Tournament Review Questions Forces

Size: px
Start display at page:

Download "Tournament Review Questions Forces"

Transcription

1 Tournament Review Questions Forces 1. Mass and acceleration are proportional to each other when a force is applied. 2. A pilot announces that the 500-kg plane is flying at a constant 900 km/hr. What is the acceleration of the plane? (I bet I get you on this one.) 3. If a 500 kg plane is using 1000 N of thrust to fly through the air, what is the acceleration of the plane if you ignore air resistance? 4. A 500 kg plane is using a thrust of 80,000 N to propel it through the air at a constant speed and altitude. What is the lift force on this plane? (Hint: lift is opposite of what force, what are you trying to overcome?) 5. What two forces are involved when calculating the coefficient of friction between two surfaces? 6. Felicia, the ballet dancer, has a mass of 45 kg. What is her weight on earth? 7. A 20-g sparrow flying towards a bird feeder mistakenly flies into a windowpane. The force of impact was 2 N. What was the bird s acceleration? (Don t forget appropriate units.) 8. Felicia, the ballet dancer, has a mass of 45 kg. If she were on the planet Jupiter and experienced its gravitational pull of 25 m/s 2, what would her mass be? 9. While trying to practice the poise part of a beauty pageant, Ellen walked around the room with a book on her head. Use Newton s 3 rd Law to explain the forces involved concerning the book. 10. Sammy Sosa swings at a 0.15 kg baseball and accelerates it at a rate of 300 m/s 2. How much force was exerted on the ball? 11. What would be the weight of an 8-kg bowling ball? 12. What is the mass of a 100-N crate of delicious candy? 13. While pushing a 10 kg box across the floor at a constant velocity, 100 N of force was used. What is the coefficient of kinetic friction between the floor and the box? 14. A 500-kg subcompact car and a 1500-kg standard car are set in motion by forces so that each car has equal acceleration. How much greater is the force that acts on the more massive car? 15. Heather pulls a wagon with her little brother Bryce in it. The mass of the wagon and Bryce is 48 kg. She pulls the wagon until it reaches a speed of 8m/s then she lets go. Bryce applies the brakes on the wagon and it comes to rest in 6 seconds. What was the braking force of the wagon? 16. Scarlet skydiver, who has a mass of 60 kg, jumps from a helicopter. What is her net force as she emerges from the helicopter? 17. If Scarlet skydiver, who has a mass of 60 kg, jumps from a helicopter, what would be her net force 10 s into the dive when she has reached her terminal velocity? 18. Once Bronco the skydiver reaches his terminal velocity is his acceleration 10 m/s 2 or 0 m/s 2? Explain. 19. Buster gathers two bathroom scales (which only measure in standard units!!) that are in the house, sets them next to each other and then stands on the top of both of them. If Buster s mass is 45 kg, what will be the weight reading on each of the scales? 20. Benji, whose mass is 60 kg, pushes off a wall with a force of 30 N while wearing his fancy new roller blades, which are extra frictionless. What will be his recoil (backward) acceleration?

