THEORETICAL AND EXPERIMENTAL VERIFICATION OF VIBRATION CHARACTERISTICS OF CRACKED ROTOR SYSTEM IN VISCOUS MEDIUM

Size: px
Start display at page:

Download "THEORETICAL AND EXPERIMENTAL VERIFICATION OF VIBRATION CHARACTERISTICS OF CRACKED ROTOR SYSTEM IN VISCOUS MEDIUM"

Transcription

1 5 th International & 6 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 4) December th 4 th, 4, IIT Guwahati, Assam, India THEORETICAL AND EXPERIMENTAL VERIFICATION OF VIBRATION CHARACTERISTICS OF CRACKED ROTOR SYSTEM IN VISCOUS MEDIUM Adik R. Yadao *, Dayal R.Parhi, Department of mechanical engineering, NIT Rourkela, Orissa 7698 adik.mech@gmail.com, dayalparhi@yahoo.com Abstract This paper contains an attempt to evaluate dynamic behaviors of cantilever cracked shaft with mass attached at the end of the shaft in viscous medium at finite region. In this work theoretical expressions have been developed for finding the fundamental natural frequency and amplitude of the shaft with attached mass using influence coefficient method. External fluid forces are analyzed by the Navier Stoke s equation. Viscosity of fluid and crack depth is taken as main variable parameters. Suitable theoretical expressions are considered, and the results are presented graphically. Further experimental verifications have also done to prove the authenticity of the theory developed. The work leads to the conclusion that, the variation of parameter of cracked shaft system makes an appreciable difference in vibration characteristics of shaft. Keywords:Cracked shaft, Crack depth, Viscous medium, Influence coefficient method. Nomenclature A= Shaft cross-sectional area a = Crack depth L =Length of the shaft D =Diameter of the shaft δ =Whirling radius of the shaft E = Modulus of elasticity of shaft material ɛ = Eccentricity Fx, Fy=Fluid forces on shaft in x and y direction, respectively. β = Relative crack depth (a/d) α = Relative crack position (L/L) I = Section moment of inertia of the shaft L = Total length of the shaft L = Cracked position from left side of shaft. Ms = Mass of the shaft per unit length M = Fluid mass displaced by the shaft per unit length P= Pressure R = Radius of the shaft R = Radius of the cylinder u = Radial flow velocity. v = Tangential flow velocity ν = Coefficient of viscosity µ= Poisson s ratio ƍ = Fluid density ω= Rotating speed ω= Natural angular frequency of the shaft Ω=Angular velocity of whirling 44-Dirn = Direction perpendicular to crack 55-Dirn = Direction along the crack. Introduction Wang et al.()has studied the methodical approach sort out the confines of wind turbine models in analyzing the complex dynamic response of tower blade interaction Mario et al.()has developed a hybrid-mixed stress finite element model for the dynamic analysis of structure assuming a physically and geometrically linear behavior. Nerantzaki et al. (7) have proposed the boundary element method meant for the nonlinear free and force vibration of circular plates with varying thickness undergoing large deflection. Sung Juna(8)have analyzed the dynamic behavior of cracked rotor by using the additional slope and bending moment at crack position. Pennacchi (8)have analyzed the shaft vibrations of a MWfor that proposed a model based diagnostic methodology which is help full to identified a crack in a load coupling of a gas turbine before happening a serious failure problem. Sino et al.(8) have studied the dynamic analysis of an internally damped rotating composite shaft. Natural frequencies and instability thresholds are evaluated with the help of homogenized finite element beam model which is considered the internal damping. Nandi (4) have presented a simple method of reduction for finite element model of non-axisymmetric rotors on no isotropic spring support in a rotating frame. Hashemi et al.(9) have studied a finite element formulation for 46-

