SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "SRC Technical Note June 17, Tight Thresholds for The Pure Literal Rule. Michael Mitzenmacher. d i g i t a l"

Transcription

1 SRC Techical Note Jue 17, 1997 Tight Thresholds for The Pure Literal Rule Michael Mitzemacher d i g i t a l Systems Research Ceter 130 Lytto Aveue Palo Alto, Califoria Copyright cdigital Equipmet Corporatio All rights reserved

2 Abstract We cosider the threshold for the solvability of radom k-sat formulas (for k 3) usig the pure literal rule. We demostrate how this threshold ca be foud by usig differetial equatios to determie the appropriate limitig behavior of the pure literal rule. 1 Itroductio We cosider the problem of the performace of the pure literal rule i solvig a radom k-cnf satisfiability problem for k 3. The probability space k m, is the set of all formulas i cojuctive ormal form i variables with m clauses each cotaiig k literals. For example, the followig formula is a member of 4,3 : (x 1 x ) (x 3 x ) (x x 3 ) ( x 1 x 3 ). Whe we speak of a radom formula, or more specifically of radom k- CNF formula with m clauses ad variables, we shall mea a formula chose uiformly at radom from k m,. Note that a alterative way of thikig of such a formula is that we radomly fill each of the mk holes with oe of the literals, each chose idepedetly ad uiformly at radom. The pure literal rule is a heuristic for satisfyig a CNF formula that works as follows. A pure literal is oe whose complemet does ot appear i the formula (ote that a literal ad its complemet ca both be pure, i our uderstadig). As log as there is a pure literal available, set a pure literal to the value 1 (true), remove all clauses cotaiig that literal, ad cotiue. The pure literal rule is the most coservative strategy, i that it oly assigs a value to a variable that will obviously maitai the satisfiability of the formula. Threshold behavior for the pure literal rule has bee studied by Broder, Frieze, ad Upfal [1], who foud that for sufficietly large a radom 3- CNF formula with (approximately) 1.63 clauses ca be solved by the pure literal rule with high probability, ad a radom 3-CNF formula with 1.7 clauses is ot solvable by the pure literal rule with high probability. We expad upo their work here by fidig a exact threshold by cosiderig the limitig behavior as usig differetial equatios. These equatios ca also be thought of as describig the expected behavior of the system for large fiite values of. (For more o this approach, see also for example [3, 4, 5, 6, 7, 8].) The questio of the performace of the pure literal rule is related to the more geeral questio of fidig thresholds for the satisfiability of radom k-sat formulas; see, for example, []. We ote that this prelimiary ote sketches the developmet of the appropriate differetial equatios ad their solutio. The justificatio that these differetial equatios accurately represet the behavior of the pure literal rule 1

3 is ot fully clarified, although it is easily checked usig argumets from [1] ad [4] or [8], for example. A full versio to be prepared i cojuctio with the authors of [1] will provide more complete details. The Equatios We shall thik of the pure literal rule i the followig maer: at each time step, if there is a pure literal available, a pure literal is chose uiformly at radom from all pure literals. That literal ad its egatio are the deleted (removed from cosideratio), ad all the clauses cotaiig the pure literal are deleted. I the followig, all the variables are scaled by a factor of, the umber of variables i the formula. This is useful i writig the appropriate differetial equatios. Hece (as will be see below) if we iitially have 10 clauses, we will represet this by a variable with value 10. We shall describe the pure literal rule as a process ruig from time 0 to 1. The variables we shall use are fuctios of time described as follows: L(t) : the scaled umber of udeleted literals remaiig X i (t) : the scaled umber of udeleted literals appearig i times i the formula C(t) : the scaled umber of clauses; that is, the umber of clauses remaiig divided by A(t) : the average umber of clauses i which a literal chose uiformly at radom from all literals appears We may drop the explicit depedece o t whe the meaig is clear. Note that X 0 (t) is the scaled umber of pure literals at time t. IfX 0 (t) = 0 while C(t) >0, the the pure literal rule fails to fid a solutio; the pure literals have ru out while clauses still remai. If, however, X 0 goes to 0 oly as C goes to 0 (ad ecessarily as t goes to 1), the the pure literal rule will succeed o a radom formula with high probability. Hece our goal is to determie how X 0 behaves as we vary the ratio m/. I particular, we shall show that for some costat c k, X 0 stays above 0 o the iterval t [0, 1) if m/ < c k ad it falls below 0 for some t < 1ifm/ > c k. We shall ow determie equatios that describe the limitig behavior as ad m/ is held fixed. The iitial values for C ad X i are easily determied: C(0) = m mk ad, lettig µ =, X i(0) = e µ µ i, sice i the i! limit as goes to ifiity, the distributio of the umber of times a literal approaches the Poisso distributio. To set up the differetial equatios, we assume for each block of time (which ca be though of as 1/) we choose a pure literal uiformly at radom ad remove it ad its egatio. Note that this assumes that X 0 (t) >0, ad the differetial equatios do ot hold oce X 0 (t) 0. I fact whe X 0 = 0 the system stops.

