Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 Diffusion of pollutants by helical vortices with subgrid turbulence R. Cieszelski Department 'Modelling of Atmospheric Processes', Institute for Tropospheric Research I.f.T., Permoserstrasse 15, Leipzig, Germany Abstract It is shown that the life cycle structure of helical vortices in grid-point modelling is improved if two-scale energy and helicity conservation is taken into account. For the large-scale regime the 'Ansatz' of Lautenschlager et.al [6] is adopted and for the subgrid turbulence regime prognostic equations of turbulent kinetic energy TKE and of turbulent helicity TH (TKEH model) are solved. Cieszelski [1] showed that grid point modelling with the closed equation set preserves the stabilizing effects of helicity of spectral models. The resulting effects on multi-scale diffusion of pollutants is discussed. 1 Introduction A problem in grid point modelling arises with the transport of energy as well as passive and reactive pollutants by helical vortices. The intensity of helical vortices is measured by kinetic energy E=0.5 UiUi and the strength of knottness by helicity #=%, if Ui is one of the three flow vector components and Ci is one of the three vorticity vector components. From observations (see e.g^ Etling [4]) it has been speculated, that the spectral helicity density H(k-, f) concentrated at large scales leads to a reduced spectral energy flux to smaller scales or at least slowes down the development of the energy cascade. This effect should be preserved in grid-point modelling and is realized by interactive spectral fluxes (a) between large scale kinetic en-

2 176 Computer Simulation ergy E=0.5 f/jc/i and turbulent kinetic energy TKE, defined by e 0.5n^ and (b) between large-scale helicity H=U i and turbulent helicity h=u' [. The spectral separation is linked to the resolution A of the grid-point model and so defines subgrid turbulence. Lautenschlager et.al [6] developed a new 'Ansatz' of subgrid scale coupling to helical vortices within complex flows as for example the PBL. In case of Reynold's averaged incompressible flow and assuming vorticity as the turbulence generating quantity, series expension of the Reynold's- tensor divergence, dimensional and symmetry arguments and derivation within the frame of turbulence theory lead to: dv _ = (i) For simplicity of presentation, the overbars have been omitted. 0 indicates the tensor product, V the flow vector, Q<> the background air density, p* the pressure anormaly, oinega^, the earth rotation vector, and <jy the arbitrary sources. The tendency of the flow on the left hand side of eqn (1) is balanced on the right hand side by large scale advection (1), pressure forces (2), Coriolis- 'force', sources/sinkes (4). Turbulence effects on large-scale flow is discribed by grad-e-term (5) and by the effect of subgrid turbulence due to rotational effects, expressed by the new rotational parametrization (6)- (8). The parametrization coefficients a, j3 and 7 in terms (6)- (8) in eqn (1) depend on length scales f%, on turbulent kinetic energy TKE=e and on turbulent helicity TH=A. In the limiting case of zero turbulent helicity TH, h > 0, turbulence terms (6)- (8) in eqn (1) reduce to the diffusion term (7), as a > 0 and 7» 0 and /3V x = fi&v. Lautenschlager et.al [6] additionally showed that non-zero turbulent helicity h / 0 can stabilize and force large-scale helical vortices in grid point modelling, if the large-scale to turbulence-scale coupling is parameterized as stated by equations (1) and (2) and e and h are assumed time invariant in afirststep. 2 Modelling of helical vortices with subgrid turbulence Cieszelski [1] extended the new 'Ansatz' to a closed set of prognostic equations together with a turbulence model for turbulent kinetic energy TKE and

