STAT5044: Regression and Anova

Size: px
Start display at page:

Download "STAT5044: Regression and Anova"

Transcription

1 STAT5044: Regression and Anova Inyoung Kim 1 / 25

2 Outline 1 Multiple Linear Regression 2 / 25

3 Basic Idea An extra sum of squares: the marginal reduction in the error sum of squares when one or several predictor variables are added to the regression model, given that other predictor variables are already in the model. Equivalently, one can view an extra sum of squares as measuring the marginal increase in regression sum of squares when one or several predictor variables are added to the regression model. 3 / 25

4 Example A study of the relation of amount of body fat (Y ) to several possible predictor variables, based on a sample of 20 healthy females years old. The possible predictor variables are triceps skinfold thickness (X 1 ), thigh circumference (X 2 ), and midarm circumference (X 3 ). The amount of body fat for each of the 20 persons was obtained by a cumbersome and expensive procedure requiring the immersion of the person in water. It would therefore be very helpful if a regression model with some or all of these predictor variables could provide reliable estimates of the amount of body fat since the measurements needed for the predictor variables are easy to obtain. 4 / 25

5 Multiple Linear Regression When there are m independent variables, y i = β 0 + β 1 x i1 + β 2 x i2 + + β m x im + ε i where ε i N(0,σ 2 ). Special case is polynomial regression: X m = x m Y = Xβ + ε X = [1 x 1 x 2 x m ] LSE ˆβ = (X t X) 1 X t y N(β,(X t X) 1 σ 2 ) 5 / 25

6 Multiple Regression Set of methods for estimation of model parameters and testing hypotheses about simple model relating a response and explanatory variable Is there a linear relationship? what variables are important? Is there a best model to use? Predict a new value Predict the value of the explanatory variable that causes a specified response 6 / 25

7 Multiple Regression Similar to SLR - multiple explanatory vars Tools: graphical assessment more difficult interpretation more complex scatterplot matrix sequential and partial tests variable selection methods residual analysis 7 / 25

8 Gauss Markov Theorem E(Y ) = Xβ, Var(Y ) = σ 2 I, ˆβ : LS estimator of β C t ˆβ is an unbiased estimate of C t β For any other linear unbiased estimate of C t β, Ψ, Var( Ψ) Var( ˆΨ), where ˆΨ = C t ˆβ NOTE: Do NOT need normality assumption 8 / 25

9 Testing H 0 : There is no regression relationship between Y and X. β 1 = β 2 = = β m = 0 H 1 : at least one parameter 0 ANOVA table Source SS df regression (Ŷ i Ȳ ) 2 m error (Y i Ŷ i ) 2 n-m-1 total (Y i Ȳ.. ) n-1 Test statistic F m,n m 1 = SSreg/m SSE/(n m 1) 9 / 25

10 Testing H 0 : β 3 = 0 H 0 : β 3 = 0 vs H a : β 3 0 Reduced model: Y i = β 0 + β 1 X i1 + β 2 X i2 + ε i SSE(R) = SSE(X 1,X 2 ) Full model: Y i = β 0 + β 1 X i1 + β 2 X i2 + β 3 X i3 + ε i SSE(F) = SSE(X 1,X 2,X 3 ) Test statistic: what is df F =? what is df R =? F = (SSE(R) SSE(F))/(df R df F ) SSE(F)/df F 10 / 25

11 Testing H 0 : β k = 0 H 0 : β k = 0 vs H a : β k 0 Reduced model: Y i = β 0 + β 1 X i1 + + β k 1 X i,k 1 + β k+1 X i,k+1 + β m x mi + ε i SSE(R) = SSE(X 1,...,X k 1,X k+1,...,x m ) Full model: Y i = β 0 + β 1 X i1 + + β k X i,k + + β m x mi + ε i SSE(F) = SSE(X 1,...,X k,...,x m ) Test statistic: what is df F = what is df R = F = (SSE(R) SSE(F))/(df R df F ) SSE(F)/df F 11 / 25