4 It is clear that dl =, sice at each step, two literals are removed. Hece, as L 0 =, we have L = t. Whe a radom pure literal is chose, the expected umber of times it appears i the formula is simply the average umber of clauses a radom variable appears i (up to a O( 1 ) additive error). Oe ca see this by otig that ay give pure literal is equally likely to be ay of the remaiig variables; the fact that its egatio appears 0 times does ot affect the coditioal distributio of its umber of appearaces, give the curret state (X 0 (t), X 1 (t),...). (The O( 1 ) discrepacy is caused by the fact that a pure literal is slightly less likely that a radom literal to appear 0 times, as we kow that oe literal, its egatio, appears 0 times; this, however, oly chages thigs by a O( 1 ) term, which ca be safely dismissed i the limit as. From ow o, we igore this discrepacy i establishig the differetial equatios.) Hece dc i 0 = A = ix i. L Makig use of the idetity = i 0 ix i, which expresses the total umber of remaiig variables i the formula i two differet ways, ad our kowledge of the form of L, we may rewrite this as dc = t, from which it is easily derived that C = C 0 (1 t) k/. The equatios describig the behavior of the X i are slightly more complex. First, ote that the pure literal deleted durig a time step appears i times with probability Xi. Now, suppose the pure literal occurs j times. The we L lose a literal that appears i times wheever oe of j clauses cotaiig that variable cotais a literal that appears exactly i times. Note that there are j (k 1) variables deleted, as there are k 1 variables per clause (1 variable for each clause is take by the pure literal!). The probability that each such variable is oe that appears i times is ixi. (Agai, ote that we have here igored additive O( 1 ) terms, such as whe a two appearaces of a literal are deleted.) Hece the expected loss of literals of size i is Xi Ai Xi L. Oe ca similarly determie the expected gai i X i durig a time step from all literals that appear i + 1 times ad have 1 appearace deleted. The result yields: dx i = A(k 1)iX i + A(k 1)(i + 1)X i+1 X i L for i 1. Note the case of X 0 is special, sice we always remove the egatio of a pure literal, which by defiitio appears 0 times, at each step: dx 0 = A(k 1)X 1 X 0 L 1. 3

5 3 The Solutio Recall that, oce X 0 = 0, the process stops. Hece our goal is to determie a explicit equatio for X 0, ad use it to determie what values of m guaratee that X 0 > 0 for t [0, 1). Oce we have solved this determiistic case give by the differetial equatios, we ca use this iformatio to make statemets regardig the limitig case of the radom process as. (Note that, for techical reasos, we also require k 3; see Lemma 4.4 of [1].) For the equatios below, we use c = m which is a fixed costat. Oe may check that the solutios for the X i, i 1, are give by the followig formulas: where X i (t) = ( ) C j (k 1)/k λ i, j (1 t) 1/, c j=i λ i, j = ( ck ) j ( ( 1) i+ j j) i. j! X 0 ca be solved for explicitly, or by otig that X 0 = L i 1 X i, yieldig X 0 (t) = t i=1 ( ) C j (k 1)/k λ i, j (1 t) 1/. c j=i We ow fid a coveiet form for X 0 (t): ( ) C j (k 1)/k X 0 (t) = t λ i, j (1 t) 1/ c i=1 j=i ( ck ) j = (1 t) [(1 ( 1/ t) 1/ ( 1) i+ j j) ] i (1 t) (k 1) j/ j! i=1 j=i ( = (1 t) 1/ j ( ) ) ( ) j ck(1 t) (k 1)/ j (1 t) 1/ ( 1) i+ j i j! j=1 = (1 t) 1/ (1 t) 1/ + j=1 i=1 ( ) ck(1 t) (k 1)/ j ( (1 t) = (1 t) [(1 1/ t) 1/ (k 1)/ ) ] ck 1. Hece, to determie whe X 0 (t) >0, it suffices to examie the expressio ( (1 t) (1 t) 1/ (k 1)/ ) ck 1, 4 j!