2 THEORETICAL AND EXPERIMENTAL VERIFICATION OF VIBRATION CHARACTERISTICS OF CRACKED ROTOR SYSTEM IN VISCOUS MEDIUM vibration analysis of rotating thick plate. Plate modeling developed by utilizes the mindlin plate theory combine with second order strain-displacement. Zhou et al. (5)have studied the experimental authentication of the theoretical results is required, particularly for the nonlinear dynamic behavior of the cracked rotor. The crack in the rotor was replicated by a real fatigue crack, as a substitute of a narrow slot. Kadyrov et al.()have examined the oscillations of a rigid cylinder in a tubular duct occupied with a viscous incompressible fluid. They used mathematical and the theoretical consequences for eigen frequency exposed to different fluid parameters. In this investigation, a systematic analysis for the vibrational behavior of a cantilever cracked shaft in viscous medium at finite region is obtainable. Damping effect due to viscous fluid is determined with the help of Navier Stoke s equation. Natural frequencyof the shaft used for finding the critical speed of the system is determined using the influence coefficients method.. Theoretical Analysis.. Equation of Motion The Navier- stroke equation for fluid velocity is expressed in the polar coordinate system r-θ as follows, u p u u u u v = + ν + + t ρ r r r r r r θ r θ v p v v v v u = + ν ρ θ θ θ t r r r r r r r Where u and v denote flow velocities in radial and tangential directions, respectively, and p means a pressure. Rewriting the above equation with the help of a stream function ᴪ (r, θ, t) the above equation can be written as, We obtain, ν t ( ψ ) 4 ψ = Equation [] can be divided into two parts i.e. (a) (b) () ψ = ψ + ψ The radial and tangential components of flow velocity at point A in figure are, ua = Rω sin a δωsin( Ωt θ ) va = Rω cos a + δωcos( Ωt θ) When the shaft isimmersed in a fixed circular cylindrical fluid region with radius R, The boundary conditions forr=r are u = v = r= R r= R d F df + F = dr r dr r d F df + + k F = dr r dr r The non-stationary components of flow velocities induced by the whirling motion of a shaft are given as follows R R A + B+ C I ( kr) ud = = jδω e r θ R + D K ( kr ) r ϕ r r j( ωt θ ) R R A + B+ C I ( kr ) + kri ( kr ) + ϕ r r vd = = δω e r R D K ( kr ) krk ( kr ) r.. Analysis of Fluid Forces j( ωt θ ) (3) (4a) (4b) (5) (6a) (6b) (7a) (7b) The flow velocities given by equation (7) to equation (), thenon-stationary component of pressure p can be written as ψ = ψ ψ v t = The solution of above equation can be given by p A p= θ = δρω R + Br e θ r i( ωt θ ) (8) 46-

3 5 th International & 6 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 4) December th 4 th, 4, IIT Guwahati, Assam, India Only the real parts of equation are meaningful. So and F y after simplification can be express as Fx ( + ε sin ω ) d Y t M M + K Y = F s 55 y (b) x { Re ( ) cos ( ) Im( ) sin ( )} F = mδω H ωt H ωt y { Re ( ) sin ( ) Im( ) cos ( )} F = mδω H ωt H ωt Where H A B C I ( α ) D K ( α ) = and R e ( H ) Im ( H ) denotes the real and imaginary part of H. The coordinates of the center of the shaft are x = cos t and = sin t δ ω ν δ ω d x ( ) ω Im ( ) F = m Re H + m H x d y ( ) ω Im( ) F = mre H + m H y.3. Analysis of Cracked Cantilever Shaft With Mass at Free End In the current analysis a lumped mass at the free end of the cantilever rotating crackedshaftsubmerged in finite fluid region is considered. The ratio of the equivalent lumped mass to the total mass of the shaft in two main direction are given by the expression, α K 44 =, and eq ω M 44 s α e q = dx ω Where M s is the mass of the shaft K 5 5 M dx 5 5 s If a disk with mass M s is attached with the end span of the shaft, a total lumped mass of the shaft is given by the expression M M = M + α M s s eq s M M = M + α M s s eq s (9a) (9b) (a) (b) (a) (b) d ξ * { + M Re( H )} M ω Im ( H ) ( ) cos ( ) + ξ = ε ω ω τ * dξ * d η { + M Re( H )} M ω Im ( H ) ( ) cos( ) + η = ε ω ω τ * dη The steady state solution of the above equation can be obtain in dimensionless form as ξ = δδ cos( ω τ φ ) andη = δδ sin( ω τ φ ) When the 44-direction axis coincides with X axis the amplitude contributes of ɛ in X and Y directions are, * * = cos ( ) and ξ = δ cos ( φ ) ξ δ φ The total dimensionless deflection in X and Y direction, when the 44-dir n (perpendicular to crack)and 55-dir n (along the crack) coincide with X-axis and Y- axis respectively is, δ = δ = ξ + ξ alongthe X direction n= δ = δ = η + η n= alongthe Y direction In this investigation, consider the dimensionless deflection in 44-dir n (perpendicular to crack). 3. Numerical Results and Discussion (3a) (3b) (4) (5) (6a) (6b) In the current investigation, the cantilever rotor system has the following specification Cantilevercracked shaft with a disc at the free end in viscous fluid at finite region ( + ε cos ω ) d X t M M + K X = F s 44 x (a) ) Material of shaft Mild steel ) Density of material ƍ=783kg/m 3 3) Modulus of elasticity E =.x N/m 46-3