2 21. A boxer punches a sheet of paper in midair, and brings it from rest to a speed of 40 m/s in 0.05 seconds. If the mass of the paper is 0.01 kg, what force did the boxer exert on the paper? 22. The family decides to take the boat to the lake for a nice day of water skiing. The boat trailer is hooked up to the car and the car begins to pull the trailer. According to Newton s 3 rd Law of Motion, for every action force there is an equal and opposite reaction force. Thus the car pulls on the trailer with the same force that the trailer pulls on the car. So then why does the trailer move? 23. Jenny pushes a 100 N chair across the floor at a constant speed of 2 m/s. What is the force of friction on the chair? 24. Sally places a cute 8 N kitty cat in Sandy s hands. What is the force pairs involving Sandy s hands? 25. Astronaut Darnell is standing on the nose of the space shuttle in outer space and does a beautiful swan dive off the front. Describe what happens to all things involved. 26. Astronaut Ito s mass on earth is 84 kg. What is his mass and weight in outer space? 27. The coefficient of static friction between ice and a 70-kg figure skater is 0.2. How much force will he need to apply to get moving? 28. A heavy person and a light person jump from a plane at the same time and open their chutes at the same time. Assuming all other factors the same (chute size, same altitudes, etc.), who reaches the ground first? Explain. 29. Two forces act on a book resting on a perfectly flat table: its weight and the normal (support) force from the table. Does a force of friction act as well? Explain. 30. Scrappy wants to amaze his friends by pulling the tablecloth from under the dishes on the table without the dishes moving. You are his physics-inspired expert assistant, what would you suggest and why? 31. A mass is pushes with a force that causes it to accelerate. If the mass is doubled but the force remains constant, what will happen to the acceleration? 32. If air resistance is basically the same for a falling tennis ball and a falling baseball, which will have the greater terminal velocity? Explain why. 33. Does a stick of dynamite contain force? Explain. 34. A 60-kg boulder falls off a cliff and reaches its terminal velocity before impact with the ground. What was the force of air resistance on the boulder when it reached its terminal velocity? 35. Describe one of the force pairs that exist when a rocket is blasting off. 36. If you jump up towards the ceiling, does the Earth move up, down or both? 37. We know that the Earth pulls on the moon. Does the moon pull on the Earth? If so, which is stronger? 38. Identify one set of the action-reaction forces involved when firing a rifle. 39. A 200-kg cannon fires a 20-kg cannonball and recoils with an acceleration of 2 m/s 2. What is the acceleration of the cannonball? 40. A student pushes a book on a lab table with a force of 20 N with no acceleration. If the coefficient of friction between the book and the table is 0.5, what is the weight of the book?

3 Forces Review Answers 1. inversely (meaning as the mass increases, the acceleration will decrease as long as the force is constant) 2. zero because the speed is constant 3. if you ignore air resistance, then the net force is the thrust force of the plane; a = F/m = 1000 N / 500 kg = 2 m/s 2 4. the weight (downward force) of the plane is 500 kg X 10 m/s 2 = 5000 N, therefore, the lift force is 5000 N so that forces are in balance (constant altitude); you will not use the horizontal force of 80,000N 5. the friction force and the weight of the object N 7. First you have to convert the mass into kg before you can use the formula; 20 g = 0.02 kg; next a = F/m = 2 N / 0.02 kg = 100 m/s 2 8. her mass would be 45 kg, regardless of where she is 9. one of the force pairs would be the weight of the book pushing down (the force due to gravity)(action), the other force is the normal (a normal force is a force that supports an object as it is being pulled by gravity, i.e. your hand holds an apple above the ground) force of her head supporting (or pushing) the book upward above her head(reaction), another set of forces could be the earth pulls on the book (action) and the book pulls on the earth (reaction) 10. F = ma = 0.15kg (300 m/s 2 ) = 45 N Newtons kg 13. First, the horizontal motion is constant so there is no net force; this means the horizontal forces of friction and the applied force are equal. Thus, the applied force of 100N is also the kinetic force of friction (100N). Likewise, there is no vertical motion so the downward force of gravity (the objects weight) is equal to the support force supplied by the floor (normal force). So, w = mg = (10kg)(10) = 100 N. Finally, µ = f / N = 100 N / 100 N = since the more massive car has three times the mass, it will require three times the force to achieve equal accelerations 15. F = ma = m ( v/ t) = 48 kg (8 m/s /6 s) = 64 N 16. her net force is her weight (since no air resistance has been encountered yet) which is W = mg = 60 (10) = 600 N 17. if she has reached terminal velocity, her weight (the downward force) will equal air resistance (the upward force) and a net force of zero will result 18. his acceleration will be zero because at terminal velocity, velocity is constant; therefore, no change in velocity is occurring even though he is still plowing through the air 19. Buster s weight = mg = 45 kg (10m/s 2 ) = 450 N, therefore, both scales should read 225 N (as his weight force is divided equally between the two scales) 20. a = F/m = 30 N/ 60 kg = 0.5 m/s first find the acceleration of the paper, a = 40 m/s / 0.05 s = 800 m/s 2 ; next, F= ma = (0.01 kg)(800 m/s 2 ) = 8 N 22. although the net force between the car and the trailer may be zero, the more massive car exert more force against the road than the less massive boat trailer, therefore, the overall (net) forces between the car and the road are greater than the