12 Testing H 0 : β 2 = β 3 = 0 H 0 : β 2 = β 3 = 0 vs H a : not both β 2 and β 3 equal zero Reduced model: Y i = β 0 + β 1 X i1 + ε i SSE(R) = SSE(X 1 ) Full model: Y i = β 0 + β 1 X i1 + β 2 X i2 + β 3 X i3 + ε i SSE(F) = SSE(X 1,X 2,X 3 ) SSE(X 1 ) SSE(X 1,X 2,X 3 ) = SSR(X 2,X 3 X 1 ) Test statistic: F = SSE(X 1) SSE(X 1,X 2,X 3 )/((n 2) (n 4)) SSE(X 1,X 2,X 3 )/(n 4) = SSR(X 2,X 3 X 1 )/(4 2) SSE(X 1,X 2,X 3 )/(n 4) = MSR(X 2,X 3 X 1 ) MSE(X 1,X 2,X 3 ) 12 / 25

13 Test H 0 : some β k = 0 H 0 : β q = β q+1 = = β p 1 = 0 vs H a : not all of the β k in H 0 equal zero. Test statistic: NOTE: F = SSR(X q,...,x p 1 X 1,...,X q 1 )/(p q)) SSE(X 1,...,X p 1 )/(n p) = MSR(X q,...,x p 1 X 1,...,X q 1 ) MSE SSR(X q,...,x p 1 X 1,...,X q 1 ) = SSR(X q X 1,...,X q 1 ) + + SSR(X p 1 X 1,...,X p 2 ) 13 / 25

14 Testing H 0 : β 1 = β 2 Full model: Y i = β 0 + β 1 X i1 + β 2 X i2 + β 3 X i3 + ε i Test: H 0 : β 1 = β 2 vs H a : β 1 β 2 Define β c as β 1 = β 2 Reduced model Y i = β 0 + β c (X i1 + X i2 ) + β 3 X i3 + ε i where β c : the common coefficient for β 1 and β 2 under H 0 and X i1 + X i2 is corresponding new X variable. Test statistics is What is df R? What is df F? F = (SSE(R) SSE(F))/(df R df F ) SSE(F)/df F 14 / 25

15 Test whether some β k = 0 Test statistic can be stated equivalently in terms of the coefficients of multiple determination for the full and reduced models when these models contain the intercept term β 0 as follow: F = (R2 y x 1,...,x p 1 R 2 y x 1,...,x q 1 )/(p q) (1 R 2 y x 1,...,x p 1 )/(n p) where R 2 Y x 1,...,x p 1 : the coefficient of multiple determination when Y is regression on all X variables and R 2 y x 1,...,x q 1 : the coefficient when Y is regressed on x 1,...,x q 1 only. Q: What is the coefficient of multiple determination? 15 / 25

16 Coefficients of Partial Determination Extra sums of squares are not only useful for tests on the regression coefficients of a multiple regression model, but they are also encountered in descriptive measures of relationship called coefficients of partial determination. Recall that the coefficient of multiple determination, R 2, measures the proportionate reduction in the variation of Y achieved by the introduction of the entire set of X variables considered in the model. A coefficient of partial determination, in contrast, measures the marginal contribution of one X variable when all others are already included in the model. 16 / 25

17 Calculation of Coefficients of Partial Determination R 2 y,x 1 x 2 = SSE(X 2) SSE(X 1,X 2 ) SSE(X 2 ) R 2 y,x 2 x 1 = SSE(X 1) SSE(X 1,X 2 ) SSE(X 1 ) = SSR(X 1 X 2 ) SSE(X 2 ) = SSR(X 2 X 1 ) SSE(X 1 ) R 2 y,x 1 x 2,x 3 = SSR(X 1 X 2,X 3 ) SSE(X 2,X 3 ) R 2 y,x 2 x 1,x 3 = SSR(X 2 X 1,X 3 ) SSE(X 1,X 3 ) R 2 y,x 3 x 1,x 2 = SSR(X 3 X 1,X 2 ) SSE(X 1,X 2 ) R 2 y,x 4 x 1,x 2,x 3 = SSR(X 4 X 1,X 2,x 3 ) SSE(X 1,X 2,x 3 ) 17 / 25

