Techniques to Estimate Brain Connectivity from Measurements with Low Spatial Resolution

Size: px
Start display at page:

Download "Techniques to Estimate Brain Connectivity from Measurements with Low Spatial Resolution"

Transcription

1 Techniques to Estimate Brain Connectivity from Measurements with Low Spatial Resolution 1. What is coherence? 2. The problem of volume conduction 3. Recent developments G. Nolte Dept. of Neurophysiology and Pathophysiology UKE, Hamburg

2 slow drifts 10 Hz rhythm

3 EEG sensor configuration

4 EEG sensor configuration

5 Unfiltered data in two channels for various trials

6 Filtered data in two channels for various trials

7 Raw data

8 Raw data and filtered data

9 Raw data and filtered data and model

10 Filtered Data vs. Model

11 Phase Amplitude

12

13

14

15

16

17

18 real valued cos( ) sin( ) complex valued exp( i)

19 Phase Locking: )) ( exp( k k k i K PL Coherence: * 2 1 1/ )) ( exp ( 1 z z z z r K r K i r r K C k k k k k k k k k

20

21

22

23 2. The problem of volume conduction: Data: ( f, k) z i Channel Frequency Epoch Cross-spectrum: S ij ( f ) 1 K K k 1 z i ( f, k) z j ( f, k) Coherency: C ij ( f ) S ii S ij ( f ( f ) ) S jj ( f )

24 Power at 10 Hz

25

26 Rest Coherence

27 The Problem of volume conduction

28 EEG-simulation of ERD (two sources) Rest: Real background + simulated dipoles Task: Real background Power: Task-Rest Coherence: C3-others Coherence: C4-others C3 C4 Fake!! Sources were indepent!!

29 EEG-simulation of ERD (1 source) Rest: Real background + simulated dipole Task: Real background Inverse using beamformer (DICS) on cortex Simulated dipole Estimated power ratio: Task/Rest

30 Coh., signal+background Coh., background reference Coh., difference

31 The role of the imaginary part of coherency T 1 T 1 << T 2 T 2

32

33

34

35

36

37 Observation: Independent sources do not contribute to the imaginary part of the cross-spectrum 1 (non-interacting) source Many sources volume cond. Interaction with time delay

38 )) ( Re( ) ( f S f S )) ( Im( 12 f S i Independent sources do not contribute to the imaginary part of the cross-spectrum T M L P P P L S

39 Real part of coherency = correlation at given frequency

40 Imaginary part of coherency

41 Selfpaced movement, C3-C4 relationships Power Coherence Imaginary coherency movement Observations: coherence follows power imaginary part has onset 5 secs before movement imaginary part not related to power Nolte, et.al., Clinic. Neurophys., 2004

42

43 Normal subjects, eyes closed, ImCoh

44 Schizophrenic patients, eyes closed, ImCoh Huge variability across subjects Schizophrenics more regular than controls??

45 Methods based on imaginary parts of cross-spectra Decomposition into subspaces ( PISA ) Decomposition of source distributions ( MOCA ) Causality ( PSI )

46 1. Surrogate Data Preserve everything except quantity of interest Create data from non-interacting sources As close to actual data as possible Here: Use Independent Component Analysis (ICA) to construct surrogate data Shahbazi et. al., Biomag 2010

47 Surrogate Data to test for artefacts of volume conduction ) (, ), ( ) ( Data 1 t x t x t x n ) ( ) ( t Wx t s Demix with ICA 1. -1)*T by (i Delay i.th component 2. ) 2 ( ) ( ) ( ) ( ) ( ) ( T t s t v T t s t v t s t v ) ( ) ( x 1 surr t v W t Remix 3.

48 Cross-spectrum Coherence

49 Coherence at 10Hz Data, Real Part Data, Imag. Part Surro, Real Part Surro, Imag. Part

50 1:2 Phase Locking PL ij i ( f ) exp 2 ( f ) (2 f i j )

51 1. Fixe source direction to maximize power 2. Calculate connectivity measure 2. Source orientation (inverse here with eloreta) Sensor A Sensor B Source 1 Source 2 Problems 1. Interacting sources don t have to be strong 2. Poor spatial resolution -> short range interactions like volume conduction -> long range bias

52 2. Source orientation (inverse here with eloreta) Sensor A Sensor B 2 1 Source 1 Source 2 Fixed orientation Maximal interaction For each voxel pair: select orientation which maximizes imaginary coherence. Ewald et. al., Neuroimage, 2012; Shahbazi et. al., Comput. and math. methods in medicine, 2012