4 overall (net) forces between the trailer and the road; thus the car wins the tug of war 23. since the chair is moving at a constant speed, acceleration must be zero, meaning the net force applied to the chair is zero; therefore, the opposing friction force must be equal to the pushing force of 100 N 24. the weight of the cat is the downward force and Sandy s hands pushing upward on the cat represents the normal force 25. Darnell is propelled forward into space with a significant acceleration while the space shuttle is propelled in the opposite direction but with a miniscule acceleration because its mass is much larger than Darnell s; however it is important to point out that both objects will move away from each other 26. his mass is the same 84 kg, however his effective weight is zero because there is essentially no earthly gravity in space 27. since the skater is stationary, the force applied to get the skater moving will be equal to the static friction force between the skater and the ice. Also, since the skater is not going up in the air, only forward, we can determine the normal force on the skater by knowing the weight of the skater. The skater s weight is mg = (70kg)(10)= 700 N = normal force, Thus f = µn = (0.2)(700N) = 140 N. This is the force needed to make the skater move on the ice. 28. the heavy person will reach the ground first because the lighter person will reach their terminal velocity sooner, thus the heavier person can continue to increase in speed and slowly pull away from the lighter person 29. no friction force is at play if the book is at rest; however, friction is the reaction force to an action force that tries to create motion, so as soon as the table is tilted or someone pushes on the book, friction would resist the book s motion 30. he should pull the cloth as quickly as possible; based on Newton s 1 st Law of Motion (Law of Inertia), the dishes and such have mass and will want to remain at rest until a force acts upon them; also the heavier the dishes (more inertia), the more likely they will stay in place, so he should get heavy plates and dinner ware 31. the acceleration will be half as much as before 32. although air resistance is equal, the mass of the two object is not; the greater the mass the greater the net force; the greater the net force, the longer the time of acceleration, so the baseball should have the greater terminal velocity 33. unlike mass or energy, force is not something an object can possess; forces are either generated as a field or applied; in either case they are the result of objects interacting 34. when the boulder reaches terminal velocity, the net force on the boulder is zero which means the force of air resistance (upward) is equal to the weight of the boulder(downward); therefore, if the weight of the boulder is (60kg)(10) = 600 N, then the force of air resistance is 600 N 35. action: exhaust gases push on atmosphere, reaction: atmosphere pushes on exhaust (spaceship), action: gravity pulls down on the spaceship, reaction: the spaceship pulls up on the Earth, action: spaceship gases push against the earth, reaction: earth pushes against the spaceship gases/exhaust 36. both, when you accelerate away from the Earth, the Earth accelerates away from you; when the Earth pulls you back down towards the ground, you pull the Earth up towards you (however, because the Earth s mass is so large compared to yours, we never notice any Earthly movement) 37. both object are pulling on each other with an equal force, neither pull is stronger

5 38. there are several to choose from: the bullet pushes the rifle/rifle pushes the bullet, rifle pushes (recoils) your shoulder, shoulder pushes rifle, explosive gun powder pushes bullet out of the gun, bullet pushes on the exhaust gases 39. according to Newton s 3 rd law the force on the cannon and the cannonball will be equal; therefore, (F = ma), ma (cannon) = ma (cannonball) 200 kg (2 m/s 2 ) = 20 kg (a), acceleration of cannonball is 20 m/s in the following formula, f = µn, the f (force of friction) is equal to the applied force since the object is not accelerating; so f = 20 N. Also, the normal force and weight of the book are the same since there is no vertical motion. Therefore, by finding the normal force (N), we ll also be finding the weight (W) of the book). So, to find N we ll divide: N= f / µ = 20 N/ 0.5 = 40 N. So the book weighs 40 N

4 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force.