18 Coefficients of Partial Determination The coefficients of partial determination can take on values between 0 and 1, as the definitions readily indicates 18 / 25

19 Coefficients of Partial Determination A coefficient of partial determination can be interpreted as a coefficient of simple determination. Suppose we regress Y on X 2 and obtain the residuals e i (Y X 2 ) = Y i Ŷ i (X 2 ) where Ŷ i (X 2 ): fitted values of Y when X 2 is in the model. Suppose we further regress X 1 on X 2 and obtain the residuals e i (X 1 X 2 ) = X i1 ˆXi1 (X 2 ) where ˆXi1 (X 2 ): the fitted values of X 1 in the regression of X 1 on X / 25

20 Coefficients of Partial Determination The coefficient of simple determination R 2 between these two sets of residuals equals the coefficient of partial determination R 2 Y,X 1 X 2. This coefficient measures the relation between Y and X 1 when both of these variables have been adjusted for their linear relationships to X 2 20 / 25

21 Added variable plots/partial regression plots The plot of the residuals e i (Y X 2 ) against e i (X 1 X 2 ) provides a graphical representation of the strength of the relationship between Y and X 1, adjusted for X 2. Such plots of residuals, called added variable plots or partial regression plots 21 / 25

22 R 2 and partial correlation R 2 Y,X 2 X 1 = [r Y,X2 X 1 ] 2 = (r Y,X 2 r X1,X 2 r Y,X1 ) 2 (1 rx 2 1 X 2 )(1 ryx 2 1 ) R 2 Y,X 2 X 1 X 3 = [r Y,X2 X 1 X 3 ] 2 = (r Y,X 2 X 3 r X1,X 2 X 3 r Y,X1 X 3 ) 2 (1 r 2 )(1 X 1 X 2 X 3 r 2 YX 1 X 3 ) 22 / 25

23 Partial correlation r 2 y,x k x 1,...,x k 1 0 r 2 y,x k x 1,...,x k 1 1 r 2 y,x k x 1,...,x k 1 = 1 r 2 y,ŷ(x 1,...,x k 1,x k ) = 1 r 2 {y T (I H [k 1] )x k } 2 y,x k x 1,...,x k 1 = {y T (I H [k 1] )y}{xk t (I H [k 1])x k } where H [k 1] = X [k 1] [X t [k 1] X [k 1]] 1 X t k 1, X [k 1] = [1,x 1,...,x k 1 ] 23 / 25

24 Recall: R 2 R 2 : determination of coefficient. R 2 = SSreg S yy = 1 SSE S yy In the simple linear regression case, In general, R 2 = (r y,x ) 2 = [ (x i x) (y i ȳ)] 2 S yy S xx = r 2 R 2 = (r y,ŷ ) 2 = [ (Y i Ȳ )(Ŷ i Ŷ i )] 2 (Y i Ȳ ) 2 (Ŷ i Ŷ i ) 2 24 / 25

25 Proof In general, R 2 = (r y,ŷ ) 2 = [ (Y i Ȳ )(Ŷ i Ŷ i )] 2 (Y i Ȳ ) 2 (Ŷ i Ŷ i ) 2 25 / 25

Sections 7.1, 7.2, 7.4, & 7.6

Sections 7.1, 7.2, 7.4, & 7.6 Sections 7.1, 7.2, 7.4, & 7.6 Adapted from Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1 / 25 Chapter 7 example: Body fat n = 20 healthy females 25 34

More information

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model

Outline. Remedial Measures) Extra Sums of Squares Standardized Version of the Multiple Regression Model Outline 1 Multiple Linear Regression (Estimation, Inference, Diagnostics and Remedial Measures) 2 Special Topics for Multiple Regression Extra Sums of Squares Standardized Version of the Multiple Regression

More information

Chapter 2 Multiple Regression (Part 4)

Chapter 2 Multiple Regression (Part 4) Chapter 2 Multiple Regression (Part 4) 1 The effect of multi-collinearity Now, we know to find the estimator (X X) 1 must exist! Therefore, n must be great or at least equal to p + 1 (WHY?) However, even