3 Computer Simulation 177 in addition for turbulent helicity TH (TKEH-model). This model configuration allows energy and helicity fluxes between large-scale and subgrid-scale regimes to develop interactively, limited by conservation of total kinetic energy Etot = E + e and total helicity H^t = H + h. Todays atmospheric turbulence modelling deals with (a) SOC= Second order closure, SOC in V and SOC in <f results in interactive energy, helicity and additional rotational fluxes. Six equations for the turbulence regime are solved, which is numerically very expensive. Numerous parametrization constants must be specified for atmospheric problems. Not used in global modelling, but state-of-the art in mesoscale modelling, however rarely applied in an unsimplified form. (al) TKEH closure (simplified SOC, SOC in F, FOC in (), allows four interactive energy and helicity fluxes resulting from the grad-e, a-, /3- and 7- terms of eqn (1), which are parameterized by turbulent kinetic energy TKE=e and in addition by turbulent helicity TH=/t. This requires 2 equations for the turbulence regime, which is 30 per cent of the numerical expense of SOC. (a2) TKE closure (simplified SOC, SOC in 7, ZOC in () results in diffusiontype energy fluxes and NO helicity diffusion as in the case of FOC; however, the diffusion coefficient /3(eJ,...) is determined by turbulent kinetic energy TKE=e, so one equation is solved and minimal dynamics of the turbulence regime is taken into account. Widely used in atmospheric modelling, because of little numerical expense (15 per cent of SOC). (b) FOC= First order closure results in energy diffusion and NO helicity diffusion. The Diffusion coefficient /?($) is determined solely by large-scale variables $. NO equations for the turbulence regime are solved. The direction of the energy fluxes is similar as in the ca.se of TKE-modelling and of the diffusion-type. Widely used in atmospheric modelling. (c) ZOC= Zero order closure results in unphysically modelling of turbulence flows and will not be discussed. Distinguishing between the order of closure with respect to V and (clarifies that TKE-closure is of ZOC with respect to (. In contrast, TKEH closure is of FOC-type with respect to ( as well. The new TKEH-turbulence modelling concept was implemented in a columnar-type grid-point model based on the code described in Lautenschlager et.al [6]. It is non-hydrostatic, threedimensional, written in cylinder^coordinates (r, 0, z) and includes prognostic equations for the wind vector f, for virtual-potential temperature 0%, for arbitrary pollutants ra,, for turbulent kinetic energy TKE, e, and for turbulent helicity h. For pressure expressed by the Exner function TT, an iterative

4 178 Computer Simulation Poisson-solver based on the conjugated gradient algorithm was used (Kapitza et.al [5]). Large-scale regime dt (1) (2) (5) ATT* = 90y dt -v-(f(g)y) + (/ 8%,c, (i) -^ (2) = - V (78%) 4- (i) (2) - Ve + ac + 4-?A(,(4) (5) i = _v.(ymj +, dt (1) (2) (6) Subgrid turbulence regime (i) (2) (3 (4) (7) V-(e-C) + V ~v^- (2) (4) 2V- (8) Term (1) is the advection term thoroughly the equation set -(8). In the equation for the flow vector the remaining terms are pressure force (2),

5 Computer Simulation 179 buoyancy with g the gravity constants, k the vertical oriented unit vector, gradient-e-term (4) and the rotational parametrization (5). In eqn (5) for virtual potential temperature 8%, term (2) is turbulent diffusion and term denotes divergence of radiative flux S. In the balance equation for the chemical components m* (6), o\j denotes the source/sink due to chemical reaction with respect to the chemical component raj. In the equation for TKE e (7), the terms are shearproduction (2), diffusion (4), dissipation (5) and sources/sinks (6). In the equation for TH h (8) the terms are shearproduction due to wind shear and vorticity shear (2), divergence of vorticity-tke correlations, diffusion (4) (5), dissipation (6), and sources/sinks (7). li are additional length scales arising with SOC and C2=l//c2- The Reynolds-tensor 44 is defined by R= u(u'j and the corresponding turbulent vorticity flow tensor is defined by lt= 0.5[n^ - ^Cl]. 3 Results of numerical experiments Two cases of numerical experiments were performed with subgrid turbulence sources (term (5) in eqn (7) and term (7) in eqn (8)) assumed zero, to show the weakly non-linear effect of the new concept. 3.1 Stabilization of a barotropic model hurricane A simple columnar-type vortex with exclusively radial dependent initial structure is assumed as afirstcandidate. The radius of the column is 100 km and the model height is 10 km. The wind speed maximum is 12 m/s near the center, vertical velocity is 5 m/s at the model hurricanes center. The corresponding energy and helicity distributions were assumed to be similar in the subgrid turbulence regime, so E e and H = h initially. During thefirst24 hours, the vortex is forced by fixed inflow conditions at the bottom. At t 24 hours, the boundary conditions are changed to zero gradient, so the vortex can develop according to its internal dynamics. locally T-turbulence modelling is applied, as the mesoscale structure of the vortex (A/^ % 10 km) suggests that subgrid processes of helical convection e.g. cloud clusters and individual storms are of the local-type, resulting in no transport of the subgridfieldsof TKE e and TH h. 'l-tkeh'-modelling implies organized turbulence with turbulent helicity h non-zero. In this model assumptions, the large scale helical vortex structure keeps alive after t 24. Internal two-scale dynamics are adopted resulting in large scale vortex structures 'frozen-in'. Finally the integrals of large-scale kinetic energy and large-scale helicity remain nearly time in-