53

54

55 Local Interactions: a voxel interacts with itself (rotating dipole)

56 Local Interactions: a voxel interacts with itself (rotating dipole)

57 Beta rhythm, resting state, MEG, normal subject Fixed Dipole orientation Variable Dipole orientation

58 Alpha rhythm, resting state, EEG, normal subject Fixed Dipole orientation Variable Dipole orientation

59 Alpha rhythm, resting state, EEG, normal subject Histograms for all connections (5000 x 5000)

60 Alpha rhythm, resting state, EEG, normal subject Histograms for all connections (5000 x 5000) Everything appears to be connected with everything Graph measures based on significance useless

61 Grand average, 19 Patients-18 Controls Variable orientation, mean interaction for each voxel

62 Grand average, 19 Patients-18 Controls Fixed orientation, mean interaction for each voxel

63 Grand average, 19 Patients-18 Controls Normalized power difference: (P1-P2)/(P1+P2)

64 ) ( ) ( ) ( ) ( ) ( * * f z f z f z f z f is i j j i anti ij 3. Nonlinear measures robust to mixing artefacts 2nd order: Imaginary part of cross-spectrum: ) (2 ) ( ) ( ) (2 ) ( ) ( ) ( * * f z f z f z f z f z f z f B i i j j i i anti ij 3rd order: antisymmetric part of cross-bispectrum: Nonlinear measure is complex valued and results are less rich across frequencies Chella et. al., in preparation

65 Antisymmetric parts of bispectra (real part), schizophrenics, eyes closed

66 Can one explain this with a model?

67 Remarks on nonlinear measures of interaction robust to artefacts of volume conduction 1. Observable but weak signals 2. Allows deeper insight into dynamics 3. Beyond third order??? Antisymmetrization of 4.th order moments? No! This is an open question.

68 Summary on new stuff 1. Surrogate Data control for artifacts of volume conduction 2. Choose source orientation according to interaction 3. Nonlinear Measures are interesting but weak

69 Biomag 2014, Halifax, Causality Challenge Given: 1000 simulated data sets, 3 channels, random dynamical systems + additive noise, Matlab code is available Task: Estimate all direct causal connections Counting: +1 point for each correct detection -3 points for each false detection

70 Thanks to Mark Hallett Ou Bai Lewis Wheaton Tom Brismar Laura Marzetti Federico Chella Andreas Engel Till Schneider Arne Ewald Stefan Haufe Andreas Ziehe Vadim Nikulin Alois Schlögl Frank C. Meinecke Klaus-Robert Müller Forooz Shahbazi Christina Andreou Nenad Polomac Christoph Mulert Andreas Daffertshofer

PERFORMANCE STUDY OF CAUSALITY MEASURES

PERFORMANCE STUDY OF CAUSALITY MEASURES PERFORMANCE STUDY OF CAUSALITY MEASURES T. Bořil, P. Sovka Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague Abstract Analysis of dynamic relations in

More information

Localizing Bicoherence from EEG and MEG

Localizing Bicoherence from EEG and MEG 1 Localizing Bicoherence from EEG and MEG 2 3 4 5 6 7 8 Forooz Shahbazi Avarvand 1, Sarah Bartz 2, Christina Andreou 3,4, Wojciech Samek 1, Gregor Leicht 3, Christoph Mulert 3, Andreas K. Engel 2, Guido

More information

Robustly estimating the flow direction of information in complex physical systems

Robustly estimating the flow direction of information in complex physical systems Robustly estimating the flow direction of information in complex physical systems uido Nolte Fraunhofer FIRST.IDA, Kekuléstrasse 7, D-12489 Berlin, ermany Andreas Ziehe Technical University of Berlin,

More information

Recipes for the Linear Analysis of EEG and applications

Recipes for the Linear Analysis of EEG and applications Recipes for the Linear Analysis of EEG and applications Paul Sajda Department of Biomedical Engineering Columbia University Can we read the brain non-invasively and in real-time? decoder 1001110 if YES

More information

New Machine Learning Methods for Neuroimaging

New Machine Learning Methods for Neuroimaging New Machine Learning Methods for Neuroimaging Gatsby Computational Neuroscience Unit University College London, UK Dept of Computer Science University of Helsinki, Finland Outline Resting-state networks

More information

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London.