4 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force. For every force, there is an equal and opposite force. Forces and Interactions A force is always part of a mutual action that involves another force. Forces and Interactions In the simplest sense, a force

More information

7.1 Forces and Interactions. A force is always part of a mutual action that involves another force. For every force, there. opposite force.

7.1 Forces and Interactions. A force is always part of a mutual action that involves another force. For every force, there. opposite force. For every force, there is an equal and opposite force. A force is always part of a mutual action that involves another force. In the simplest sense, a force is a push or a pull. A mutual action is an interaction

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Physics Semester 1 Review

Physics Semester 1 Review Physics Semester 1 Review Name: 1. Define: Speed Velocity Acceleration Use the graph to the right to answer questions 2-4. 2. How far did the object travel in 3 seconds? 3. How long did it take for the

More information

Exercises. 7.1 Forces and Interactions (page 107) 7.2 Newton s Third Law (page 108)

Exercises. 7.1 Forces and Interactions (page 107) 7.2 Newton s Third Law (page 108) Exercises 71 Forces and Interactions (page 107) 1 A force is always part of a(n) that involves another force 2 Define interaction 3 Describe the interaction forces between a nail and a hammer that hits

More information

NEWTON S THIRD LAW OF MOTION ACTION AND REACTION. For Every Force There Is An Equal and Opposite Force

NEWTON S THIRD LAW OF MOTION ACTION AND REACTION. For Every Force There Is An Equal and Opposite Force NEWTON S THIRD LAW OF MOTION ACTION AND REACTION For Every Force There Is An Equal and Opposite Force Forces and Interactions n A force is always part of a mutual action that involves another force. n

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Newton's Third Law. Examples of Interaction Force Pairs

Newton's Third Law. Examples of Interaction Force Pairs Newton's Third Law A force is a push or a pull that acts upon an object as a results of its interaction with another object. Forces result from interactions! Some forces result from contact interactions

More information

Newton s second law of motion states:

Newton s second law of motion states: Newton s second law of motion states: The acceleration produced by a force on an object is directly proportional to the magnitude of the force, is in the same direction as the force, and is inversely proportional

More information

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will.

4. As you increase your push, will friction on the crate increase also? Ans. Yes it will. Ch. 4 Newton s Second Law of Motion p.65 Review Questions 3. How great is the force of friction compared with your push on a crate that doesn t move on a level floor? Ans. They are equal in magnitude and

More information

Isaac Newton. What is the acceleration of the car? "If I have seen further it is by standing on the shoulders of giants" Isaac Newton to Robert Hooke

Isaac Newton. What is the acceleration of the car? If I have seen further it is by standing on the shoulders of giants Isaac Newton to Robert Hooke Aim: What did Isaac Newton teach us about motion? Do Now: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Newton s 3 rd Law. 3rd Six Weeks

Newton s 3 rd Law. 3rd Six Weeks Newton s 3 rd Law 3rd Six Weeks Golf and Newton s 3 rd Law Newton s 3 rd Law of Motion The Law states: Whenever one object exerts a force upon a second object, the second object exerts an equal and opposite

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

NEWTON S LAWS OF MOTION. Chapter 2: pages Review questions 1, 5-10, 14, 17, 21-24, 30

NEWTON S LAWS OF MOTION. Chapter 2: pages Review questions 1, 5-10, 14, 17, 21-24, 30 NEWTON S LAWS OF MOTION Chapter 2: pages 37-53 Review questions 1, 5-10, 14, 17, 21-24, 30 Sir Isaac Newton Born 1642 1665 began individual studies Proved universal gravitation Invented the Calculus Reflector

More information

Friction and Pressure

Friction and Pressure Friction and Pressure Pre-Test - Post-Test 1. Pressure is defined as. A) force through distance. B) change in height per time. C) force per area. D) force per time. E) energy per area. 2. Which of the

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"

9/20/11. Physics 101 Tuesday 9/20/11 Class 8 Chapter  Weight and Normal forces Frictional Forces Reading Quiz Physics 101 Tuesday 9/20/11 Class 8" Chapter 5.6 6.1" Weight and Normal forces" Frictional Forces" The force due to kinetic friction is usually larger than the force due to static friction.