6 180 Computer Simulation variant. The solution is an approximation to the large scale mature state observed. Control run: T-TKE'-modelliiig implies random turbulence with turbulent helicity h > 0. In this case, the large scale vortex structure weakens after t=24 hours and the vortex diameter increases in time, so that the vorticity and helicity of the vortex decrease. This is the classical diffusiontype solution which is often found inadequate for modelling quasi-stationary 'mature' states of helical atmospheric vortices. 3.2 Stabilization of a model thermal with rotation A more complex ring vortex with a two-dimensional initial structure is assumed as an second example. The radius of the model column is 1 km and model the height is 4 km. The rotational wind speed is initially 0.6 m/s to keep vortex breakdown of the dust-devil type excluded from the numerical experiments. The thermal is initialized by initial heat supply up to 500 in above the ground and additionally during thefirst30 seconds of simulation at the ground. Subgrid fields of turbulent TKE and TH were set at nearly zero to initiate the turbulence model equations. Due to the smaller scale of this ring vortex, the transport of subgrid turbulence energy e and helicity h must be included. An analysis of observations by LeMone [7] and Cieszelski [2] shows that turbulence is transported by thennals. Comparison of 'TKE' and 'TKEH' modelling. In the case of TKEH modelling, the model thermal keeps its rotational flow structure much better, resulting in wind speeds around 50 per cent more intense as in the case of TKE-modelling, taken as the control run for diffusion-type modelling. The updraft speed is also enhanced by non-linear energy exchange (rotational to vertical flow), so that the rotational flow is transported somewhat higher. 3.3 Complex mesoscale PBL modelling In the case of grid-point-modelling of two atmospheric helical vortices, the life cycle behaviour could be signicantly improved if turbulence modelling accounted for organization in the subgrid scale regime. In the next step, the new turbulence modelling concept will be implemented in a complex mesoscale PBL model including more physical processes due to e.g. orography, roughness and albedo inhomogeneities at the ground, radiative forcing and chemical reactions, cloud- and aerosol physics. As to the temporalspatial relevance of helical vortices related to PBL modelling, instabilities of Ekman boundary layer flows (Etling [4]), convection effected by shear (Wu et.al [8]), thunderstorms (Droegemeier et.al [3]) and fronts are important

7 candidates. Computer Simulation Effects on diffusion of pollutants The life cycle of a chemical component m,=a is affected by different types of helical vortices. On the large scale, the advection term (1) in eqn (6) acts as a non-linear coupling term to the large-scale flow. On the subgrid turbulence scale, the diffusion coefficient 0 depends on turbulent kinetic energy, see eqn (2), which in turn depends indirectly on the large-scale flow. Figure 1: Antidiffusive effect of helical vortices on pollutants As large scale helical vortices are sensitive to turbulent helicity, and turbulent kinetic energy and helicity are affected by large scale induced shearproduction, terms (2) in eqns (7)-(8), there is a strong linkage between large-scale and turbulent scale regime determining the multi-scale diffusion and/or antidiffusion of pollutants. Figure 1 shows a sketch of diffusion scenario with two stacks s-1 and s-2. During pollutant release (a), small-scaled thermal as well as dynamic instabilities determine the helical structure of the instantaneous cloud axis. Chemical reactions due to high temperatures are most vigorous. During pollutant transport near the source (b), larger-scaled

8 182 Computer Simulation processes enter the dynamics and chemical reactions slow down. During this transport reaction with the remaining components of the pollutant spectra rrii^a of different sources has also to be taken into account. As long as the transport is traced, more sources and their long-range transport (c) becomes important, which in case of small initial errors may lead to large errors in long-term modelling. In addition, reactivity with the background chemistry has to be considered. Finally, during deposition (d), again very small scale processes must be taken into account, as the surface structure of vegetation and soil is very complex. The problem is additionally complicated if cloudaerosol- physics with radiative feed back are important. Most important influence of helical vortices in the PBL on pollutant diffusion are expected during transport near the source (b), as two different spectra of chemical components may be merged by helical flow structures, resulting in different spectra for longe-range transport of chemical components. References [1] Cieszelski,R.: Turbulenzmodellierung fuer Stroemungen mit Helizitaet, GKSS external report bf GKSS 92/E/12, Thesis University Hamburg [2] Cieszelski,R.: Zwei Fallstudien geordneter Konvektion anhand von Flugzeugmessungen waehrend des Experiments KonTur, Diploma University Hamburg, [3] Droegemeier,K.K.,Lazarus,S.M,Davies-Jones,R.: The influence of helicity on numerical simulated convective storms, Monthly Weather Review 1993, V 121, [4] Etling,D.: Some aspects of helidty in atmospheric flows, Contribution to atmospheric physics, 1985, 58,1, S [5] Kapitza,H., Eppel,D: A 3-d Poisson solver based on the Conjugated Gradient algorithm, 1985, GKSS external report 85/E/23. [6] Lautenschlager,M., Eppel,D.R, Thacker,W.C, 1988: Subgrid Parametrization in Helical Flows, Contribution to atmospheric physics 61,2, [7] LeMone, M.A.: Modulation of Turbulence Energy by Longitudinal Rolls in an Unstable Planetary Boundary Layer, Journal of Atmospheric Sciences, 1976, Vol.37, 1313ff. [8] Wu,W.S.,Lilly,D.K.,Kerr,R.M.: Helidty and Thermal convection with shear, Journal of Atmospheric Sciences, 1992, Vol.49,