4 THEORETICAL AND EXPERIMENTAL VERIFICATION OF VIBRATION CHARACTERISTICS OF CRACKED ROTOR SYSTEM IN VISCOUS MEDIUM 4) Length of the shaft L =.m 5) Radius of the shaft R =.m 6) Radius of disc R D =.4m 7) Length of disc L D =.4m 8) Relative crack depth β=.5// 9) Relative crack location α =.65 ) Damping coefficient of viscous fluid ν =.3 /.47 /.633 Stokes. ) Equivalent mass of fluid displaced/corresponding mass of the shaft M * =.58 /.534 /.44 ) Gap ratio q=(r -R )/ R = Illustrations the effect of varying the viscosity of the fluid and crack depth at constant location on the frequency and amplitude of the cantilever crackedshaftwith additional mass which are revolving in the viscous fluid at finite region. In fig., and 3the graph are plotted between dimensionless amplitude ratio and frequency ratio. From fig., and 3it is observed that as the crack depth increase the resonance frequency decreases. It is also found that as the viscosity of the fluid increase the amplitude of vibration decrease, due to increase in crack depth the corresponding amplitude of vibration under same condition decreases. D im e n s io n le s s A m p li tu d e R a ti o v (stokes) M* ooooo ***** Frequency Ratio Figure. Frequency ratio vs. Dimensionless amplitude ratio. Mild steel shaft (R=.m, L=.m, q=, β=.5, α =.65) D i m e n s i o n l e s s A m p l i t u d e R a t i o D i m e n s i o n l e s s A m p l i t u d e R a t i o v (stokes) M* ooooo ***** Frequency Ratio Figure. Frequency ratio vs. Dimensionless amplitude ratio. Mild steel shaft (R=.m, L=.m, q=β=,α=.65) v (stokes) M* ooooo ***** Frequency Ratio Figure 3. Frequency ratio vs. Dimensionless amplitude ratio. Mild steel shaft (R=.m, L=.m, q=,β=, α =.65) 46-4

5 5 th International & 6 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 4) December th 4 th, 4, IIT Guwahati, Assam, India 4. Experimental Analysis The Experiment are accompanied by cantilever cracked shaft with additional mass at the free end which is rotating in viscous medium for determining the amplitude of vibration by varying damping coefficient of viscosity of fluid and crack depth of shaft. The speed is controlled by a variac which is connected to the motor shaft from the fixed end of the cantilever shaft.from the free end of shaft the amplitude of the vibration was measured with the help of vibration pick-up devicee and vibration indicator for cantilever cracked shaft rotating in different viscous fluid and with the different crack depth. Table. Influence of crack depth on the amplitude ratio %Error Experimental ν =.633 (stokes) β3 β ν =.47 (stokes) β β3 ν =.633 (stokes) β3 β ν =.47 (stokes) β β3 β Theoretical ν =.633 (stokes) ν =.47 (stokes) β β β Figure 4. Schematic diagram of experimental Setup S. N