More information

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION

Conceptual Physics Fundamentals. Chapter 4: NEWTON S LAWS OF MOTION Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION This lecture will help you understand: Newton s First Law of Motion Newton s Second Law of Motion Forces and Interactions Newton s Third

More information

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013

P11 Dynamics 1 Forces and Laws of Motion Bundle.notebook October 14, 2013 Dynamics 1 Definition of Dynamics Dynamics is the study of why an object moves. In order to understand why objects move, we must first study forces. Forces A force is defined as a push or a pull. Forces

More information

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km Name: Physics I Mid Term Exam Review Multiple Choice Questions Date: Mr. Tiesler 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km

More information

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law Physics 100 Today Finish Chapter 4: Newton s Second Law Start Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force

More information

CP Snr and Hon Freshmen Study Guide

CP Snr and Hon Freshmen Study Guide CP Snr and Hon Freshmen Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Displacement is which of the following types of quantities? a. vector

More information

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration

Chapter FOUR: Forces in One Dimension. kew. 7 1:30 PM. force: a push or pull exerted on an object. therefore, a force causes an acceleration Chapter FOUR: Forces in One Dimension 4.1 Force and Motion force: a push or pull exerted on an object forces cause objects to: speed up slow down change direction = change in velocity therefore, a force

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

5 th Grade Force and Motion Study Guide

5 th Grade Force and Motion Study Guide Name: Date of Test: Vocabulary 5 th Grade Force and Motion Study Guide Motion- a change in position relative to a point of reference, a change in speed, or a change in distance. Point of Reference (Reference

More information

Conceptual Physics Momentum and Impulse Take Home Exam

Conceptual Physics Momentum and Impulse Take Home Exam Conceptual Physics Momentum and Impulse Take Home Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Write notes in the margin explaining your answer 1.

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Practice Honors Physics Test: Newtons Laws

Practice Honors Physics Test: Newtons Laws Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

Physics 101. Chap 4 - Newton s Second Law. Will establish a relationship between force (chap 2) and acceleration (chap. 3).

Physics 101. Chap 4 - Newton s Second Law. Will establish a relationship between force (chap 2) and acceleration (chap. 3). Physics 101 Chap 4 - Newton s Second Law Will establish a relationship between force (chap 2) and acceleration (chap. 3). Rember one of the condition we defined: SF=0 Equilibrium Condition This time, we

More information

Momentum, Work and Energy Review

Momentum, Work and Energy Review Momentum, Work and Energy Review 1.5 Momentum Be able to: o solve simple momentum and impulse problems o determine impulse from the area under a force-time graph o solve problems involving the impulse-momentum

More information

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s Contributions Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s First Law (law of inertia) An object at rest tends to stay at rest

More information

Physics 100 Reminder: for on-line lectures

Physics 100 Reminder:  for on-line lectures Physics 100 Reminder: http://www.hunter.cuny.edu/physics/courses/physics100/fall-2016 for on-line lectures Today: Finish Chapter 3 Chap 4 - Newton s Second Law In Chapter 4, we establish a relationship

More information

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating, trigonometry,

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Objectives: Students will describe inertia and how it is related to Newton s first law of motion. Students will calculate an object s acceleration, mass, or the force applied to

More information

Unit 2: Newton s Laws Note 1 : Forces

Unit 2: Newton s Laws Note 1 : Forces Unit 2: Newton s Laws Note 1 : Forces Force: The units of force are: There are four fundamental forces that make up all of the forces in the universe: 1) 2) 3) 4) Force of Gravity Force of Gravity: The

More information

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others.