Non-local Momentum Transport Parameterizations. Joe Tribbia NCAR.ESSL.CGD.AMP

Non-local Momentum Transport Parameterizations. Joe Tribbia NCAR.ESSL.CGD.AMP Non-local Momentum Transport Parameterizations Joe Tribbia NCAR.ESSL.CGD.AMP Outline Historical view: gravity wave drag (GWD) and convective momentum transport (CMT) GWD development -semi-linear theory

More information

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions Joshua Hacker National Center for Atmospheric Research hacker@ucar.edu Topics The closure problem and physical parameterizations

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield.

M.Sc. in Meteorology. Physical Meteorology Prof Peter Lynch. Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield. M.Sc. in Meteorology Physical Meteorology Prof Peter Lynch Mathematical Computation Laboratory Dept. of Maths. Physics, UCD, Belfield. Climate Change???????????????? Tourists run through a swarm of pink

More information

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Detlev Heinemann ForWind Center for Wind Energy Research Energy Meteorology Unit, Oldenburg University Contents Model Physics

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction In this class, we will examine atmospheric phenomena that occurs at the mesoscale, including some boundary layer processes, convective storms, and hurricanes. We will emphasize

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Rotating stratified turbulence in the Earth s atmosphere

Rotating stratified turbulence in the Earth s atmosphere Rotating stratified turbulence in the Earth s atmosphere Peter Haynes, Centre for Atmospheric Science, DAMTP, University of Cambridge. Outline 1. Introduction 2. Momentum transport in the atmosphere 3.

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-scale Circulation G E O F F R E Y K. V A L L I S Princeton University, New Jersey CAMBRIDGE UNIVERSITY PRESS An asterisk indicates more advanced

More information

ATMOSPHERIC SCIENCE-ATS (ATS)

ATMOSPHERIC SCIENCE-ATS (ATS) Atmospheric Science-ATS (ATS) 1 ATMOSPHERIC SCIENCE-ATS (ATS) Courses ATS 150 Science of Global Climate Change Credits: 3 (3-0-0) Physical basis of climate change. Energy budget of the earth, the greenhouse

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Fair Weather over Land

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

Evaluation of three spatial discretization schemes with the Galewsky et al. test

Evaluation of three spatial discretization schemes with the Galewsky et al. test Evaluation of three spatial discretization schemes with the Galewsky et al. test Seoleun Shin Matthias Sommer Sebastian Reich Peter Névir February 22, 2 Abstract We evaluate the Hamiltonian Particle Methods

More information

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008 A Global Atmospheric Model Joe Tribbia NCAR Turbulence Summer School July 2008 Outline Broad overview of what is in a global climate/weather model of the atmosphere Spectral dynamical core Some results-climate

More information

Mellor-Yamada Level 2.5 Turbulence Closure in RAMS. Nick Parazoo AT 730 April 26, 2006

Mellor-Yamada Level 2.5 Turbulence Closure in RAMS. Nick Parazoo AT 730 April 26, 2006 Mellor-Yamada Level 2.5 Turbulence Closure in RAMS Nick Parazoo AT 730 April 26, 2006 Overview Derive level 2.5 model from basic equations Review modifications of model for RAMS Assess sensitivity of vertical

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u,

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u, ! Revised January 23, 208 7:7 PM! Reynolds Averaging David Randall Introduction It is neither feasible nor desirable to consider in detail all of the small-scale fluctuations that occur in the atmosphere.