Searching for Nested Oscillations in Frequency and Sensor Space. Will Penny. Wellcome Trust Centre for Neuroimaging. University College London. in Frequency and Sensor Space Oscillation Wellcome Trust Centre for Neuroimaging. University College London. Non- Workshop on Non-Invasive Imaging of Nonlinear Interactions. 20th Annual Computational Neuroscience

More information

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG Integration of /MEG/fMRI Vince D. Calhoun, Ph.D. Director, Image Analysis & MR Research The MIND Institute Outline fmri/ data Three Approaches to integration/fusion Prediction Constraints 2 nd Level Fusion

More information

Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition

Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition multivariate time series: frequency decomposition. ariv:7.455 [stat.me], 7-November-9, http://arxiv.org/abs/7.455 Instantaneous and lagged measurements of linear and nonlinear dependence between groups

More information

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel

Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic Causal Modelling Generative model 4 Bayesian inference 5 Applications Overview

More information

Modelling temporal structure (in noise and signal)

Modelling temporal structure (in noise and signal) Modelling temporal structure (in noise and signal) Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith FMRIB, Oxford *Imperial/FMRIB temporal noise: modelling temporal autocorrelation temporal

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

Beamforming Techniques Applied in EEG Source Analysis

Beamforming Techniques Applied in EEG Source Analysis Beamforming Techniques Applied in EEG Source Analysis G. Van Hoey 1,, R. Van de Walle 1, B. Vanrumste 1,, M. D Havé,I.Lemahieu 1 and P. Boon 1 Department of Electronics and Information Systems, University

More information

Assessing brain effective connectivity from. EEG a simulation study

Assessing brain effective connectivity from. EEG a simulation study Assessing brain effective connectivity from EEG a simulation study Stefan Haufe a,b,, Vadim V. Nikulin c,d, Klaus-Robert Müller a,b,e and Guido Nolte f a Machine Learning Group, Department of Computer

More information

Independent Component Analysis

Independent Component Analysis A Short Introduction to Independent Component Analysis with Some Recent Advances Aapo Hyvärinen Dept of Computer Science Dept of Mathematics and Statistics University of Helsinki Problem of blind source

More information

MEG Source Localization Using an MLP With Distributed Output Representation

MEG Source Localization Using an MLP With Distributed Output Representation MEG Source Localization Using an MLP With Distributed Output Representation Sung Chan Jun, Barak A. Pearlmutter, Guido Nolte CBLL Meeting October 5, 2005 Source localization Definition: Identification

More information

HST.582J/6.555J/16.456J

HST.582J/6.555J/16.456J Blind Source Separation: PCA & ICA HST.582J/6.555J/16.456J Gari D. Clifford gari [at] mit. edu http://www.mit.edu/~gari G. D. Clifford 2005-2009 What is BSS? Assume an observation (signal) is a linear

More information

An algebraic method for eye blink artifacts detection in single channel EEG recordings

An algebraic method for eye blink artifacts detection in single channel EEG recordings An algebraic method for eye blink artifacts detection in single channel EEG recordings Zoran Tiganj, Mamadou Mboup, Christophe Pouzat, Bouchra Lotfi To cite this version: Zoran Tiganj, Mamadou Mboup, Christophe

More information

Functional Connectivity and Network Methods

Functional Connectivity and Network Methods 18/Sep/2013" Functional Connectivity and Network Methods with functional magnetic resonance imaging" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml

More information

Evaluating ICs. EEGLAB Workshop, June 16-18, 2012, Beijing, China: Julie Onton Evaluating ICA Components

Evaluating ICs. EEGLAB Workshop, June 16-18, 2012, Beijing, China: Julie Onton Evaluating ICA Components Evaluating ICs ICA weights in EEG structure * * EEG.icawinv = inv(eeg.icaweights * EEG.icasphere) channels channels Applying ICA weights to EEG data matrix EEG.data frames multiplication channels EEG.icaweights

More information

Tutorial on Blind Source Separation and Independent Component Analysis

Tutorial on Blind Source Separation and Independent Component Analysis Tutorial on Blind Source Separation and Independent Component Analysis Lucas Parra Adaptive Image & Signal Processing Group Sarnoff Corporation February 09, 2002 Linear Mixtures... problem statement...