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others. Quest Chapter 04 # Problem Hint 1 A ball rolls across the top of a billiard table and slowly comes to a stop. How would Aristotle interpret this observation? How would Galileo interpret it? 1. Galileo

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

*************************************************************************

************************************************************************* Your Name: TEST #2 Print clearly. On the Scantron, fill out your student ID, leaving the first column empty and starting in the second column. Also write your name, class time (11:30 or 12:30), and Test

More information

Physics: Impulse / Momentum Problem Set

Physics: Impulse / Momentum Problem Set Physics: Impulse / Momentum Problem Set A> Conceptual Questions 1) Explain two ways a heavy truck and a person on a skateboard can have the same momentum. 2) In stopping an object, how does the time of

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r =

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r = Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation Gravity Newton`s Law of Universal Gravitation states: Where: G = = M = m = r = Ex 1: What is the force of gravity exerted on a 70.0 kg

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Physics 101. Today Chapter 5: Newton s Third Law

Physics 101. Today Chapter 5: Newton s Third Law Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. Eg. I

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Chapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment

Chapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Unit 6: Forces II PRACTICE PROBLEMS

Unit 6: Forces II PRACTICE PROBLEMS Regents Physics Mrs. Long Unit 6: Forces II PRACTICE PROBLEMS Essential Understanding for the Unit: The net force can be determined by using force diagrams in order to show all forces acting, and thereby

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Main Ideas in Class Today

Main Ideas in Class Today 2/4/17 Test Wed, Feb 8th 7pm, G24 Eiesland Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 1 (except section 1.2 and 1.7): Unit conversions, estimating,

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

Foundations of Physical Science. Unit One: Forces and Motion

Foundations of Physical Science. Unit One: Forces and Motion Foundations of Physical Science Unit One: Forces and Motion Chapter 3: Forces and Motion 3.1 Force, Mass and Acceleration 3.2 Weight, Gravity and Friction 3.3 Equilibrium, Action and Reaction Learning

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Review. First Law Review

Review. First Law Review First Law Review 1. Wile E. Coyote runs off the cliff. He correctly follows Newton s law because he was moving forward, so he continues to move forward. However, he now has an unbalanced force acting down

More information

Physics Midterm Review Sheet

Physics Midterm Review Sheet Practice Problems Physics Midterm Review Sheet 2012 2013 Aswers 1 Speed is: a a measure of how fast something is moving b the distance covered per unit time c always measured in units of distance divided

More information

1. Which one of the following situations is an example of an object with a non-zero kinetic energy?

1. Which one of the following situations is an example of an object with a non-zero kinetic energy? Name: Date: 1. Which one of the following situations is an example of an object with a non-zero kinetic energy? A) a drum of diesel fuel on a parked truck B) a stationary pendulum C) a satellite in geosynchronous

More information

Chapter 2. Force and Newton s Laws

Chapter 2. Force and Newton s Laws Chapter 2 Force and Newton s Laws 2 1 Newton s First Law Force Force A push or pull that one body exerts on another body. Examples : 2 Categories of Forces Forces Balanced Forces Unbalanced Forces Balanced

More information

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2.

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2. Read each question carefully. 1) The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2. What is the box's mass? 6 kg 15 kg 21 kg 54 kg 2) A motorcycle and a van collide

More information

S15--Phys Q2 Momentum

S15--Phys Q2 Momentum Name: Class: Date: ID: A S15--Phys Q2 Momentum Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If the momentum of an object changes and its mass remains

More information

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 01/02/18

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 01/02/18 CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 01/02/18 HISTORY OF IDEAS ABOUT MOTION Aristotle (384-322 BC) o Natural Motion An object will strive to get to its proper place determined by its nature or

More information

act concurrently on point P, as shown in the diagram. The equilibrant of F 1

act concurrently on point P, as shown in the diagram. The equilibrant of F 1 Page 1 of 10 force-friction-vectors review Name 12-NOV-04 1. A 150.-newton force, F1, and a 200.-newton force, F 2, are applied simultaneously to the same point on a large crate resting on a frictionless,

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

6.1 Force Causes Acceleration. Unbalanced forces acting on an object cause the object to accelerate. Recall the definition of acceleration:

6.1 Force Causes Acceleration. Unbalanced forces acting on an object cause the object to accelerate. Recall the definition of acceleration: Recall the definition of acceleration: An object accelerates when a net force acts on it. The cause of acceleration is force. 6.1 Force Causes Acceleration Unbalanced forces acting on an object cause the

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d.