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

ICON-IAP: A non-hydrostatic global. Almut Gassmann IAP Kühlungsborn, Germany. model designed for energetic consistency

ICON-IAP: A non-hydrostatic global. Almut Gassmann IAP Kühlungsborn, Germany. model designed for energetic consistency ICON-IAP: A non-hydrostatic global Almut Gassmann IAP Kühlungsborn, Germany model designed for energetic consistency ICON-IAP is a model on a Voronoi mesh: The divergence lives on Voronoi cells (mostly

More information

SEVERE AND UNUSUAL WEATHER

SEVERE AND UNUSUAL WEATHER SEVERE AND UNUSUAL WEATHER Basic Meteorological Terminology Adiabatic - Referring to a process without the addition or removal of heat. A temperature change may come about as a result of a change in the

More information

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size L Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size 0.01L or smaller are subject to substantial viscous

More information

Bulk Boundary-Layer Model

Bulk Boundary-Layer Model Bulk Boundary-Layer Model David Randall Ball (1960) was the first to propose a model in which the interior of the planetary boundary layer (PBL) is well-mixed in the conservative variables, while the PBL

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Introduction to Mesoscale Meteorology

Introduction to Mesoscale Meteorology Introduction to Mesoscale Meteorology Overview Scale Definitions Synoptic Synoptic derived from Greek synoptikos meaning general view of the whole. Also has grown to imply at the same time or simultaneous.

More information

PV Generation in the Boundary Layer

PV Generation in the Boundary Layer 1 PV Generation in the Boundary Layer Robert Plant 18th February 2003 (With thanks to S. Belcher) 2 Introduction How does the boundary layer modify the behaviour of weather systems? Often regarded as a

More information

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah

Multi-Scale Modeling of Turbulence and Microphysics in Clouds. Steven K. Krueger University of Utah Multi-Scale Modeling of Turbulence and Microphysics in Clouds Steven K. Krueger University of Utah 10,000 km Scales of Atmospheric Motion 1000 km 100 km 10 km 1 km 100 m 10 m 1 m 100 mm 10 mm 1 mm Planetary

More information

Hydrodynamic conservation laws and turbulent friction in atmospheric circulation models

Hydrodynamic conservation laws and turbulent friction in atmospheric circulation models Hydrodynamic conservation laws and turbulent friction in atmospheric circulation models Erich Becker Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany Including contributions from Ulrike

More information

Internal Wave Generation and Scattering from Rough Topography

Internal Wave Generation and Scattering from Rough Topography Internal Wave Generation and Scattering from Rough Topography Kurt L. Polzin Corresponding author address: Kurt L. Polzin, MS#21 WHOI Woods Hole MA, 02543. E-mail: kpolzin@whoi.edu Abstract Several claims

More information

Atmospheric Boundary Layers

Atmospheric Boundary Layers Lecture for International Summer School on the Atmospheric Boundary Layer, Les Houches, France, June 17, 2008 Atmospheric Boundary Layers Bert Holtslag Introducing the latest developments in theoretical

More information

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water.

Hurricanes are intense vortical (rotational) storms that develop over the tropical oceans in regions of very warm surface water. Hurricanes: Observations and Dynamics Houze Section 10.1. Holton Section 9.7. Emanuel, K. A., 1988: Toward a general theory of hurricanes. American Scientist, 76, 371-379 (web link). http://ww2010.atmos.uiuc.edu/(gh)/guides/mtr/hurr/home.rxml

More information

Jacobians of transformation 115, 343 calculation of 199. Klemp and Wilhelmson open boundary condition 159 Kuo scheme 190

Jacobians of transformation 115, 343 calculation of 199. Klemp and Wilhelmson open boundary condition 159 Kuo scheme 190 Index A acoustic modes 121 acoustically active terms 126 adaptive grid refinement (AGR) 206 Advanced Regional Prediction System 3 advection term 128 advective form 129 flux form 129 Allfiles.tar 26 alternating

More information

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club

Model description of AGCM5 of GFD-Dennou-Club edition. SWAMP project, GFD-Dennou-Club Model description of AGCM5 of GFD-Dennou-Club edition SWAMP project, GFD-Dennou-Club Mar 01, 2006 AGCM5 of the GFD-DENNOU CLUB edition is a three-dimensional primitive system on a sphere (Swamp Project,

More information

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream

Turbulence. 2. Reynolds number is an indicator for turbulence in a fluid stream Turbulence injection of a water jet into a water tank Reynolds number EF$ 1. There is no clear definition and range of turbulence (multi-scale phenomena) 2. Reynolds number is an indicator for turbulence

More information

SIMULATION OF GEOPHYSICAL TURBULENCE: DYNAMIC GRID DEFORMATION

SIMULATION OF GEOPHYSICAL TURBULENCE: DYNAMIC GRID DEFORMATION SIMULATION OF GEOPHYSICAL TURBULENCE: DYNAMIC GRID DEFORMATION Piotr K Smolarkiewicz, and Joseph M Prusa, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. Iowa State University, Ames,

More information

Part I: Dry Convection

Part I: Dry Convection Turbulent dispersion and chemical transformation in the atmospheric boundary layer: Part I: Dry Convection DISPERSION Thanks: Alessandro Dosio Jordi Vilà-Guerau de Arellano WA G E N I N G E N U N I VE