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 47 Outline 1 Regression 2 Simple Linear regression 3 Basic concepts in regression 4 How to estimate unknown parameters 5 Properties of Least Squares Estimators:

More information

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I PubH 7405: REGRESSION ANALYSIS MLR: INFERENCES, Part I TESTING HYPOTHESES Once we have fitted a multiple linear regression model and obtained estimates for the various parameters of interest, we want to

More information

Ch 3: Multiple Linear Regression

Ch 3: Multiple Linear Regression Ch 3: Multiple Linear Regression 1. Multiple Linear Regression Model Multiple regression model has more than one regressor. For example, we have one response variable and two regressor variables: 1. delivery

More information

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing

STAT763: Applied Regression Analysis. Multiple linear regression. 4.4 Hypothesis testing STAT763: Applied Regression Analysis Multiple linear regression 4.4 Hypothesis testing Chunsheng Ma E-mail: cma@math.wichita.edu 4.4.1 Significance of regression Null hypothesis (Test whether all β j =

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

4 Multiple Linear Regression

4 Multiple Linear Regression 4 Multiple Linear Regression 4. The Model Definition 4.. random variable Y fits a Multiple Linear Regression Model, iff there exist β, β,..., β k R so that for all (x, x 2,..., x k ) R k where ε N (, σ

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

STAT Checking Model Assumptions

STAT Checking Model Assumptions STAT 704 --- Checking Model Assumptions Recall we assumed the following in our model: (1) The regression relationship between the response and the predictor(s) specified in the model is appropriate (2)

More information

STAT 705 Chapter 16: One-way ANOVA

STAT 705 Chapter 16: One-way ANOVA STAT 705 Chapter 16: One-way ANOVA Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 21 What is ANOVA? Analysis of variance (ANOVA) models are regression

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Regression Models for Quantitative and Qualitative Predictors: An Overview

Regression Models for Quantitative and Qualitative Predictors: An Overview Regression Models for Quantitative and Qualitative Predictors: An Overview Polynomial regression models Interaction regression models Qualitative predictors Indicator variables Modeling interactions between

More information

Chapter 6 Multiple Regression

Chapter 6 Multiple Regression STAT 525 FALL 2018 Chapter 6 Multiple Regression Professor Min Zhang The Data and Model Still have single response variable Y Now have multiple explanatory variables Examples: Blood Pressure vs Age, Weight,

More information

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression

Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression BSTT523: Kutner et al., Chapter 1 1 Chapter 1: Linear Regression with One Predictor Variable also known as: Simple Linear Regression Bivariate Linear Regression Introduction: Functional relation between

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

STAT 4385 Topic 03: Simple Linear Regression

STAT 4385 Topic 03: Simple Linear Regression STAT 4385 Topic 03: Simple Linear Regression Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2017 Outline The Set-Up Exploratory Data Analysis

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

Lecture 13 Extra Sums of Squares

Lecture 13 Extra Sums of Squares Lecture 13 Extra Sums of Squares STAT 512 Spring 2011 Background Reading KNNL: 7.1-7.4 13-1 Topic Overview Extra Sums of Squares (Defined) Using and Interpreting R 2 and Partial-R 2 Getting ESS and Partial-R

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression

AMS 315/576 Lecture Notes. Chapter 11. Simple Linear Regression AMS 315/576 Lecture Notes Chapter 11. Simple Linear Regression 11.1 Motivation A restaurant opening on a reservations-only basis would like to use the number of advance reservations x to predict the number

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

3 Multiple Linear Regression

3 Multiple Linear Regression 3 Multiple Linear Regression 3.1 The Model Essentially, all models are wrong, but some are useful. Quote by George E.P. Box. Models are supposed to be exact descriptions of the population, but that is

More information

STAT Chapter 11: Regression

STAT Chapter 11: Regression STAT 515 -- Chapter 11: Regression Mostly we have studied the behavior of a single random variable. Often, however, we gather data on two random variables. We wish to determine: Is there a relationship

More information

STAT 540: Data Analysis and Regression

STAT 540: Data Analysis and Regression STAT 540: Data Analysis and Regression Wen Zhou http://www.stat.colostate.edu/~riczw/ Email: riczw@stat.colostate.edu Department of Statistics Colorado State University Fall 205 W. Zhou (Colorado State

More information

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X.