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biosignal processing Kung-Bin Sung 6/11/2007 1 Outline Chapter 10: Biosignal processing Characteristics of biosignals Frequency domain representation and analysis

More information

Analyzing Anatomical and Functional Brain Connectivity. - M/EEG Functional and Resting-State Connectivity Maren Grigutsch

Analyzing Anatomical and Functional Brain Connectivity. - M/EEG Functional and Resting-State Connectivity Maren Grigutsch Analyzing Anatomical and Functional Brain Connectivity - M/EEG Functional and Resting-State Connectivity Maren Grigutsch Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Functional

More information

Independent Component Analysis. Contents

Independent Component Analysis. Contents Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Independent Component Analysis Barnabás Póczos Independent Component Analysis 2 Independent Component Analysis Model original signals Observations (Mixtures)

More information

Cross MFF analysis in studying the obsessivecompulsive

Cross MFF analysis in studying the obsessivecompulsive Journal of Physics: Conference Series PAPER OPEN ACCESS Cross MFF analysis in studying the obsessivecompulsive disorder To cite this article: S A Demin et al 2016 J. Phys.: Conf. Ser. 741 012073 Related

More information

Statistical inference for MEG

Statistical inference for MEG Statistical inference for MEG Vladimir Litvak Wellcome Trust Centre for Neuroimaging University College London, UK MEG-UK 2014 educational day Talk aims Show main ideas of common methods Explain some of

More information

Spatial Harmonic Analysis of EEG Data

Spatial Harmonic Analysis of EEG Data Spatial Harmonic Analysis of EEG Data Uwe Graichen Institute of Biomedical Engineering and Informatics Ilmenau University of Technology Singapore, 8/11/2012 Outline 1 Motivation 2 Introduction 3 Material

More information

ANALYSING ICA COMPONENTS BY INJECTING NOISE. August-Bebel-Strasse 89, Potsdam, Germany

ANALYSING ICA COMPONENTS BY INJECTING NOISE. August-Bebel-Strasse 89, Potsdam, Germany ANALYSING ICA COMPONENTS BY INJECTING NOISE Stefan Harmeling, Frank Meinecke, and Klaus-Robert Müller, Fraunhofer FIRST.IDA, Kekuléstrasse, 9 Berlin, Germany University of Potsdam, Department of Computer

More information

Dynamic Causal Modelling for fmri

Dynamic Causal Modelling for fmri Dynamic Causal Modelling for fmri André Marreiros Friday 22 nd Oct. 2 SPM fmri course Wellcome Trust Centre for Neuroimaging London Overview Brain connectivity: types & definitions Anatomical connectivity

More information

Imagent for fnirs and EROS measurements

Imagent for fnirs and EROS measurements TECHNICAL NOTE Imagent for fnirs and EROS measurements 1. Brain imaging using Infrared Photons Brain imaging techniques can be broadly classified in two groups. One group includes the techniques that have

More information

ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA

ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA 16 1 (Independent Component Analysis: ICA) 198 9 ICA ICA ICA 1 ICA 198 Jutten Herault Comon[3], Amari & Cardoso[4] ICA Comon (PCA) projection persuit projection persuit ICA ICA ICA 1 [1] [] ICA ICA EEG

More information

Dynamic Modeling of Brain Activity

Dynamic Modeling of Brain Activity 0a Dynamic Modeling of Brain Activity EIN IIN PC Thomas R. Knösche, Leipzig Generative Models for M/EEG 4a Generative Models for M/EEG states x (e.g. dipole strengths) parameters parameters (source positions,

More information

Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications.

Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications. ESA 29 Adaptive changes of rhythmic EEG oscillations in space implications for brain-machine interface applications. G. Cheron, A.M. Cebolla, M. Petieau, A. Bengoetxea, E. Palmero-Soler, A. Leroy, B. Dan

More information

MIXED EFFECTS MODELS FOR TIME SERIES

MIXED EFFECTS MODELS FOR TIME SERIES Outline MIXED EFFECTS MODELS FOR TIME SERIES Cristina Gorrostieta Hakmook Kang Hernando Ombao Brown University Biostatistics Section February 16, 2011 Outline OUTLINE OF TALK 1 SCIENTIFIC MOTIVATION 2

More information

NeuroImage 49 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 49 (2010) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 49 (2010) 257 271 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Independent component analysis of short-time Fourier transforms for spontaneous

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Dynamic Causal Modelling for EEG and MEG

Dynamic Causal Modelling for EEG and MEG Dynamic Causal Modelling for EEG and MEG Stefan Kiebel Ma Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany Overview 1 M/EEG analysis 2 Dynamic Causal Modelling Motivation 3 Dynamic

More information

Statistical detection of movement activities in a human brain by separation of mixture distributions

Statistical detection of movement activities in a human brain by separation of mixture distributions Statistical detection of movement activities in a human brain by separation of mixture distributions A. K. Gorshenin, V. Yu. Korolev 2, A. Yu. Korchagin 3, T. V. Zakharova 4, A. I. Zeifman 5 arxiv:53.299v

More information

Statistical Analysis Aspects of Resting State Functional Connectivity

Statistical Analysis Aspects of Resting State Functional Connectivity Statistical Analysis Aspects of Resting State Functional Connectivity Biswal s result (1995) Correlations between RS Fluctuations of left and right motor areas Why studying resting state? Human Brain =

