equatios describig the behavior of the X i are slightly more complex. First, ote that the pure literal deleted durig a time step appears i times with probability Xi. Now, suppose the pure literal occurs j times. The we L lose a literal that appears i times wheever oe of j clauses cotaiig that variable cotais a literal that appears exactly i times. Note that there are j (k 1) variables deleted, as there are k 1 variables per clause (1 variable for each clause is take by the pure literal!). The probability that each such variable is oe that appears i times is ixi. (Agai, ote that we have here igored additive O( 1 ) terms, such as whe a two appearaces of a literal are deleted.) Hece the expected loss of literals of size i is Xi Ai Xi L. Oe ca similarly determie the expected gai i X i durig a time step from all literals that appear i + 1 times ad have 1 appearace deleted. The result yields: dx i = A(k 1)iX i + A(k 1)(i + 1)X i+1 X i L for i 1. Note the case of X 0 is special, sice we always remove the egatio of a pure literal, which by defiitio appears 0 times, at each step: dx 0 = A(k 1)X 1 X 0 L 1. 3
5 3 The Solutio Recall that, oce X 0 = 0, the process stops. Hece our goal is to determie a explicit equatio for X 0, ad use it to determie what values of m guaratee that X 0 > 0 for t [0, 1). Oce we have solved this determiistic case give by the differetial equatios, we ca use this iformatio to make statemets regardig the limitig case of the radom process as. (Note that, for techical reasos, we also require k 3; see Lemma 4.4 of [1].) For the equatios below, we use c = m which is a fixed costat. Oe may check that the solutios for the X i, i 1, are give by the followig formulas: where X i (t) = ( ) C j (k 1)/k λ i, j (1 t) 1/, c j=i λ i, j = ( ck ) j ( ( 1) i+ j j) i. j! X 0 ca be solved for explicitly, or by otig that X 0 = L i 1 X i, yieldig X 0 (t) = t i=1 ( ) C j (k 1)/k λ i, j (1 t) 1/. c j=i We ow fid a coveiet form for X 0 (t): ( ) C j (k 1)/k X 0 (t) = t λ i, j (1 t) 1/ c i=1 j=i ( ck ) j = (1 t) [(1 ( 1/ t) 1/ ( 1) i+ j j) ] i (1 t) (k 1) j/ j! i=1 j=i ( = (1 t) 1/ j ( ) ) ( ) j ck(1 t) (k 1)/ j (1 t) 1/ ( 1) i+ j i j! j=1 = (1 t) 1/ (1 t) 1/ + j=1 i=1 ( ) ck(1 t) (k 1)/ j ( (1 t) = (1 t) [(1 1/ t) 1/ (k 1)/ ) ] ck 1. Hece, to determie whe X 0 (t) >0, it suffices to examie the expressio ( (1 t) (1 t) 1/ (k 1)/ ) ck 1, 4 j!
6 ad to determie the supremum of the set of all c such that this expressio is positive for all t [0, 1). This ca be foud by fidig the values of c ad t such that the above expressio is 0 at t ad its derivative is 0 at t. This poit must satisfy: ( (1 t) (1 t) 1/ (k 1)/ ) ck 1 = 0 (1 t) 1/ ( (1 t) (k 1)/ ) ck ck(k 1) (1 t) (k 3)/ = 0 4 We use the first equatio above to remove ( the expoetial ) expressio from the secod by otig that it implies exp (1 t) (k 1)/ ck = 1 (1 t) 1/ ad substitutig accordigly. The equatios ca the be solved for c to yield: c = k(k 1)[(1 t) (k )/ (1 t) (k 1)/ ]. This, i tur, yields a coditio o t based solely o k: ( (1 t) 1/ 1 (k 1)((1 t) 1/ 1) ) 1 = 0. This ca easily be solved umerically for the correct t [0, 1) ad i tur for the correct value of c. Usig this framework, we derive Table 1 of values c k, where c k is the appropriate threshold for ksat formula. That is, c k is the umber such that for ay fixed ɛ>0, if we have a radom ksat formula with variables ad (c k ɛ) clauses, with high probability we may fid a solutio usig the pure literal rule, while if we have (c k + ɛ) clauses with high probability the pure literal rule fails to fid a solutio. Refereces [1] A.Z. Broder ad A. M. Frieze ad E. Upfal. O the satisfiability ad maximum satisfiability of radom 3CNF formulas. Joural of Algorithms 0 (1996) pp [] A.M. Frieze ad S. Sue. Aalysis of two simple heuristics o a radom istace of ksat. I Proceedigs of the Fourth Aual ACMSIAM Symposium o Discrete Algorithms (1993) pp [3] B. Hajek. Asymptotic aalysis of a assigmet problem arisig i a distributed commuicatios protocol. I Proceedigs of the 7th Coferece o Decisio ad Cotrol (1988) pp
7 k c k Table 1: The thresholds for the pure literal rule for ksat. These values match simulatios quite well eve for a very small umber of clauses (i the tes of thousads). [4] R. M. Karp ad M. Sipser. Maximum matchigs i sparse radom graphs. I Proceedigs of the d IEEE Symposium o Foudatios of Computer Sciece (1981) pp [5] T. G. Kurtz. Approximatio of Populatio Processes. SIAM (1981) [6] M. Mitzemacher. Load balacig ad desity depedet jump Markov processes. I Proc. of the 37 th IEEE Symp. o Foudatios of Computer Sciece (1996) pp. 13. [7] M. Mitzemacher. The Power of Two Choices i Radomized Load Balacig Ph.D. thesis, Uiversity of Califoria, Berkeley. (September 1996) [8] N.C. Wormald. Differetial equatios for radom processes ad radom graphs. The Aals of Applied Probability 5 (1995) pp