6 ad to determie the supremum of the set of all c such that this expressio is positive for all t [0, 1). This ca be foud by fidig the values of c ad t such that the above expressio is 0 at t ad its derivative is 0 at t. This poit must satisfy: ( (1 t) (1 t) 1/ (k 1)/ ) ck 1 = 0 (1 t) 1/ ( (1 t) (k 1)/ ) ck ck(k 1) (1 t) (k 3)/ = 0 4 We use the first equatio above to remove ( the expoetial ) expressio from the secod by otig that it implies exp (1 t) (k 1)/ ck = 1 (1 t) 1/ ad substitutig accordigly. The equatios ca the be solved for c to yield: c = k(k 1)[(1 t) (k )/ (1 t) (k 1)/ ]. This, i tur, yields a coditio o t based solely o k: ( (1 t) 1/ 1 (k 1)((1 t) 1/ 1) ) 1 = 0. This ca easily be solved umerically for the correct t [0, 1) ad i tur for the correct value of c. Usig this framework, we derive Table 1 of values c k, where c k is the appropriate threshold for k-sat formula. That is, c k is the umber such that for ay fixed ɛ>0, if we have a radom k-sat formula with variables ad (c k ɛ) clauses, with high probability we may fid a solutio usig the pure literal rule, while if we have (c k + ɛ) clauses with high probability the pure literal rule fails to fid a solutio. Refereces [1] A.Z. Broder ad A. M. Frieze ad E. Upfal. O the satisfiability ad maximum satisfiability of radom 3-CNF formulas. Joural of Algorithms 0 (1996) pp [] A.M. Frieze ad S. Sue. Aalysis of two simple heuristics o a radom istace of k-sat. I Proceedigs of the Fourth Aual ACM-SIAM Symposium o Discrete Algorithms (1993) pp [3] B. Hajek. Asymptotic aalysis of a assigmet problem arisig i a distributed commuicatios protocol. I Proceedigs of the 7th Coferece o Decisio ad Cotrol (1988) pp

7 k c k Table 1: The thresholds for the pure literal rule for k-sat. These values match simulatios quite well eve for a very small umber of clauses (i the tes of thousads). [4] R. M. Karp ad M. Sipser. Maximum matchigs i sparse radom graphs. I Proceedigs of the d IEEE Symposium o Foudatios of Computer Sciece (1981) pp [5] T. G. Kurtz. Approximatio of Populatio Processes. SIAM (1981) [6] M. Mitzemacher. Load balacig ad desity depedet jump Markov processes. I Proc. of the 37 th IEEE Symp. o Foudatios of Computer Sciece (1996) pp. 13. [7] M. Mitzemacher. The Power of Two Choices i Radomized Load Balacig Ph.D. thesis, Uiversity of Califoria, Berkeley. (September 1996) [8] N.C. Wormald. Differetial equatios for radom processes ad radom graphs. The Aals of Applied Probability 5 (1995) pp

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Series Review. a i converges if lim. i=1. a i. lim S n = lim i=1. 2 k(k + 2) converges. k=1. k=1

Series Review. a i converges if lim. i=1. a i. lim S n = lim i=1. 2 k(k + 2) converges. k=1. k=1 Defiitio: We say that the series S = Series Review i= a i is the sum of the first terms. i= a i coverges if lim S exists ad is fiite, where The above is the defiitio of covergece for series. order to see

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013 Large Deviatios for i.i.d. Radom Variables Cotet. Cheroff boud usig expoetial momet geeratig fuctios. Properties of a momet

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

Lecture 2 Clustering Part II

Lecture 2 Clustering Part II COMS 4995: Usupervised Learig (Summer 8) May 24, 208 Lecture 2 Clusterig Part II Istructor: Nakul Verma Scribes: Jie Li, Yadi Rozov Today, we will be talkig about the hardess results for k-meas. More specifically,

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Resolution Proofs of Generalized Pigeonhole Principles

Resolution Proofs of Generalized Pigeonhole Principles Resolutio Proofs of Geeralized Pigeohole Priciples Samuel R. Buss Departmet of Mathematics Uiversity of Califoria, Berkeley Győrgy Turá Departmet of Mathematics, Statistics, ad Computer Sciece Uiversity

More information

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1).