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients

Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2015 Electroencephalogram Based Causality Graph Analysis in Behavior Tasks of Parkinson s Disease Patients

More information

AEP analysis in EEG from schizophrenic patients using PCA

AEP analysis in EEG from schizophrenic patients using PCA AEP analysis in EEG from schizophrenic patients using PCA Michael Vinther, s97397 descartes@mailme.dk Ørsted, DTU June 7 th, 22 Supervisor: Kaj-Åge Henneberg External supervisor: Sidse Arnfred 75,99% 7,%

More information

Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces

Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces Moritz Grosse-Wentrup Institute of Automatic Control Engineering Technische Universität München 80333

More information

Sampling اهمتسیس و اهلانگیس یرهطم لضفلاوبا دیس فیرش یتعنص هاگشناد رتویپماک هدکشناد

Sampling اهمتسیس و اهلانگیس یرهطم لضفلاوبا دیس فیرش یتعنص هاگشناد رتویپماک هدکشناد Sampling سیگنالها و سیستمها سید ابوالفضل مطهری دانشکده کامپیوتر دانشگاه صنعتی شریف Sampling Conversion of a continuous-time signal to discrete time. x(t) x[n] 0 2 4 6 8 10 t 0 2 4 6 8 10 n Sampling Applications

More information

Extraction of Sleep-Spindles from the Electroencephalogram (EEG)

Extraction of Sleep-Spindles from the Electroencephalogram (EEG) Extraction of Sleep-Spindles from the Electroencephalogram (EEG) Allan Kardec Barros Bio-mimetic Control Research Center, RIKEN, 2271-13 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463, Japan Roman Rosipal,

More information

CIFAR Lectures: Non-Gaussian statistics and natural images

CIFAR Lectures: Non-Gaussian statistics and natural images CIFAR Lectures: Non-Gaussian statistics and natural images Dept of Computer Science University of Helsinki, Finland Outline Part I: Theory of ICA Definition and difference to PCA Importance of non-gaussianity

More information

HST-582J/6.555J/16.456J Biomedical Signal and Image Processing Spring Laboratory Project 3 Blind Source Separation: Fetal & Maternal ECG

HST-582J/6.555J/16.456J Biomedical Signal and Image Processing Spring Laboratory Project 3 Blind Source Separation: Fetal & Maternal ECG HST-582J/6.555J/16.456J Biomedical Signal and Image Processing Spring 2009 DUE: 4/16/09 Laboratory Project 3 Blind Source Separation: Fetal & Maternal ECG 1 Introduction Many health-related problems that

More information

Final Report For Undergraduate Research Opportunities Project Name: Biomedical Signal Processing in EEG. Zhang Chuoyao 1 and Xu Jianxin 2

Final Report For Undergraduate Research Opportunities Project Name: Biomedical Signal Processing in EEG. Zhang Chuoyao 1 and Xu Jianxin 2 ABSTRACT Final Report For Undergraduate Research Opportunities Project Name: Biomedical Signal Processing in EEG Zhang Chuoyao 1 and Xu Jianxin 2 Department of Electrical and Computer Engineering, National

More information

Detection of Steady-State VEP s: Toward Electrophysiologic Measurement of Visual Acuity

Detection of Steady-State VEP s: Toward Electrophysiologic Measurement of Visual Acuity Detection of Steady-State VEP s: Toward Electrophysiologic Measurement of Visual Acuity Carlos E. Davila Electrical Engineering Department Southern Methodist University Dallas, TX, USA 2 Collaborators

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH Yuanqing Li, Andrzej Cichocki, and Shun-Ichi Amari, Fellow, IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH Yuanqing Li, Andrzej Cichocki, and Shun-Ichi Amari, Fellow, IEEE IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL 17, NO 2, MARCH 2006 419 Blind Estimation of Channel Parameters and Source Components for EEG Signals: A Sparse Factorization Approach Yuanqing Li, Andrzej Cichocki,

More information

Bayesian Classification of Single-Trial Event-Related Potentials in EEG

Bayesian Classification of Single-Trial Event-Related Potentials in EEG Bayesian Classification of Single-Trial Event-Related Potentials in EEG Jens Kohlmorgen Benjamin Blankertz Fraunhofer FIRST.IDA Kekuléstr. 7, D-12489 Berlin, Germany E-mail: {jek, blanker}@first.fraunhofer.de

More information

Structure of Brain Functional Networks

Structure of Brain Functional Networks Structure of Brain Functional Networks Oleksii Kuchaiev, Po T. Wang, Zoran Nenadic, and Nataša Pržulj Abstract Brain is a complex network optimized both for segregated and distributed information processing.