Estimating σ 2. We can do simple prediction of Y and estimation of the mean of Y at any value of X. Estimating σ 2 We can do simple prediction of Y and estimation of the mean of Y at any value of X. To perform inferences about our regression line, we must estimate σ 2, the variance of the error term.

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models, two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent variable,

More information

Ridge Regression. Summary. Sample StatFolio: ridge reg.sgp. STATGRAPHICS Rev. 10/1/2014

Ridge Regression. Summary. Sample StatFolio: ridge reg.sgp. STATGRAPHICS Rev. 10/1/2014 Ridge Regression Summary... 1 Data Input... 4 Analysis Summary... 5 Analysis Options... 6 Ridge Trace... 7 Regression Coefficients... 8 Standardized Regression Coefficients... 9 Observed versus Predicted...

More information

2. Regression Review

2. Regression Review 2. Regression Review 2.1 The Regression Model The general form of the regression model y t = f(x t, β) + ε t where x t = (x t1,, x tp ), β = (β 1,..., β m ). ε t is a random variable, Eε t = 0, Var(ε t

More information

Statistical Techniques II EXST7015 Simple Linear Regression

Statistical Techniques II EXST7015 Simple Linear Regression Statistical Techniques II EXST7015 Simple Linear Regression 03a_SLR 1 Y - the dependent variable 35 30 25 The objective Given points plotted on two coordinates, Y and X, find the best line to fit the data.

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Multiple regression: introduction

Multiple regression: introduction Chapter 9 Multiple regression: introduction Multiple regression involves predicting values of a dependent variable from the values on a collection of other (predictor) variables. In particular, linear

More information

Lecture 10 Multiple Linear Regression

Lecture 10 Multiple Linear Regression Lecture 10 Multiple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: 6.1-6.5 10-1 Topic Overview Multiple Linear Regression Model 10-2 Data for Multiple Regression Y i is the response variable

More information

The Multiple Regression Model

The Multiple Regression Model Multiple Regression The Multiple Regression Model Idea: Examine the linear relationship between 1 dependent (Y) & or more independent variables (X i ) Multiple Regression Model with k Independent Variables:

More information

Measuring the fit of the model - SSR

Measuring the fit of the model - SSR Measuring the fit of the model - SSR Once we ve determined our estimated regression line, we d like to know how well the model fits. How far/close are the observations to the fitted line? One way to do

More information

Chapter 3: Multiple Regression. August 14, 2018

Chapter 3: Multiple Regression. August 14, 2018 Chapter 3: Multiple Regression August 14, 2018 1 The multiple linear regression model The model y = β 0 +β 1 x 1 + +β k x k +ǫ (1) is called a multiple linear regression model with k regressors. The parametersβ

More information

STAT 511. Lecture : Simple linear regression Devore: Section Prof. Michael Levine. December 3, Levine STAT 511

STAT 511. Lecture : Simple linear regression Devore: Section Prof. Michael Levine. December 3, Levine STAT 511 STAT 511 Lecture : Simple linear regression Devore: Section 12.1-12.4 Prof. Michael Levine December 3, 2018 A simple linear regression investigates the relationship between the two variables that is not

More information

Linear Regression. 1 Introduction. 2 Least Squares

Linear Regression. 1 Introduction. 2 Least Squares Linear Regression 1 Introduction It is often interesting to study the effect of a variable on a response. In ANOVA, the response is a continuous variable and the variables are discrete / categorical. What

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Inference for Regression Inference about the Regression Model and Using the Regression Line

Inference for Regression Inference about the Regression Model and Using the Regression Line Inference for Regression Inference about the Regression Model and Using the Regression Line PBS Chapter 10.1 and 10.2 2009 W.H. Freeman and Company Objectives (PBS Chapter 10.1 and 10.2) Inference about