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1). Assigmet 7 Exercise 4.3 Use the Cotiuity Theorem to prove the Cramér-Wold Theorem, Theorem 4.12. Hit: a X d a X implies that φ a X (1) φ a X(1). Sketch of solutio: As we poited out i class, the oly tricky

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Spectral Partitioning in the Planted Partition Model

Spectral Partitioning in the Planted Partition Model Spectral Graph Theory Lecture 21 Spectral Partitioig i the Plated Partitio Model Daiel A. Spielma November 11, 2009 21.1 Itroductio I this lecture, we will perform a crude aalysis of the performace of

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

The Binomial Theorem

The Binomial Theorem The Biomial Theorem Robert Marti Itroductio The Biomial Theorem is used to expad biomials, that is, brackets cosistig of two distict terms The formula for the Biomial Theorem is as follows: (a + b ( k

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT

WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still

More information

Sequences. Notation. Convergence of a Sequence

Sequences. Notation. Convergence of a Sequence Sequeces A sequece is essetially just a list. Defiitio (Sequece of Real Numbers). A sequece of real umbers is a fuctio Z (, ) R for some real umber. Do t let the descriptio of the domai cofuse you; it

More information

Question 1: The magnetic case

Question 1: The magnetic case September 6, 018 Corell Uiversity, Departmet of Physics PHYS 337, Advace E&M, HW # 4, due: 9/19/018, 11:15 AM Questio 1: The magetic case I class, we skipped over some details, so here you are asked to

More information

The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variance Formula: A Detailed Study of an Old Controversy The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Math 10A final exam, December 16, 2016

Math 10A final exam, December 16, 2016 Please put away all books, calculators, cell phoes ad other devices. You may cosult a sigle two-sided sheet of otes. Please write carefully ad clearly, USING WORDS (ot just symbols). Remember that the

More information

MA131 - Analysis 1. Workbook 10 Series IV

MA131 - Analysis 1. Workbook 10 Series IV MA131 - Aalysis 1 Workbook 10 Series IV Autum 2004 Cotets 4.19 Rearragemets of Series...................... 1 4.19 Rearragemets of Series If you take ay fiite set of umbers ad rearrage their order, their

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula Derived from the Gamma Function

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula Derived from the Gamma Function Steve R. Dubar Departmet of Mathematics 23 Avery Hall Uiversity of Nebraska-Licol Licol, NE 68588-3 http://www.math.ul.edu Voice: 42-472-373 Fax: 42-472-8466 Topics i Probability Theory ad Stochastic Processes

More information

Section 5.5. Infinite Series: The Ratio Test

Section 5.5. Infinite Series: The Ratio Test Differece Equatios to Differetial Equatios Sectio 5.5 Ifiite Series: The Ratio Test I the last sectio we saw that we could demostrate the covergece of a series a, where a 0 for all, by showig that a approaches

More information

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below O Algorithm for the Miimum Spaig Trees Problem with Diameter Bouded Below Edward Kh. Gimadi 1,2, Alexey M. Istomi 1, ad Ekateria Yu. Shi 2 1 Sobolev Istitute of Mathematics, 4 Acad. Koptyug aveue, 630090

More information

Expected Norms of Zero-One Polynomials

Expected Norms of Zero-One Polynomials DRAFT: Caad. Math. Bull. July 4, 08 :5 File: borwei80 pp. Page Sheet of Caad. Math. Bull. Vol. XX (Y, ZZZZ pp. 0 0 Expected Norms of Zero-Oe Polyomials Peter Borwei, Kwok-Kwog Stephe Choi, ad Idris Mercer

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Math 257: Finite difference methods

Math 257: Finite difference methods Math 257: Fiite differece methods 1 Fiite Differeces Remember the defiitio of a derivative f f(x + ) f(x) (x) = lim 0 Also recall Taylor s formula: (1) f(x + ) = f(x) + f (x) + 2 f (x) + 3 f (3) (x) +...

More information

Optimal Two-Choice Stopping on an Exponential Sequence

Optimal Two-Choice Stopping on an Exponential Sequence Sequetial Aalysis, 5: 35 363, 006 Copyright Taylor & Fracis Group, LLC ISSN: 0747-4946 prit/53-476 olie DOI: 0.080/07474940600934805 Optimal Two-Choice Stoppig o a Expoetial Sequece Larry Goldstei Departmet

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A. Radom Walks o Discrete ad Cotiuous Circles by Jeffrey S. Rosethal School of Mathematics, Uiversity of Miesota, Mieapolis, MN, U.S.A. 55455 (Appeared i Joural of Applied Probability 30 (1993), 780 789.)