16. A ball is thrown straight up with an initial speed of 30 m/s. What is its speed after 4.2 s? a. 11 m/s b. 30 m/s c. 42 m/s d. Page 1 1. If you are driving 90 km/h along a straight road and you look to the side for 3.0 s, how far do you travel during this inattentive period? a. 30 m b. 25 m c. 50 m d. 75 m 2. A polar bear starts

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.) Newton s Laws 1) Inertia - objects in motion stay in motion 2) F=ma 3) Equal and opposite reactions Newton's 1 st Law What is the natural state of motion of an object? An object at rest remains at rest,

More information

Is there a net force?

Is there a net force? Is there a net force? A net force (i.e., an unbalanced force) causes acceleration. In the motion unit, several means of representing accelerated motion were discussed. Combine your prior understanding

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations.

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations. Assignment 8 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Name Class Date. height. Which ball would land first according to Aristotle? Explain.

Name Class Date. height. Which ball would land first according to Aristotle? Explain. Skills Worksheet Directed Reading A Section: Gravity and Motion 1. Suppose a baseball and a marble are dropped at the same time from the same height. Which ball would land first according to Aristotle?

More information

Directions: Show your working using the CER and 5 Steps to Problem Solving.

Directions: Show your working using the CER and 5 Steps to Problem Solving. STATION 1: Newton s 1 st Law of Motion-Weight and Mass Directions: Show your working using the CER and 5 Steps to Problem Solving. 1. Find the mass of a 150 N couch. (15 kg) 2. Find the weight of 85 kg

More information

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

A scalar quantity has just magnitude A vector quantity has both magnitude and direction Name Date Mods REVIEW FOR MIDYEAR ASSESSMENT 1. Physics is the most basic science because Physics supports chemistry, chemistry supports biology. The ideas of physics are fundamental to these more complicated

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Broughton High School of Wake County

Broughton High School of Wake County Name: Section: 1 Section 1: Which picture describes Newton s Laws of Motion? 5. Newton s Law 1. Newton s Law 2. Newton s Law 6. Newton s Law 3. Newton s Law 7. Newton s Law 4. Newton s Law 8. Newton s

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Force Concept Inventory

Force Concept Inventory Force Concept Inventory 1. Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single story building at the same instant of time. The time

More information

Note on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force?

Note on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force? Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 14, 014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Overview The Laws of Motion

Overview The Laws of Motion Directed Reading for Content Mastery Overview The Laws of Motion Directions: Fill in the blanks using the terms listed below. force inertia momentum sliding conservation of momentum gravitational ma mv

More information

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force:

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force: 1 Laws of Motion What is force? What happens when you push or pull objects? Some examples of pushing and pulling Kicking Pushing Lifting Squeezing Definition Force: Activity: Tug of war In a tug of war,

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

Motor. Cable. Elevator

Motor. Cable. Elevator Q4.1 An elevator is being lifted at a constant speed by a steel cable attached to an electric motor. There is no air resistance, nor is there any friction between the elevator and the walls of the elevator

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS)

PHYSICS - CLUTCH CH 04: INTRO TO FORCES (DYNAMICS) !! www.clutchprep.com FORCE, APPLIED FORCE, TENSION A force is either a push or a pull. Unit = ( ) - We ll represent all forces as a We ll refer to generic forces as forces. - Usually on an object by a

More information

SUPERCHARGED SCIENCE. Unit 2: Motion.

SUPERCHARGED SCIENCE. Unit 2: Motion. SUPERCHARGED SCIENCE Unit 2: Motion www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-12 hours, depending on how many activities you do! We re going to study

More information

Newton s third law relates action and reaction forces.

Newton s third law relates action and reaction forces. Chapter 11, Section 3 Key Concept: Forces act in pairs. BEFORE, you learned A force is a push or a pull Increasing the force on an object increases the acceleration The acceleration of an object depends

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information