More information

Chapter 2 Inferences in Simple Linear Regression

Chapter 2 Inferences in Simple Linear Regression STAT 525 SPRING 2018 Chapter 2 Inferences in Simple Linear Regression Professor Min Zhang Testing for Linear Relationship Term β 1 X i defines linear relationship Will then test H 0 : β 1 = 0 Test requires

More information

STA 4210 Practise set 2b

STA 4210 Practise set 2b STA 410 Practise set b For all significance tests, use = 0.05 significance level. S.1. A linear regression model is fit, relating fish catch (Y, in tons) to the number of vessels (X 1 ) and fishing pressure

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression MATH 282A Introduction to Computational Statistics University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/ eariasca/math282a.html MATH 282A University

More information

F-tests and Nested Models

F-tests and Nested Models F-tests and Nested Models Nested Models: A core concept in statistics is comparing nested s. Consider the Y = β 0 + β 1 x 1 + β 2 x 2 + ǫ. (1) The following reduced s are special cases (nested within)

More information

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/26. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/26 Rafa l Kulik Bivariate data and scatterplot Data: Hydrocarbon level (x) and Oxygen level (y): x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

More information

Unbalanced Data in Factorials Types I, II, III SS Part 1

Unbalanced Data in Factorials Types I, II, III SS Part 1 Unbalanced Data in Factorials Types I, II, III SS Part 1 Chapter 10 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 14 When we perform an ANOVA, we try to quantify the amount of variability in the data accounted

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Homework 2: Simple Linear Regression

Homework 2: Simple Linear Regression STAT 4385 Applied Regression Analysis Homework : Simple Linear Regression (Simple Linear Regression) Thirty (n = 30) College graduates who have recently entered the job market. For each student, the CGPA

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

STAT 3A03 Applied Regression With SAS Fall 2017

STAT 3A03 Applied Regression With SAS Fall 2017 STAT 3A03 Applied Regression With SAS Fall 2017 Assignment 2 Solution Set Q. 1 I will add subscripts relating to the question part to the parameters and their estimates as well as the errors and residuals.

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGRESSION ANALYSIS MODULE II Lecture - 6 Simple Linear Regression Analysis Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Prediction of values of study

More information

14 Multiple Linear Regression

14 Multiple Linear Regression B.Sc./Cert./M.Sc. Qualif. - Statistics: Theory and Practice 14 Multiple Linear Regression 14.1 The multiple linear regression model In simple linear regression, the response variable y is expressed in

More information

MATH 644: Regression Analysis Methods

MATH 644: Regression Analysis Methods MATH 644: Regression Analysis Methods FINAL EXAM Fall, 2012 INSTRUCTIONS TO STUDENTS: 1. This test contains SIX questions. It comprises ELEVEN printed pages. 2. Answer ALL questions for a total of 100

More information

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company

Multiple Regression. Inference for Multiple Regression and A Case Study. IPS Chapters 11.1 and W.H. Freeman and Company Multiple Regression Inference for Multiple Regression and A Case Study IPS Chapters 11.1 and 11.2 2009 W.H. Freeman and Company Objectives (IPS Chapters 11.1 and 11.2) Multiple regression Data for multiple

More information

Overview Scatter Plot Example

Overview Scatter Plot Example Overview Topic 22 - Linear Regression and Correlation STAT 5 Professor Bruce Craig Consider one population but two variables For each sampling unit observe X and Y Assume linear relationship between variables

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

STA 4210 Practise set 2a

STA 4210 Practise set 2a STA 410 Practise set a For all significance tests, use = 0.05 significance level. S.1. A multiple linear regression model is fit, relating household weekly food expenditures (Y, in $100s) to weekly income

More information

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression

Chapter 14 Student Lecture Notes Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 14 Multiple Regression Chapter 14 Student Lecture Notes 14-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Multiple Regression QMIS 0 Dr. Mohammad Zainal Chapter Goals After completing

More information

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or.