6 THEORETICAL AND EXPERIMENTAL VERIFICATION OF VIBRATION CHARACTERISTICS OF CRACKED ROTOR SYSTEM IN VISCOUS MEDIUM Table. Influence of varying viscosity of fluid on the amplitude ratio % Error Experimental Theoretical Conclusion V3[stokes] V [stokes] V[stokes] V3[stokes] V [stokes] V[stokes] V3[stokes] V [stokes] V[stokes] S.N In this paper, vibration characteristics of spinning cantilever cracked shaft with attached mass at the free end in viscous medium at finite span has been analyzed theoretically which have authenticated by the experimentally. From above we determine that as the viscosity of external fluid increases there is a decrease in amplitude of vibration of shaft.this effect can be visualized from figure,and3. Theresult presented in figure,and3.it is establish that as the crack depth increase with constant location the natural frequency and amplitude of vibration of the shaft with crack decrease and the rate of decrease is faster with increase in crack depth. The present study can also be used for rotating shafts in viscous medium such as long rotating shafts used in drilling rigs, high speed centrifugal and high speed turbine rotor etc. References Jianhong Wanga, Datong Qin and Teik C.Lim(), Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory, Journal of Sound and Vibration 39; pp Mario R.T., Arruda, Luıs Manuel Santos Castro (), Structural dynamic analysis using hybrid and mixed finite element models, Finite Elements in Analysis and Design 57; pp Maria S. Nerantzaki, John T. Katsikadelis (7), Nonlinear dynamic analysis of circular plates with varying thickness, Arch Appl Mech 77; pp Oh Sung Juna, Mohamed S. Gadalab (8), Dynamic behavior analysis of cracked rotor, Journal of Sound and Vibration 39; pp. 45. Paolo Pennacchi and Andrea Vania (8), Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations, Mechanical Systems and Signal Processing ; pp R. Sino, T.N.Baranger, E. Chatelet and G. Jacquet(8), Dynamic analysis of a rotating composite shaft, Composites Science and Technology 68; pp R. Nandi (4), Reduction of finite element equations for a rotor model on non-isotropic spring support in a rotating frame, Finite Elements in Analysis and Design 4; pp S.H. Hashemi, S.Farhadi, S.Carra (9), Free vibration analysis of rotating thick plates, Journal of Sound and Vibration 33; pp Tong Zhou Zhengce, Sun Jianxu, Xu and Weihua Han (5), Experimental analysis of Cracked Rotor, Journal of Dynamic Systems, Measurement and Control, September 7; Van S.G.Kadyrov, J.Wauer and S.V. Sorokin (), A potential technique in the theory of interaction between a structure and a viscous, compressible fluid, Archive of Applied Mechanics 7; pp

ScienceDirect. The Stability of a Precessing and Nutating Viscoelastic Beam with a Tip Mass

ScienceDirect. The Stability of a Precessing and Nutating Viscoelastic Beam with a Tip Mass Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 144 (2016 ) 68 76 12th International Conference on Vibration Problems, ICOVP 2015 The Stability of a Precessing and Nutating

More information

Vibration Analysis Of Cantilever Shaft With Transverse Cracks

Vibration Analysis Of Cantilever Shaft With Transverse Cracks Vibration Analysis Of Cantilever Shaft With Transverse Cracks R.K Behera, D.R.K. Parhi, S.K. Pradhan, and Seelam Naveen Kumar Dept. of Mech Engg. N.I.T., Rourkela,7698 Dept. of Mech. Engg Dept. of Mech.

More information

WORK SHEET FOR MEP311

WORK SHEET FOR MEP311 EXPERIMENT II-1A STUDY OF PRESSURE DISTRIBUTIONS IN LUBRICATING OIL FILMS USING MICHELL TILTING PAD APPARATUS OBJECTIVE To study generation of pressure profile along and across the thick fluid film (converging,

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support radial loads under high speed operating conditions.

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Dynamics of Machinery

Dynamics of Machinery Dynamics of Machinery Two Mark Questions & Answers Varun B Page 1 Force Analysis 1. Define inertia force. Inertia force is an imaginary force, which when acts upon a rigid body, brings it to an equilibrium

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density Applied Mathematics & Information Sciences 23 2008, 237 257 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. The Rotating Inhomogeneous Elastic Cylinders of Variable-Thickness and

More information

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 7 Instability in rotor systems Lecture - 4 Steam Whirl and

More information

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1

SAMCEF For ROTORS. Chapter 1 : Physical Aspects of rotor dynamics. This document is the property of SAMTECH S.A. MEF A, Page 1 SAMCEF For ROTORS Chapter 1 : Physical Aspects of rotor dynamics This document is the property of SAMTECH S.A. MEF 101-01-A, Page 1 Table of Contents rotor dynamics Introduction Rotating parts Gyroscopic