More information

Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept

Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept Clinical Neurophysiology 116 (2005) 1300 1313 www.elsevier.com/locate/clinph Assessing interactions of linear and nonlinear neuronal sources using MEG beamformers: a proof of concept Avgis Hadjipapas*,

More information

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5. . Typical Discrete-Time Systems.1. All-Pass Systems (5.5).. Minimum-Phase Systems (5.6).3. Generalized Linear-Phase Systems (5.7) .1. All-Pass Systems An all-pass system is defined as a system which has

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Chaotic Modeling and Simulation (CMSIM) 4: 243-252, 25 Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Olga E. Dick Pavlov Institute of Physiology of Russian Academy of Science, nab.

More information

Potentials and pitfalls of connectivity analyses in EEG data

Potentials and pitfalls of connectivity analyses in EEG data Potentials and pitfalls of connectivity analyses in EEG data Prof. Dr. T. Koenig Translational Research Center University Hospital of Psychiatry and Psychotherapy University of Bern, Switzerland thomas.koenig@puk.unibe.ch

More information

Detecting event-related changes of multivariate phase coupling in dynamic brain networks

Detecting event-related changes of multivariate phase coupling in dynamic brain networks J Neurophysiol 107: 2020 2031, 2012. First published January 12, 2011; doi:10.1152/jn.00610.2011. Detecting event-related changes of multivariate phase coupling in dynamic brain networks Ryan T. Canolty,

More information

Spectral Interdependency Methods

Spectral Interdependency Methods Spectral Interdependency Methods Mukesh Dhamala* Department of Physics and Astronomy, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA Synonyms Coherence and Granger causality spectral

More information

Real-time Blind Source Separation

Real-time Blind Source Separation Real-time Blind Source Separation A Feasibility Study using CUDA th semester project, AAU, Applied Signal Processing and Implementation Spring 9 Group 4 Søren Reinholt Søndergaard Martin Brinch Sørensen

More information

A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK ANALYSIS. Ali Yener Mutlu

A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK ANALYSIS. Ali Yener Mutlu A MULTIVARIATE TIME-FREQUENCY BASED PHASE SYNCHRONY MEASURE AND APPLICATIONS TO DYNAMIC BRAIN NETWORK ANALYSIS By Ali Yener Mutlu A DISSERTATION Submitted to Michigan State University in partial fulfillment

More information

Stationary Common Spatial Patterns for Brain-Computer Interfacing

Stationary Common Spatial Patterns for Brain-Computer Interfacing Stationary Common Spatial Patterns for Brain-Computer Interfacing Wojciech Samek, Carmen Vidaurre, Klaus-Robert Müller, and Motoaki Kawanabe Machine Learning Group, Department of Computer Science, Berlin

More information

Neuroimaging for Machine Learners Validation and inference

Neuroimaging for Machine Learners Validation and inference GIGA in silico medicine, ULg, Belgium http://www.giga.ulg.ac.be Neuroimaging for Machine Learners Validation and inference Christophe Phillips, Ir. PhD. PRoNTo course June 2017 Univariate analysis: Introduction:

More information

Synchrony in Neural Systems: a very brief, biased, basic view

Synchrony in Neural Systems: a very brief, biased, basic view Synchrony in Neural Systems: a very brief, biased, basic view Tim Lewis UC Davis NIMBIOS Workshop on Synchrony April 11, 2011 components of neuronal networks neurons synapses connectivity cell type - intrinsic

More information

arxiv: v3 [physics.data-an] 3 Sep 2008

arxiv: v3 [physics.data-an] 3 Sep 2008 Electronic version of an article published as: International Journal of Bifurcation and Chaos, 7(), 27, 3493 3497. doi:.42/s282747925 c World Scientific Publishing Company http://www.worldscinet.com/ijbc/

More information

Extracting fmri features

Extracting fmri features Extracting fmri features PRoNTo course May 2018 Christophe Phillips, GIGA Institute, ULiège, Belgium c.phillips@uliege.be - http://www.giga.ulg.ac.be Overview Introduction Brain decoding problem Subject

More information

Recent advances in the analysis of biomagnetic signals

Recent advances in the analysis of biomagnetic signals Recent advances in the analysis of biomagnetic signals Kensuke Sekihara Mind Articulation Project, Japan Science and echnology Corporation okyo Metropolitan Institute of echnology Application of spatial