More information

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification References: A Global View of Tropical Cyclones, Elsberry (ed.) Global Perspectives on Tropical Cylones:

More information

The parametrization of the planetary boundary layer May 1992

The parametrization of the planetary boundary layer May 1992 The parametrization of the planetary boundary layer May 99 By Anton Beljaars European Centre for Medium-Range Weather Forecasts Table of contents. Introduction. The planetary boundary layer. Importance

More information

Examination #3 Wednesday, 28 November 2001

Examination #3 Wednesday, 28 November 2001 Name & Signature Dr. Droegemeier Student ID Meteorology 1004 Introduction to Meteorology Fall, 2001 Examination #3 Wednesday, 28 November 2001 BEFORE YOU BEGIN!! Please be sure to read each question CAREFULLY

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization

The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization Julia Palamarchuk Odessa State Environmental University, Ukraine The applicability of Monin Obukhov scaling for sloped cooled flows in the context of Boundary Layer parameterization The low-level katabatic

More information

LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2

LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2 MAGNETOHYDRODYNAMICS Vol. 00 (1964), No. 00, pp. 1 5 LES modeling of heat and mass transfer in turbulent recirculated flows E. Baake 1, B. Nacke 1, A. Umbrashko 2, A. Jakovics 2 1 Institute for Electrothermal

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #3: Gravity Waves in GCMs Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Role of GWs in the middle atmosphere 2. Background theory 3. Resolved GWs in GCMs 4. Parameterized

More information

11.B4 The influence of horizontal convective rolls on the morphology of low-level rotation in idealized simulations of supercell thunderstorms

11.B4 The influence of horizontal convective rolls on the morphology of low-level rotation in idealized simulations of supercell thunderstorms 11.B4 The influence of horizontal convective rolls on the morphology of low-level rotation in idealized simulations of supercell thunderstorms CHRISTOPHER J. NOWOTARSKI, PAUL M. MARKOWSKI, AND YVETTE P.

More information

Chapter (3) TURBULENCE KINETIC ENERGY

Chapter (3) TURBULENCE KINETIC ENERGY Chapter (3) TURBULENCE KINETIC ENERGY 3.1 The TKE budget Derivation : The definition of TKE presented is TKE/m= e = 0.5 ( u 2 + v 2 + w 2 ). we recognize immediately that TKE/m is nothing more than the

More information

Lecture 12. The diurnal cycle and the nocturnal BL

Lecture 12. The diurnal cycle and the nocturnal BL Lecture 12. The diurnal cycle and the nocturnal BL Over flat land, under clear skies and with weak thermal advection, the atmospheric boundary layer undergoes a pronounced diurnal cycle. A schematic and

More information

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Stamen Dolaptchiev & Rupert Klein Potsdam Institute for Climate Impact Research

More information

Chapter 3. Stability theory for zonal flows :formulation

Chapter 3. Stability theory for zonal flows :formulation Chapter 3. Stability theory for zonal flows :formulation 3.1 Introduction Although flows in the atmosphere and ocean are never strictly zonal major currents are nearly so and the simplifications springing

More information

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001

Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 Name & Signature Dr. Droegemeier Student ID Meteorology 1004 Introduction to Meteorology Fall, 2001 Solutions to Comprehensive Final Examination Given on Thursday, 13 December 2001 BEFORE YOU BEGIN!! Please

More information

3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures

3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures 3-Fold Decomposition EFB Closure for Convective Turbulence and Organized Structures Igor ROGACHEVSKII and Nathan KLEEORIN Ben-Gurion University of the Negev, Beer-Sheva, Israel N.I. Lobachevsky State University

More information

Effective Depth of Ekman Layer.

Effective Depth of Ekman Layer. 5.5: Ekman Pumping Effective Depth of Ekman Layer. 2 Effective Depth of Ekman Layer. Defining γ = f/2k, we derived the solution u = u g (1 e γz cos γz) v = u g e γz sin γz corresponding to the Ekman spiral.

More information

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components.

Reynolds Averaging. We separate the dynamical fields into slowly varying mean fields and rapidly varying turbulent components. Reynolds Averaging Reynolds Averaging We separate the dynamical fields into sloly varying mean fields and rapidly varying turbulent components. Reynolds Averaging We separate the dynamical fields into

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines

A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines Note: Lecture notes presented here based on course Daily Weather Laboratory

More information

High resolution numerical modelling of moist convection in statistical equilibrium: buoyancy and velocity scales

High resolution numerical modelling of moist convection in statistical equilibrium: buoyancy and velocity scales High resolution numerical modelling of moist convection in statistical equilibrium: buoyancy and velocity scales A. Parodi (1), K. Emanuel (2) CIMA, University of Genoa, Savona, Italy EAPS, MIT, Boston,