A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence
Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as
More informationSeunghee Ye Ma 8: Week 5 Oct 28
Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value
More informationMA131  Analysis 1. Workbook 2 Sequences I
MA3  Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................
More informationChapter 3. Strong convergence. 3.1 Definition of almost sure convergence
Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i
More informationChapter 6 Principles of Data Reduction
Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a
More information62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +
62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of
More informationSequences I. Chapter Introduction
Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which
More informationOn Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below
O Algorithm for the Miimum Spaig Trees Problem with Diameter Bouded Below Edward Kh. Gimadi 1,2, Alexey M. Istomi 1, ad Ekateria Yu. Shi 2 1 Sobolev Istitute of Mathematics, 4 Acad. Koptyug aveue, 630090
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS
MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak
More informationRead carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.
THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each
More informationThe Sample Variance Formula: A Detailed Study of an Old Controversy
The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace
More informationWHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT
WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still
More informationThe standard deviation of the mean
Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider
More informationTopics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula Derived from the Gamma Function
Steve R. Dubar Departmet of Mathematics 23 Avery Hall Uiversity of NebraskaLicol Licol, NE 685883 http://www.math.ul.edu Voice: 42472373 Fax: 424728466 Topics i Probability Theory ad Stochastic Processes
More informationExpected Norms of ZeroOne Polynomials
DRAFT: Caad. Math. Bull. July 4, 08 :5 File: borwei80 pp. Page Sheet of Caad. Math. Bull. Vol. XX (Y, ZZZZ pp. 0 0 Expected Norms of ZeroOe Polyomials Peter Borwei, KwokKwog Stephe Choi, ad Idris Mercer
More informationEcon 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chisquare Distribution, Student s t distribution 1.
Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chisquare Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio
More informationElement sampling: Part 2
Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig
More informationLesson 10: Limits and Continuity
www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals
More informationLarge holes in quasirandom graphs
Large holes i quasiradom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,
More informationInfinite Sequences and Series
Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet
More informationChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS
SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS I a exothermic reactio the temperature will cotiue to rise as oe moves alog a plug flow reactor util all of the limitig reactat is exhausted. Schematically
More informationMATH 10550, EXAM 3 SOLUTIONS
MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,
More informationZeros of Polynomials
Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree
More informationDS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10
DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set
More informationSolutions to Tutorial 5 (Week 6)
The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial 5 (Wee 6 MATH2962: Real ad Complex Aalysis (Advaced Semester, 207 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/
More informationMost text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t
Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said
More informationw (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.