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Lecture Chapter 6: Convergence of Random Sequences

Lecture Chapter 6: Convergence of Random Sequences ECE5: Aalysis of Radom Sigals Fall 6 Lecture Chapter 6: Covergece of Radom Sequeces Dr Salim El Rouayheb Scribe: Abhay Ashutosh Doel, Qibo Zhag, Peiwe Tia, Pegzhe Wag, Lu Liu Radom sequece Defiitio A ifiite

More information

Large holes in quasi-random graphs

Large holes in quasi-random graphs Large holes i quasi-radom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Some Basic Diophantine Equations

Some Basic Diophantine Equations Some Basic iophatie Equatios R.Maikada, epartmet of Mathematics, M.I.E.T. Egieerig College, Tiruchirappalli-7. Email: maimaths78@gmail.com bstract- - I this paper we preset a method for solvig the iophatie

More information

CS161: Algorithm Design and Analysis Handout #10 Stanford University Wednesday, 10 February 2016

CS161: Algorithm Design and Analysis Handout #10 Stanford University Wednesday, 10 February 2016 CS161: Algorithm Desig ad Aalysis Hadout #10 Staford Uiversity Wedesday, 10 February 2016 Lecture #11: Wedesday, 10 February 2016 Topics: Example midterm problems ad solutios from a log time ago Sprig

More information

The Growth of Functions. Theoretical Supplement

The Growth of Functions. Theoretical Supplement The Growth of Fuctios Theoretical Supplemet The Triagle Iequality The triagle iequality is a algebraic tool that is ofte useful i maipulatig absolute values of fuctios. The triagle iequality says that

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

A New Solution Method for the Finite-Horizon Discrete-Time EOQ Problem

A New Solution Method for the Finite-Horizon Discrete-Time EOQ Problem This is the Pre-Published Versio. A New Solutio Method for the Fiite-Horizo Discrete-Time EOQ Problem Chug-Lu Li Departmet of Logistics The Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog Phoe: +852-2766-7410

More information

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p). Limit Theorems Covergece i Probability Let X be the umber of heads observed i tosses. The, E[X] = p ad Var[X] = p(-p). L O This P x p NM QP P x p should be close to uity for large if our ituitio is correct.

More information

Disjoint set (Union-Find)

Disjoint set (Union-Find) CS124 Lecture 7 Fall 2018 Disjoit set (Uio-Fid) For Kruskal s algorithm for the miimum spaig tree problem, we foud that we eeded a data structure for maitaiig a collectio of disjoit sets. That is, we eed

More information

ADVANCED SOFTWARE ENGINEERING

ADVANCED SOFTWARE ENGINEERING ADVANCED SOFTWARE ENGINEERING COMP 3705 Exercise Usage-based Testig ad Reliability Versio 1.0-040406 Departmet of Computer Ssciece Sada Narayaappa, Aeliese Adrews Versio 1.1-050405 Departmet of Commuicatio

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

ChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS

ChE 471 Lecture 10 Fall 2005 SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS SAFE OPERATION OF TUBULAR (PFR) ADIABATIC REACTORS I a exothermic reactio the temperature will cotiue to rise as oe moves alog a plug flow reactor util all of the limitig reactat is exhausted. Schematically

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Mathematical Induction

Mathematical Induction Mathematical Iductio Itroductio Mathematical iductio, or just iductio, is a proof techique. Suppose that for every atural umber, P() is a statemet. We wish to show that all statemets P() are true. I a

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

For use only in [the name of your school] 2014 FP2 Note. FP2 Notes (Edexcel)

For use only in [the name of your school] 2014 FP2 Note. FP2 Notes (Edexcel) For use oly i [the ame of your school] 04 FP Note FP Notes (Edexcel) Copyright wwwpgmathscouk - For AS, A otes ad IGCSE / GCSE worksheets For use oly i [the ame of your school] 04 FP Note BLANK PAGE Copyright

More information

CS322: Network Analysis. Problem Set 2 - Fall 2009

CS322: Network Analysis. Problem Set 2 - Fall 2009 Due October 9 009 i class CS3: Network Aalysis Problem Set - Fall 009 If you have ay questios regardig the problems set, sed a email to the course assistats: simlac@staford.edu ad peleato@staford.edu.

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

Solutions to Tutorial 5 (Week 6)

Solutions to Tutorial 5 (Week 6) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial 5 (Wee 6 MATH2962: Real ad Complex Aalysis (Advaced Semester, 207 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng The value of Baach limits o a certai sequece of all ratioal umbers i the iterval 0, Bao Qi Feg Departmet of Mathematical Scieces, Ket State Uiversity, Tuscarawas, 330 Uiversity Dr. NE, New Philadelphia,

More information

Confidence intervals summary Conservative and approximate confidence intervals for a binomial p Examples. MATH1005 Statistics. Lecture 24. M.

Confidence intervals summary Conservative and approximate confidence intervals for a binomial p Examples. MATH1005 Statistics. Lecture 24. M. MATH1005 Statistics Lecture 24 M. Stewart School of Mathematics ad Statistics Uiversity of Sydey Outlie Cofidece itervals summary Coservative ad approximate cofidece itervals for a biomial p The aïve iterval

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information