More information

Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings

Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings Applied and Computational Mechanics 1 (2007) 427-436 Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings P. Ferfecki a, * a Center

More information

Mathematical modeling of three-layer beam hydroelastic oscillations

Mathematical modeling of three-layer beam hydroelastic oscillations Mathematical modeling of three-layer beam hydroelastic oscillations L. I. Mogilevich 1, V. S. Popov, A. A. Popova 3, A. V. Christoforova 4, E. V. Popova 5 1,, 3 Yuri Gagarin State Technical University

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral Journal Bearings Under Flooded Lubrication

Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral Journal Bearings Under Flooded Lubrication International Conference on Fluid Dynamics and Thermodynamics Technologies (FDTT ) IPCSIT vol.33() () IACSIT Press, Singapore Experimental Investigations of Whirl Speeds of a Rotor on Hydrodynamic Spiral

More information

Homework 1. Due whatever day you decide to have the homework session.

Homework 1. Due whatever day you decide to have the homework session. Homework 1. Due whatever day you decide to have the homework session. Problem 1. Rising Snake A snake of length L and linear mass density ρ rises from the table. It s head is moving straight up with the

More information

Investigation of Coupled Lateral and Torsional Vibrations of a Cracked Rotor Under Radial Load

Investigation of Coupled Lateral and Torsional Vibrations of a Cracked Rotor Under Radial Load NOMENCLATURE Investigation of Coupled Lateral and Torsional Vibrations of a Cracked Rotor Under Radial Load Xi Wu, Assistant Professor Jim Meagher, Professor Clinton Judd, Graduate Student Department of

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

KNIFE EDGE FLAT ROLLER

KNIFE EDGE FLAT ROLLER EXPERIMENT N0. 1 To Determine jumping speed of cam Equipment: Cam Analysis Machine Aim: To determine jumping speed of Cam Formulae used: Upward inertial force = Wvω 2 /g Downward force = W + Ks For good

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1 Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static

More information

Experiment Two (2) Torsional testing of Circular Shafts

Experiment Two (2) Torsional testing of Circular Shafts Experiment Two (2) Torsional testing of Circular Shafts Introduction: Torsion occurs when any shaft is subjected to a torque. This is true whether the shaft is rotating (such as drive shafts on engines,

More information

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION IGC 2009, Guntur, INDIA NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION B. Manna Lecturer, Civil Engineering Department, National Institute of Technology, Rourkela 769008, India.

More information

ME FINITE ELEMENT ANALYSIS FORMULAS

ME FINITE ELEMENT ANALYSIS FORMULAS ME 2353 - FINITE ELEMENT ANALYSIS FORMULAS UNIT I FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PROBLEMS 01. Global Equation for Force Vector, {F} = [K] {u} {F} = Global Force Vector [K] = Global Stiffness

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM J. E. Jam, F. Meisami Composite Materials and Technology Center Tehran, IRAN jejaam@gmail.com N. G. Nia Iran Polymer & Petrochemical Institute, Tehran,

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS)

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS PART A (2 MARKS) DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF MECHANICAL ENGINEERING ME 6603 FINITE ELEMENT ANALYSIS UNIT I : FINITE ELEMENT FORMULATION OF BOUNDARY VALUE PART A (2 MARKS) 1. Write the types

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 8 Balancing Lecture - 1 Introduce To Rigid Rotor Balancing Till

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

Sound Pressure Generated by a Bubble

Sound Pressure Generated by a Bubble Sound Pressure Generated by a Bubble Adrian Secord Dept. of Computer Science University of British Columbia ajsecord@cs.ubc.ca October 22, 2001 This report summarises the analytical expression for the

More information

Modelling Built-up Steam Turbine Rotor Using Finite Difference Method

Modelling Built-up Steam Turbine Rotor Using Finite Difference Method Modelling Built-up Steam Turbine Rotor Using Finite Difference Method Roger Li Dr. Adam Wittek School of Mechanical Engineering, University of Western Australia Mark Smart Verve Energy Abstract The low-pressure