2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of otime jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For
More informationNUMERICAL METHODS FOR SOLVING EQUATIONS
Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:
More informationDiscrete probability distributions
Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop
More informationLecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting
Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would
More informationLecture 10 October Minimaxity and least favorable prior sequences
STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least
More information(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?
MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle
More informationMAT1026 Calculus II Basic Convergence Tests for Series
MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real
More informationOutput Analysis and RunLength Control
IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad RuLegth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%
More informationOnce we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1
. Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely
More informationMath 2784 (or 2794W) University of Connecticut
ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really
More informationMA131  Analysis 1. Workbook 9 Series III
MA3  Aalysis Workbook 9 Series III Autum 004 Cotets 4.4 Series with Positive ad Negative Terms.............. 4.5 Alteratig Series.......................... 4.6 Geeral Series.............................
More informationsin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =
60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece
More informationThe Poisson Distribution
MATH 382 The Poisso Distributio Dr. Neal, WKU Oe of the importat distributios i probabilistic modelig is the Poisso Process X t that couts the umber of occurreces over a period of t uits of time. This
More informationCommutativity in Permutation Groups
Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are
More informationLecture 14: Randomized Computation (cont.)
CSE 200 Computability ad Complexity Wedesday, May 15, 2013 Lecture 14: Radomized Computatio (cot.) Istructor: Professor Shachar Lovett Scribe: Dogcai She 1 Radmized Algorithm Examples 1.1 The kth Elemet
More informationSeries III. Chapter Alternating Series
Chapter 9 Series III With the exceptio of the Null Sequece Test, all the tests for series covergece ad divergece that we have cosidered so far have dealt oly with series of oegative terms. Series with
More informationJANE PROFESSOR WW Prob Lib1 Summer 2000
JANE PROFESSOR WW Prob Lib Summer 000 Sample WeBWorK problems. WeBWorK assigmet Series6CompTests due /6/06 at :00 AM..( pt) Test each of the followig series for covergece by either the Compariso Test or
More informationThe variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.
SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample
More informationUnbiased Estimation. February 712, 2008
Ubiased Estimatio February 72, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom
More informationMa 530 Infinite Series I
Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li
More informationMathematics 170B Selected HW Solutions.
Mathematics 17B Selected HW Solutios. F 4. Suppose X is B(,p). (a)fidthemometgeeratigfuctiom (s)of(x p)/ p(1 p). Write q = 1 p. The MGF of X is (pe s + q), sice X ca be writte as the sum of idepedet Beroulli
More informationBasis for simulation techniques
Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios
More informationDiscrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 19
CS 70 Discrete Mathematics ad Probability Theory Sprig 2016 Rao ad Walrad Note 19 Some Importat Distributios Recall our basic probabilistic experimet of tossig a biased coi times. This is a very simple
More informationarxiv: v1 [math.fa] 3 Apr 2016
Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert
More informationG. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan
Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity
More informationPLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)
Math 0560, Exam 3 November 6, 07 The Hoor Code is i effect for this examiatio. All work is to be your ow. No calculators. The exam lasts for hour ad 5 mi. Be sure that your ame is o every page i case pages
More informationTrue Nature of Potential Energy of a Hydrogen Atom
True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365w, 33+p Abstract I cosiderig the potetial
More informationKLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions
We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give
More informationLecture 9: Hierarchy Theorems
IAS/PCMI Summer Sessio 2000 Clay Mathematics Udergraduate Program Basic Course o Computatioal Complexity Lecture 9: Hierarchy Theorems David Mix Barrigto ad Alexis Maciel July 27, 2000 Most of this lecture
More informationSome special clique problems
Some special clique problems Reate Witer Istitut für Iformatik MartiLutherUiversität HalleWitteberg VoSeckedorffPlatz, D 0620 Halle Saale Germay Abstract: We cosider graphs with cliques of size k
More informationPrecalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions
Precalculus MATH 2412 Sectios 3.1, 3.2, 3.3 Epoetial, Logistic ad Logarithmic Fuctios Epoetial fuctios are used i umerous applicatios coverig may fields of study. They are probably the most importat group
More informationStability Analysis of the Euler Discretization for SIR Epidemic Model
Stability Aalysis of the Euler Discretizatio for SIR Epidemic Model Agus Suryato Departmet of Mathematics, Faculty of Scieces, Brawijaya Uiversity, Jl Vetera Malag 6545 Idoesia Abstract I this paper we
More informationHOMEWORK 2 SOLUTIONS
HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationRecursive Algorithm for Generating Partitions of an Integer. 1 Preliminary
Recursive Algorithm for Geeratig Partitios of a Iteger SugHyuk Cha Computer Sciece Departmet, Pace Uiversity 1 Pace Plaza, New York, NY 10038 USA scha@pace.edu Abstract. This article first reviews the
More informationMA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity
MA 1910 Lesso 6 Notes Graphs of Ratioal Fuctios (Asymptotes) Limits at ifiity Defiitio of a Ratioal Fuctio: If P() ad Q() are both polyomial fuctios, Q() 0, the the fuctio f below is called a Ratioal Fuctio.