More information

NeuroImage 54 (2011) Contents lists available at ScienceDirect. NeuroImage. journal homepage:

NeuroImage 54 (2011) Contents lists available at ScienceDirect. NeuroImage. journal homepage: NeuroImage 54 (211) 836 85 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Spatially distributed patterns of oscillatory coupling between high-frequency

More information

Ordinal Analysis of Time Series

Ordinal Analysis of Time Series Ordinal Analysis of Time Series K. Keller, M. Sinn Mathematical Institute, Wallstraße 0, 2552 Lübeck Abstract In order to develop fast and robust methods for extracting qualitative information from non-linear

More information

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be

!) + log(t) # n i. The last two terms on the right hand side (RHS) are clearly independent of θ and can be Supplementary Materials General case: computing log likelihood We first describe the general case of computing the log likelihood of a sensory parameter θ that is encoded by the activity of neurons. Each

More information

A Maxmin Approach to Optimize Spatial Filters for EEG Single-Trial Classification

A Maxmin Approach to Optimize Spatial Filters for EEG Single-Trial Classification A Maxmin Approach to Optimize Spatial Filters for EEG Single-Trial Classification Motoaki Kawanabe 1,2, Carmen Vidaurre 2, and Benjamin Blankertz 2,1 and Klaus-Robert Müller 2 1 IDA group, FIRST, Fraunhofer

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

arxiv: v1 [stat.me] 15 Jan 2009

arxiv: v1 [stat.me] 15 Jan 2009 Sparse Causal Discovery in Multivariate Time Series arxiv:9.v [stat.me] Jan 9 Stefan Haufe Berlin Institute of Technology Klaus-Robert Müller Berlin Institute of Technology October, 8 Abstract Guido Nolte

More information

Study of different spectral parameters to measure depth of anesthesia.

Study of different spectral parameters to measure depth of anesthesia. Biomedical Research 2017; 28 (15): 6533-6540 ISSN 0970-938X www.biomedres.info Study of different spectral parameters to measure depth of anesthesia. Elizabeth George *, Glan Devadas G, Avinashe KK, Sudharsana

More information

Executed Movement Using EEG Signals through a Naive Bayes Classifier

Executed Movement Using EEG Signals through a Naive Bayes Classifier Micromachines 2014, 5, 1082-1105; doi:10.3390/mi5041082 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Executed Movement Using EEG Signals through a Naive Bayes Classifier

More information

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D Jülich, Tel. (02461)

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D Jülich, Tel. (02461) FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D-52425 Jülich, Tel. (2461) 61-642 Interner Bericht Temporal and Spatial Prewhitening of Multi-Channel MEG Data Roland Beucker, Heidi

More information

Solutions to ECE 2026 Problem Set #1. 2.5e j0.46

Solutions to ECE 2026 Problem Set #1. 2.5e j0.46 Solutions to ECE 2026 Problem Set #1 PROBLEM 1.1.* Convert the following to polar form: (a) z 3 + 4j 3 2 + 4 2 e jtan 1 ( 4/3) 5e j0.295 3 4j 5e (b) z ---------------- ------------------------ j0.295 3

More information

Estimation of Single Trial ERPs and EEG Phase Synchronization with Application to Mental Fatigue

Estimation of Single Trial ERPs and EEG Phase Synchronization with Application to Mental Fatigue University of Surrey Faculty of Engineering and Physical Sciences Department of Computing Computing Sciences Report PhD Thesis Estimation of Single Trial ERPs and EEG Phase Synchronization with Application

More information

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain

A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain A Multivariate Time-Frequency Based Phase Synchrony Measure for Quantifying Functional Connectivity in the Brain Dr. Ali Yener Mutlu Department of Electrical and Electronics Engineering, Izmir Katip Celebi

More information

Enhancement of Noisy Speech. State-of-the-Art and Perspectives

Enhancement of Noisy Speech. State-of-the-Art and Perspectives Enhancement of Noisy Speech State-of-the-Art and Perspectives Rainer Martin Institute of Communications Technology (IFN) Technical University of Braunschweig July, 2003 Applications of Noise Reduction

More information

EEG/MEG Inverse Solution Driven by fmri

EEG/MEG Inverse Solution Driven by fmri EEG/MEG Inverse Solution Driven by fmri Yaroslav Halchenko CS @ NJIT 1 Functional Brain Imaging EEG ElectroEncephaloGram MEG MagnetoEncephaloGram fmri Functional Magnetic Resonance Imaging others 2 Functional

More information

On the interpretation of weight vectors of linear models in multivariate neuroimaging