More information

Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification

Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification Michael Riemer 1, Michael T. Montgomery 2,3, Mel E. Nicholls 4 1 Johannes Gutenberg-Universität,

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Thunderstorms and Severe Weather. (Chapt 15)

Thunderstorms and Severe Weather. (Chapt 15) Thunderstorms and Severe Weather (Chapt 15) The Big Picture We ve emphasized horizontal transport of energy to balance the planetary energy budget: Hadley Cell Subtropical divergence Midlatitude cyclones

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves

Chapter 5. Sound Waves and Vortices. 5.1 Sound waves Chapter 5 Sound Waves and Vortices In this chapter we explore a set of characteristic solutions to the uid equations with the goal of familiarizing the reader with typical behaviors in uid dynamics. Sound

More information

TURBULENT KINETIC ENERGY

TURBULENT KINETIC ENERGY TURBULENT KINETIC ENERGY THE CLOSURE PROBLEM Prognostic Moment Equation Number Number of Ea. fg[i Q! Ilial.!.IokoQlI!!ol Ui au. First = at au.'u.' '_J_ ax j 3 6 ui'u/ au.'u.' a u.'u.'u k ' Second ' J =

More information

Synoptic-Dynamic Meteorology in Midlatitudes

Synoptic-Dynamic Meteorology in Midlatitudes Synoptic-Dynamic Meteorology in Midlatitudes VOLUME II Observations and Theory of Weather Systems HOWARD B. BLUESTEIN New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents 1. THE BEHAVIOR OF SYNOPTIC-SCALE,

More information

Radiative forcing of fine ash and volcanic sulphate aerosol. sulphate aerosol after a very large Northern hemisphere mid-latitude eruption

Radiative forcing of fine ash and volcanic sulphate aerosol. sulphate aerosol after a very large Northern hemisphere mid-latitude eruption Radiative forcing of fine ash and volcanic sulphate aerosol after a very large Northern hemisphere mid-latitude eruption Ulrike Niemeier (1), Claudia Timmreck (1), Sebastian Rast (1), Marco Giorgetta (1),

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

Formulation and performance of the Variable-Cubic Atmospheric Model

Formulation and performance of the Variable-Cubic Atmospheric Model Formulation and performance of the Variable-Cubic Atmospheric Model John McGregor CSIRO Marine and Atmospheric Research Aspendale, Melbourne Southern Hemisphere PDEs on the Sphere NCAR 11 April 2014 CSIRO

More information

Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University

Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University Draft Chapter from Mesoscale Dynamic Meteorology By Prof. Yu-lang Lin, North Carolina State University Chapter 1 Overview 1.1 Introduction The so-called mesometeorology or mesoscale meteorology is defined

More information

INTERNAL GRAVITY WAVES

INTERNAL GRAVITY WAVES INTERNAL GRAVITY WAVES B. R. Sutherland Departments of Physics and of Earth&Atmospheric Sciences University of Alberta Contents Preface List of Tables vii xi 1 Stratified Fluids and Waves 1 1.1 Introduction

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

Convective Dynamics. Jeremy A. Gibbs. March 10, University of Oklahoma

Convective Dynamics. Jeremy A. Gibbs. March 10, University of Oklahoma Convective Dynamics Jeremy A. Gibbs University of Oklahoma gibbz@ou.edu March 10, 2015 1 / 66 Overview Multicellular Storms Intro Lifecycle Thunderstorm Outflow as a Density Current Cell Regeneration 2

More information

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics Homogeneous Turbulence Dynamics PIERRE SAGAUT Universite Pierre et Marie Curie CLAUDE CAMBON Ecole Centrale de Lyon «Hf CAMBRIDGE Щ0 UNIVERSITY PRESS Abbreviations Used in This Book page xvi 1 Introduction

More information

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria

ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere

More information

Some remarks on climate modeling

Some remarks on climate modeling Some remarks on climate modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Selected overheads by Doug Nychka Outline Hierarchy of atmospheric modeling strategies

More information

Mostafa Momen. Project Report Numerical Investigation of Turbulence Models. 2.29: Numerical Fluid Mechanics

Mostafa Momen. Project Report Numerical Investigation of Turbulence Models. 2.29: Numerical Fluid Mechanics 2.29: Numerical Fluid Mechanics Project Report Numerical Investigation of Turbulence Models Mostafa Momen May 2015 Massachusetts Institute of Technology 1 Numerical Investigation of Turbulence Models Term