More information6. Uniform distribution mod 1
6. Uiform distributio mod 1 6.1 Uiform distributio ad Weyl s criterio Let x be a seuece of real umbers. We may decompose x as the sum of its iteger part [x ] = sup{m Z m x } (i.e. the largest iteger which
More informationThe picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled
1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how
More informationIP Reference guide for integer programming formulations.
IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more
More informationPostedPrice, SealedBid Auctions
PostedPrice, SealedBid Auctios Professors Greewald ad Oyakawa 2070208 We itroduce the postedprice, sealedbid auctio. This auctio format itroduces the idea of approximatios. We describe how well this
More informationINEQUALITIES BJORN POONEN
INEQUALITIES BJORN POONEN 1 The AMGM iequality The most basic arithmetic meageometric mea (AMGM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad
More informationShannon s noiseless coding theorem
18.310 lecture otes May 4, 2015 Shao s oiseless codig theorem Lecturer: Michel Goemas I these otes we discuss Shao s oiseless codig theorem, which is oe of the foudig results of the field of iformatio
More informationFastest mixing Markov chain on a path
Fastest mixig Markov chai o a path Stephe Boyd Persi Diacois Ju Su Li Xiao Revised July 2004 Abstract We ider the problem of assigig trasitio probabilities to the edges of a path, so the resultig Markov
More informationCS / MCS 401 Homework 3 grader solutions
CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of
More informationReview Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn
Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom
More informationCourse Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.
Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the splae 4 Mar Block Diagrams Assig
More informationSection 11.8: Power Series
Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i
More information1 Hash tables. 1.1 Implementation
Lecture 8 Hash Tables, Uiversal Hash Fuctios, Balls ad Bis Scribes: Luke Johsto, Moses Charikar, G. Valiat Date: Oct 18, 2017 Adapted From Virgiia Williams lecture otes 1 Hash tables A hash table is a
More information6.883: Online Methods in Machine Learning Alexander Rakhlin
6.883: Olie Methods i Machie Learig Alexader Rakhli LECTURES 5 AND 6. THE EXPERTS SETTING. EXPONENTIAL WEIGHTS All the algorithms preseted so far halluciate the future values as radom draws ad the perform
More informationNYU Center for Data Science: DSGA 1003 Machine Learning and Computational Statistics (Spring 2018)
NYU Ceter for Data Sciece: DSGA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we
More informationB Supplemental Notes 2 Hypergeometric, Binomial, Poisson and Multinomial Random Variables and Borel Sets
B671672 Supplemetal otes 2 Hypergeometric, Biomial, Poisso ad Multiomial Radom Variables ad Borel Sets 1 Biomial Approximatio to the Hypergeometric Recall that the Hypergeometric istributio is fx = x
More informationResearch Article A New SecondOrder Iteration Method for Solving Nonlinear Equations
Abstract ad Applied Aalysis Volume 2013, Article ID 487062, 4 pages http://dx.doi.org/10.1155/2013/487062 Research Article A New SecodOrder Iteratio Method for Solvig Noliear Equatios Shi Mi Kag, 1 Arif
More informationA Block Cipher Using Linear Congruences
Joural of Computer Sciece 3 (7): 556560, 2007 ISSN 15493636 2007 Sciece Publicatios A Block Cipher Usig Liear Cogrueces 1 V.U.K. Sastry ad 2 V. Jaaki 1 Academic Affairs, Sreeidhi Istitute of Sciece &
More informationTHE SYSTEMATIC AND THE RANDOM. ERRORS  DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS
R775 Philips Res. Repts 26,414423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS  DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated
More informationStatistical Theory MT 2009 Problems 1: Solution sketches
Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where
More informationA Simple Probabilistic Explanation of Term FrequencyInverse Document Frequency (tfidf) Heuristic (and Variations Motivated by This Explanation)
Uiversity of Texas at El Paso DigitalCommos@UTEP Departmetal Techical Reports (CS) Departmet of Computer Sciece 52014 A Simple Probabilistic Explaatio of Term FrequecyIverse Documet Frequecy (tfidf)
More informationProbability, Expectation Value and Uncertainty
Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such
More informationBINOMIAL COEFFICIENT AND THE GAUSSIAN
BINOMIAL COEFFICIENT AND THE GAUSSIAN The biomial coefficiet is defied as! k!(! ad ca be writte out i the form of a Pascal Triagle startig at the zeroth row with elemet 0,0) ad followed by the two umbers,
More informationMark Lundstrom Spring SOLUTIONS: ECE 305 Homework: Week 5. Mark Lundstrom Purdue University
Mark udstrom Sprig 2015 SOUTIONS: ECE 305 Homework: Week 5 Mark udstrom Purdue Uiversity The followig problems cocer the Miority Carrier Diffusio Equatio (MCDE) for electros: Δ t = D Δ + G For all the
More informationMathematical Foundation. CSE 6331 Algorithms Steve Lai
Mathematical Foudatio CSE 6331 Algorithms Steve Lai Complexity of Algorithms Aalysis of algorithm: to predict the ruig time required by a algorithm. Elemetary operatios: arithmetic & boolea operatios:
More informationSolutions to Final Exam Review Problems
. Let f(x) 4+x. Solutios to Fial Exam Review Problems Math 5C, Witer 2007 (a) Fid the Maclauri series for f(x), ad compute its radius of covergece. Solutio. f(x) 4( ( x/4)) ( x/4) ( ) 4 4 + x. Sice the
More informationA Simplified Binet Formula for kgeneralized Fibonacci Numbers
A Simplified Biet Formula for kgeeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com
More informationMath 2112 Solutions Assignment 5
Math 2112 Solutios Assigmet 5 5.1.1 Idicate which of the followig relatioships are true ad which are false: a. Z Q b. R Q c. Q Z d. Z Z Z e. Q R Q f. Q Z Q g. Z R Z h. Z Q Z a. True. Every positive iteger
More informationComparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series
Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3337 HIKARI Ltd, www.mhikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series
More informationSubject: Differential Equations & Mathematical ModelingIII
Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical ModeligIII Lesso: Power series solutios of differetial equatios about Sigular poits Lesso
More informationHOMEWORK #10 SOLUTIONS
Math 33  Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous
More informationStudents will calculate quantities that involve positive and negative rational exponents.
: Ratioal Expoets What are ad? Studet Outcomes Studets will calculate quatities that ivolve positive ad egative ratioal expoets. Lesso Notes Studets exted their uderstadig of iteger expoets to ratioal
More informationLecture 3 The Lebesgue Integral
Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified
More information9.3 Power Series: Taylor & Maclaurin Series
9.3 Power Series: Taylor & Maclauri Series If is a variable, the a ifiite series of the form 0 is called a power series (cetered at 0 ). a a a a a 0 1 0 is a power series cetered at a c a a c a c a c 0
More informationSolution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1
Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity
More informationPRACTICE FINAL/STUDY GUIDE SOLUTIONS
Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)
More informatione to approximate (using 4
Review: Taylor Polyomials ad Power Series Fid the iterval of covergece for the series Fid a series for f ( ) d ad fid its iterval of covergece Let f( ) Let f arcta a) Fid the rd degree Maclauri polyomial
More informationMachine Learning Theory Tübingen University, WS 2016/2017 Lecture 12
Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig
More information