On the interpretation of weight vectors of linear models in multivariate neuroimaging On the interpretation of weight vectors of linear models in multivariate neuroimaging Stefan Haufe a,b,, Frank Meinecke c,a, Kai Görgen d,e,f, Sven Dähne a, John-Dylan Haynes d,e,b, Benjamin Blankertz

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Jean-Baptiste Poline

Jean-Baptiste Poline Edinburgh course Avril 2010 Linear Models Contrasts Variance components Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France Credits: Will Penny, G. Flandin, SPM course authors Outline Part I: Linear

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Lausanne, April 2012 Image time-series Spatial filter Design matrix Statistical Parametric

More information

Applications of High Dimensional Clustering on Riemannian Manifolds in Brain Measurements

Applications of High Dimensional Clustering on Riemannian Manifolds in Brain Measurements Applications of High Dimensional Clustering on Riemannian Manifolds in Brain Measurements Nathalie Gayraud Supervisor: Maureen Clerc BCI-Lift Project/Team ATHENA Team, Inria Sophia Antipolis - Mediterranee

More information

Combining EMD with ICA to analyze combined EEG-fMRI Data

Combining EMD with ICA to analyze combined EEG-fMRI Data AL-BADDAI, AL-SUBARI, et al.: COMBINED BEEMD-ICA 1 Combining EMD with ICA to analyze combined EEG-fMRI Data Saad M. H. Al-Baddai 1,2 saad.albaddai@yahoo.com arema S. A. Al-Subari 1,2 s.karema@yahoo.com

More information

Lecture 7 Random Signal Analysis

Lecture 7 Random Signal Analysis Lecture 7 Random Signal Analysis 7. Introduction to Probability 7. Amplitude Distributions 7.3 Uniform, Gaussian, and Other Distributions 7.4 Power and Power Density Spectra 7.5 Properties of the Power

More information

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem

Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem Spectral Graph Wavelets on the Cortical Connectome and Regularization of the EEG Inverse Problem David K Hammond University of Oregon / NeuroInformatics Center International Conference on Industrial and

More information

8. The approach for complexity analysis of multivariate time series

8. The approach for complexity analysis of multivariate time series 8. The approach for complexity analysis of multivariate time series Kazimieras Pukenas Lithuanian Sports University, Kaunas, Lithuania E-mail: kazimieras.pukenas@lsu.lt (Received 15 June 2015; received

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Data Analysis I: Single Subject

Data Analysis I: Single Subject Data Analysis I: Single Subject ON OFF he General Linear Model (GLM) y= X fmri Signal = Design Matrix our data = what we CAN explain x β x Betas + + how much x of it we CAN + explain ε Residuals what

More information

Measuring electrophysiological connectivity by power envelope correlation: A technical review on MEG methods

Measuring electrophysiological connectivity by power envelope correlation: A technical review on MEG methods Measuring electrophysiological connectivity by power envelope correlation: A technical review on MEG methods George C. O Neill 1, Eleanor L. Barratt 1, Benjamin A.E. Hunt 1, Prejaas K. Tewarie 1, and Matthew

More information

Acoustic Source Separation with Microphone Arrays CCNY

Acoustic Source Separation with Microphone Arrays CCNY Acoustic Source Separation with Microphone Arrays Lucas C. Parra Biomedical Engineering Department City College of New York CCNY Craig Fancourt Clay Spence Chris Alvino Montreal Workshop, Nov 6, 2004 Blind

More information

Adaptive Noise Cancellation

Adaptive Noise Cancellation Adaptive Noise Cancellation P. Comon and V. Zarzoso January 5, 2010 1 Introduction In numerous application areas, including biomedical engineering, radar, sonar and digital communications, the goal is

More information

Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data

Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data NN02071SPI Anemüller et al.: Complex ICA of Frequency-Domain EEG Data 1 Complex Independent Component Analysis of Frequency-Domain Electroencephalographic Data Jörn Anemüller, Terrence J. Sejnowski and

More information

Statistical Analysis of fmrl Data

Statistical Analysis of fmrl Data Statistical Analysis of fmrl Data F. Gregory Ashby The MIT Press Cambridge, Massachusetts London, England Preface xi Acronyms xv 1 Introduction 1 What Is fmri? 2 The Scanning Session 4 Experimental Design

More information

Independent Component Analysis and Its Application on Accelerator Physics

Independent Component Analysis and Its Application on Accelerator Physics Independent Component Analysis and Its Application on Accelerator Physics Xiaoying Pang LA-UR-12-20069 ICA and PCA Similarities: Blind source separation method (BSS) no model Observed signals are linear

More information