: The model hypothesizes a relationship between the variables. The simplest probabilistic model: or. Chapter Simple Linear Regression : comparing means across groups : presenting relationships among numeric variables. Probabilistic Model : The model hypothesizes an relationship between the variables.

More information

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation.

Simple Regression Model Setup Estimation Inference Prediction. Model Diagnostic. Multiple Regression. Model Setup and Estimation. Statistical Computation Math 475 Jimin Ding Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html October 10, 2013 Ridge Part IV October 10, 2013 1

More information

STOR 455 STATISTICAL METHODS I

STOR 455 STATISTICAL METHODS I STOR 455 STATISTICAL METHODS I Jan Hannig Mul9variate Regression Y=X β + ε X is a regression matrix, β is a vector of parameters and ε are independent N(0,σ) Es9mated parameters b=(x X) - 1 X Y Predicted

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Simple linear regression tries to fit a simple line between two variables Y and X. If X is linearly related to Y this explains some of the variability in Y. In most cases, there

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Lecture 18 MA Applied Statistics II D 2004

Lecture 18 MA Applied Statistics II D 2004 Lecture 18 MA 2612 - Applied Statistics II D 2004 Today 1. Examples of multiple linear regression 2. The modeling process (PNC 8.4) 3. The graphical exploration of multivariable data (PNC 8.5) 4. Fitting

More information

Basic Business Statistics 6 th Edition

Basic Business Statistics 6 th Edition Basic Business Statistics 6 th Edition Chapter 12 Simple Linear Regression Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of a dependent variable based

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Formal Statement of Simple Linear Regression Model

Formal Statement of Simple Linear Regression Model Formal Statement of Simple Linear Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor

More information

TMA4255 Applied Statistics V2016 (5)

TMA4255 Applied Statistics V2016 (5) TMA4255 Applied Statistics V2016 (5) Part 2: Regression Simple linear regression [11.1-11.4] Sum of squares [11.5] Anna Marie Holand To be lectured: January 26, 2016 wiki.math.ntnu.no/tma4255/2016v/start

More information

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1

Lecture 2 Simple Linear Regression STAT 512 Spring 2011 Background Reading KNNL: Chapter 1 Lecture Simple Linear Regression STAT 51 Spring 011 Background Reading KNNL: Chapter 1-1 Topic Overview This topic we will cover: Regression Terminology Simple Linear Regression with a single predictor

More information

Chapter 8 Quantitative and Qualitative Predictors

Chapter 8 Quantitative and Qualitative Predictors STAT 525 FALL 2017 Chapter 8 Quantitative and Qualitative Predictors Professor Dabao Zhang Polynomial Regression Multiple regression using X 2 i, X3 i, etc as additional predictors Generates quadratic,

More information

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model

Topic 17 - Single Factor Analysis of Variance. Outline. One-way ANOVA. The Data / Notation. One way ANOVA Cell means model Factor effects model Topic 17 - Single Factor Analysis of Variance - Fall 2013 One way ANOVA Cell means model Factor effects model Outline Topic 17 2 One-way ANOVA Response variable Y is continuous Explanatory variable is

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

Multiple Regression Analysis. Part III. Multiple Regression Analysis

Multiple Regression Analysis. Part III. Multiple Regression Analysis Part III Multiple Regression Analysis As of Sep 26, 2017 1 Multiple Regression Analysis Estimation Matrix form Goodness-of-Fit R-square Adjusted R-square Expected values of the OLS estimators Irrelevant

More information

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5)

Simple Linear Regression. (Chs 12.1, 12.2, 12.4, 12.5) 10 Simple Linear Regression (Chs 12.1, 12.2, 12.4, 12.5) Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 2 Simple Linear Regression Rating 20 40 60 80 0 5 10 15 Sugar 3 Simple Linear Regression

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

SSR = The sum of squared errors measures how much Y varies around the regression line n. It happily turns out that SSR + SSE = SSTO.