More information

Modified PM09 parameterizations in the shallow convection grey zone

Modified PM09 parameterizations in the shallow convection grey zone Modified PM09 parameterizations in the shallow convection grey zone LACE stay report Toulouse Centre National de Recherche Meteorologique, 02. February 2015 27. February 2015 Scientific supervisor: Rachel

More information

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst THUNDERSTORMS TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst What are Thunderstorms? A storm produced by a cumulonimbus cloud that contains lightning and thunder

More information

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer:

The atmospheric boundary layer: Where the atmosphere meets the surface. The atmospheric boundary layer: The atmospheric boundary layer: Utrecht Summer School on Physics of the Climate System Carleen Tijm-Reijmer IMAU The atmospheric boundary layer: Where the atmosphere meets the surface Photo: Mark Wolvenne:

More information

CAM-SE: Lecture I. Peter Hjort Lauritzen

CAM-SE: Lecture I. Peter Hjort Lauritzen CAM-SE: Lecture I Peter Hjort Lauritzen Atmospheric Modeling and Predictability Section Climate and Global Dynamics Laboratory National Center for Atmospheric Research 2nd WCRP Summer School on Climate

More information

Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds

Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment

More information

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL Preprints, 21 st Conference on Severe Local Storms 12-16 August 2002, San Antonio, Texas P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL 1. INTRODUCTION Catherine A. Finley * Department of Earth Sciences

More information

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg

Boundary layer processes. Bjorn Stevens Max Planck Institute for Meteorology, Hamburg Boundary layer processes Bjorn Stevens Max Planck Institute for Meteorology, Hamburg The Atmospheric Boundary Layer (ABL) An Abstraction (Wippermann 76) The bottom 100-3000 m of the Troposphere (Stull

More information

Spectral analysis of energy transfer in variable density, radiatively heated particle-laden flows

Spectral analysis of energy transfer in variable density, radiatively heated particle-laden flows Center for Turbulence Research Proceedings of the Summer Program 24 27 Spectral analysis of energy transfer in variable density, radiatively heated particle-laden flows By H. Pouransari, H. Kolla, J. H.

More information

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO Simulation Experiment of Squall Line Observed in the Huaihe River Basin, China Kazuhisa Tusboki 1 and Atsushi Sakakibara 2 1 Hydrospheric Atmospheric Research Center, Nagoya University 2 Research Organization

More information

Modeling Challenges At High Latitudes. Judith Curry Georgia Institute of Technology

Modeling Challenges At High Latitudes. Judith Curry Georgia Institute of Technology Modeling Challenges At High Latitudes Judith Curry Georgia Institute of Technology Physical Process Parameterizations Radiative transfer Surface turbulent fluxes Cloudy boundary layer Cloud microphysics

More information

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh z = The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh, that is, p = p h + p nh. (.1) The former arises

More information

Single particle motion and trapped particles

Single particle motion and trapped particles Single particle motion and trapped particles Gyromotion of ions and electrons Drifts in electric fields Inhomogeneous magnetic fields Magnetic and general drift motions Trapped magnetospheric particles

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets*

Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets* 1APRIL 2002 WANG 1213 Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part I: Overall Structure, Potential Vorticity, and Kinetic Energy Budgets* YUQING WANG International Pacific Research

More information

A Reexamination of the Emergy Input to a System from the Wind

A Reexamination of the Emergy Input to a System from the Wind Emergy Synthesis 9, Proceedings of the 9 th Biennial Emergy Conference (2017) 7 A Reexamination of the Emergy Input to a System from the Wind Daniel E. Campbell, Laura E. Erban ABSTRACT The wind energy

More information

8D.1 HIGH RESOLUTION NUMERICAL MODELLING OF DEEP MOIST CONVECTION IN STATISTICAL EQUILIBRIUM: BUOYANCY AND VELOCITY SCALES

8D.1 HIGH RESOLUTION NUMERICAL MODELLING OF DEEP MOIST CONVECTION IN STATISTICAL EQUILIBRIUM: BUOYANCY AND VELOCITY SCALES 8D.1 HIGH RESOLUTION NUMERICAL MODELLING OF DEEP MOIST CONVECTION IN STATISTICAL EQUILIBRIUM: BUOYANCY AND VELOCITY SCALES A. Parodi 1* and K. Emanuel 1 CIMA, University of Genoa, Savona, Italy Massachusetts

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

Meteorology Lecture 21

Meteorology Lecture 21 Meteorology Lecture 21 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Bulk Boundary-Layer Models

Bulk Boundary-Layer Models Copyright 2006, David A. Randall Revised Wed, 8 Mar 06, 16:19:34 Bulk Boundary-Layer Models David A. Randall Department of Atmospheric Science Colorado State University, Fort Collins, Colorado 80523 Ball

More information