More information

M. Vable Mechanics of Materials: Chapter 5. Torsion of Shafts

M. Vable Mechanics of Materials: Chapter 5. Torsion of Shafts Torsion of Shafts Shafts are structural members with length significantly greater than the largest cross-sectional dimension used in transmitting torque from one plane to another. Learning objectives Understand

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 2018 TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

More information

Vibration Analysis of Hollow Profiled Shafts

Vibration Analysis of Hollow Profiled Shafts International Journal of Current Engineering and echnology ISSN 77-406 04 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Research Article Vibration Analysis of Hollow

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES

AEROELASTICITY IN AXIAL FLOW TURBOMACHINES von Karman Institute for Fluid Dynamics Lecture Series Programme 1998-99 AEROELASTICITY IN AXIAL FLOW TURBOMACHINES May 3-7, 1999 Rhode-Saint- Genèse Belgium STRUCTURAL DYNAMICS: BASICS OF DISK AND BLADE

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Dept.of Mechanical Engg, Defence Institute of Advanced Technology, Pune. India

Dept.of Mechanical Engg, Defence Institute of Advanced Technology, Pune. India Applied Mechanics and Materials Submitted: 2014-04-23 ISSN: 1662-7482, Vols. 592-594, pp 1084-1088 Revised: 2014-05-16 doi:10.4028/www.scientific.net/amm.592-594.1084 Accepted: 2014-05-19 2014 Trans Tech

More information

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES

ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES ARTICLE A-8000 STRESSES IN PERFORATED FLAT PLATES Delete endnote 18, which says "Express metric values in exponential form" A-8100 INTRODUCTION A-8110 SCOPE (a) This Article contains a method of analysis

More information

Application of Nonlinear Dynamics Tools for Diagnosis of Cracked Rotor Vibration Signatures

Application of Nonlinear Dynamics Tools for Diagnosis of Cracked Rotor Vibration Signatures Application of Nonlinear Dynamics Tools for Diagnosis of Cracked Rotor Vibration Signatures Jery T. Sawicki *, Xi Wu *, Andrew L. Gyekenyesi **, George Y. Baaklini * Cleveland State University, Dept. of

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

STUDY OF THE TEMPERATURE DISTRIBUTION IN DISC BRAKES BY THE METHOD OF ORDER-OF-MAGNITUDE ANALYSIS

STUDY OF THE TEMPERATURE DISTRIBUTION IN DISC BRAKES BY THE METHOD OF ORDER-OF-MAGNITUDE ANALYSIS Regional Conference on Engineering Mathematics, Mechanics, Manufacturing & Architecture (EM 3 ARC) 007 007 Mathematical Sciences in Engineering Editors: A. Zaharim et al. STUDY OF THE TEMPERATURE DISTRIBUTION

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

3.1 Centrifugal Pendulum Vibration Absorbers: Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the reduction of

3.1 Centrifugal Pendulum Vibration Absorbers: Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the reduction of 3.1 Centrifugal Pendulum Vibration Absorbers: Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the reduction of torsional vibrations in rotating and reciprocating

More information

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 3398-3411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS DILEEP

More information

Scattered Energy of Vibration a novel parameter for rotating shaft vibration assessment

Scattered Energy of Vibration a novel parameter for rotating shaft vibration assessment 5 th Australasian Congress on Applied Mechanics, ACAM 007 10-1 December 007, Brisbane, Australia Scattered Energy of Vibration a novel parameter for rotating shaft vibration assessment Abdul Md Mazid Department

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers 016 by IFSA Publishing, S. L. http://www.sensorsportal.com Study on Thermal Coupling Characteristics of Constrained Blades Based on Spin Softening ZHAO Huiying, MEN Xiuhua *, CUI

More information

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies F. D. Sorokin 1, Zhou Su 2 Bauman Moscow State Technical University, Moscow,

More information

ANALYSIS OF NATURAL FREQUENCIES OF DISC-LIKE STRUCTURES IN WATER ENVIRONMENT BY COUPLED FLUID-STRUCTURE-INTERACTION SIMULATION

ANALYSIS OF NATURAL FREQUENCIES OF DISC-LIKE STRUCTURES IN WATER ENVIRONMENT BY COUPLED FLUID-STRUCTURE-INTERACTION SIMULATION 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 15, Ljubljana, Slovenia ANALYSIS O NATURAL REQUENCIES O DISC-LIKE