SSR = The sum of squared errors measures how much Y varies around the regression line n. It happily turns out that SSR + SSE = SSTO. Analysis of variance approach to regression If x is useless, i.e. β 1 = 0, then E(Y i ) = β 0. In this case β 0 is estimated by Ȳ. The ith deviation about this grand mean can be written: deviation about

More information

6. Multiple Linear Regression

6. Multiple Linear Regression 6. Multiple Linear Regression SLR: 1 predictor X, MLR: more than 1 predictor Example data set: Y i = #points scored by UF football team in game i X i1 = #games won by opponent in their last 10 games X

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

Well-developed and understood properties

Well-developed and understood properties 1 INTRODUCTION TO LINEAR MODELS 1 THE CLASSICAL LINEAR MODEL Most commonly used statistical models Flexible models Well-developed and understood properties Ease of interpretation Building block for more

More information

Chapter 1. Linear Regression with One Predictor Variable

Chapter 1. Linear Regression with One Predictor Variable Chapter 1. Linear Regression with One Predictor Variable 1.1 Statistical Relation Between Two Variables To motivate statistical relationships, let us consider a mathematical relation between two mathematical

More information

Introduction to Estimation Methods for Time Series models. Lecture 1

Introduction to Estimation Methods for Time Series models. Lecture 1 Introduction to Estimation Methods for Time Series models Lecture 1 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 1 SNS Pisa 1 / 19 Estimation

More information

ST430 Exam 1 with Answers

ST430 Exam 1 with Answers ST430 Exam 1 with Answers Date: October 5, 2015 Name: Guideline: You may use one-page (front and back of a standard A4 paper) of notes. No laptop or textook are permitted but you may use a calculator.

More information

Lecture 4 Multiple linear regression

Lecture 4 Multiple linear regression Lecture 4 Multiple linear regression BIOST 515 January 15, 2004 Outline 1 Motivation for the multiple regression model Multiple regression in matrix notation Least squares estimation of model parameters

More information

Applied Regression Analysis. Section 2: Multiple Linear Regression

Applied Regression Analysis. Section 2: Multiple Linear Regression Applied Regression Analysis Section 2: Multiple Linear Regression 1 The Multiple Regression Model Many problems involve more than one independent variable or factor which affects the dependent or response

More information

Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Epidemiology Unit University of Manchester 07/11/2017 Structure This Week What is a linear model? How good is my model? Does

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

y response variable x 1, x 2,, x k -- a set of explanatory variables

y response variable x 1, x 2,, x k -- a set of explanatory variables 11. Multiple Regression and Correlation y response variable x 1, x 2,, x k -- a set of explanatory variables In this chapter, all variables are assumed to be quantitative. Chapters 12-14 show how to incorporate

More information

where x and ȳ are the sample means of x 1,, x n

where x and ȳ are the sample means of x 1,, x n y y Animal Studies of Side Effects Simple Linear Regression Basic Ideas In simple linear regression there is an approximately linear relation between two variables say y = pressure in the pancreas x =

More information

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 14 Introduction to Linear Regression and Correlation Analysis QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

Multivariate Regression (Chapter 10)

Multivariate Regression (Chapter 10) Multivariate Regression (Chapter 10) This week we ll cover multivariate regression and maybe a bit of canonical correlation. Today we ll mostly review univariate multivariate regression. With multivariate

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Chapter 3 Multiple Linear Regression Hongcheng Li April, 6, 2013 Recall simple linear regression 1 Recall simple linear regression 2 Parameter Estimation 3 Interpretations of

More information

General Linear Model: Statistical Inference

General Linear Model: Statistical Inference Chapter 6 General Linear Model: Statistical Inference 6.1 Introduction So far we have discussed formulation of linear models (Chapter 1), estimability of parameters in a linear model (Chapter 4), least

More information

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com 12 Simple Linear Regression Material from Devore s book (Ed 8), and Cengagebrain.com The Simple Linear Regression Model The simplest deterministic mathematical relationship between two variables x and

More information

Lecture 2. The Simple Linear Regression Model: Matrix Approach

Lecture 2. The Simple Linear Regression Model: Matrix Approach Lecture 2 The Simple Linear Regression Model: Matrix Approach Matrix algebra Matrix representation of simple linear regression model 1 Vectors and Matrices Where it is necessary to consider a distribution

More information