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Numerical analysis of three-lobe journal bearing with CFD and FSI

Numerical analysis of three-lobe journal bearing with CFD and FSI Numerical analysis of three-lobe journal bearing with CFD and FSI Pankaj Khachane 1, Dinesh Dhande 2 1PG Student at Department of Mechanical Engineering, AISSMSCOE Pune, Maharashtra, India 2Assistant Professor

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering Torsion Torsion: Torsion refers to the twisting of a structural member that is loaded by couples (torque) that produce rotation about the member s longitudinal axis. In other words, the member is loaded

More information

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workbench - Mechanical Introduction 12.0 Chapter 5 Vibration Analysis 5-1 Chapter Overview In this chapter, performing free vibration analyses in Simulation will be covered. In Simulation, performing a

More information

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3 M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

Torsion of Shafts Learning objectives

Torsion of Shafts Learning objectives Torsion of Shafts Shafts are structural members with length significantly greater than the largest cross-sectional dimension used in transmitting torque from one plane to another. Learning objectives Understand

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM SECTION B and ONE QUESTION FROM SECTION C Linear graph paper will be provided.

Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM SECTION B and ONE QUESTION FROM SECTION C Linear graph paper will be provided. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2015-2016 ENERGY ENGINEERING PRINCIPLES ENG-5001Y Time allowed: 3 Hours Attempt ALL QUESTIONS IN SECTION A, ONE QUESTION FROM

More information

UNIT-I (FORCE ANALYSIS)

UNIT-I (FORCE ANALYSIS) DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEACH AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME2302 DYNAMICS OF MACHINERY III YEAR/ V SEMESTER UNIT-I (FORCE ANALYSIS) PART-A (2 marks)

More information

Parametric Instability and Snap-Through of Partially Fluid- Filled Cylindrical Shells

Parametric Instability and Snap-Through of Partially Fluid- Filled Cylindrical Shells Available online at www.sciencedirect.com Procedia Engineering 14 (011) 598 605 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Parametric Instability and Snap-Through

More information

Review of Dynamic Analysis of Structure by Different Method

Review of Dynamic Analysis of Structure by Different Method I J A I C R, 4(2), 2012, pp. 87-94 Review of Dynamic Analysis of Structure by Different Method D. R. Parhi 1 and Adik Yadao 2 1 Professor in Department of Mechanical Engineering, NIT, Rourkela, Orissa,

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

More information

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Paper ID No: 23 Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Dr. Magnus Karlberg 1, Dr. Martin Karlsson 2, Prof. Lennart Karlsson 3 and Ass. Prof. Mats Näsström 4 1 Department

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS R. I. Leine, D. H. van Campen Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands

More information

CHAPTER 5. Beam Theory

CHAPTER 5. Beam Theory CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The Euler-Bernoulli assumptions One of its dimensions

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for

D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for 2017-2018 UNIT NAME OF UNIT WEIGHTAGE 1. 2. 3. Physical World and Measurement Kinemetics Laws of Motion

More information

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 7 Instability in Rotor Systems Lecture - 2 Fluid-Film Bearings

More information

UNIT-I Introduction & Plane Stress and Plane Strain Analysis

UNIT-I Introduction & Plane Stress and Plane Strain Analysis SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Advanced Solid Mechanics (18CE1002) Year

More information

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS

ROLLER BEARING FAILURES IN REDUCTION GEAR CAUSED BY INADEQUATE DAMPING BY ELASTIC COUPLINGS FOR LOW ORDER EXCITATIONS ROLLER BEARIG FAILURES I REDUCTIO GEAR CAUSED BY IADEQUATE DAMPIG BY ELASTIC COUPLIGS FOR LOW ORDER EXCITATIOS ~by Herbert Roeser, Trans Marine Propulsion Systems, Inc. Seattle Flexible couplings provide

More information

Analytical Strip Method for Thin Isotropic Cylindrical Shells

Analytical Strip Method for Thin Isotropic Cylindrical Shells IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 4 Ver. III (Jul. Aug. 2017), PP 24-38 www.iosrjournals.org Analytical Strip Method for

More information