Solutions to ECE 2026 Problem Set #1. 2.5e j0.46

Size: px
Start display at page:

Download "Solutions to ECE 2026 Problem Set #1. 2.5e j0.46"

Transcription

1 Solutions to ECE 2026 Problem Set #1 PROBLEM 1.1.* Convert the following to polar form: (a) z 3 + 4j e jtan 1 ( 4/3) 5e j j 5e (b) z j j 2e j /6 2.5e j0.46 (c) z e j /3 + e j2 /3 cos( /3) + jsin( /3) + cos(2 /3) + jsin(2 /3) j j j 3 3e j0.5 (d) z (1 + j) 8 ( 2 e j0.25 ) 8 ( 2 ) 8 e j8(0.25 ) 16e j0 16. (e) z jcos( /6) sin( /6) j(cos( /6) + jsin( /6)) j(e j /6 ) (e j /2 )(e j /6 ) e j2 /3 e j0.667 (f) z (1 + j) 2 (1 j) 2 (1 + 2j + j 2 ) (1 2j + j 2 ) (1 + 2j 1) (1 2j 1) 2j ( 2j) 4j 4e j0.5

2 PROBLEM 1.2.* The figure below shows the locations in the complex plane of z re j when raised to the powers of k {0, 1, 2, 3, 4, 5,... 10}. In other words, it show the locations in the complex plane of z 0, z 1, z 2, z 3, z 4, z 5, z 6, z 7, z 8, z 9 and z 10 : z 1 re j z 3 z 5 z 7 z 9 z 10 z 8 z 0 1 z 6 z 4 z 2 r 2 e j2 Although the axes are not labeled, and you are not told which points correspond to which powers of k, you will still be able to determine the value of z re j : (a) Find r (an estimate is OK). Start with z 0 : We know that z 0 1. This is a real number, so it will fall on the real axis, to the right of the origin. The only point that falls on the real axis is the rightmost point above, so that must be z 0 1. Now the sequence of powers z 1, z 2, z 3 etc in polar form can be written as: z 1 re j, z 2 r 2 e j2, z 3 r 3 e j3, z 4 r 4 e j4, z 5 r 5 e j5 Note that the distances from the origin in this sequence are r, r 2, r 3, r 4, r 5. If r > 1, the points would grow further from the origin. But the figure shows that z 0 1 is the furthest from the origin; therefore, it must be that r < 1. Furthermore, the outermost point that isn t z 0 1 must correspond to z 1 re j. (This is the left-most point, highlighed in yellow.) To estimate r we can get out a ruler and measure the distance to the origin of the yellow point. Since it is about 80% of the distance to the origin of the point z 0 1, we conclude that r 0.8. (b) Find. Here we could proceed by estimating the angle of the yellow point, at a glance it looks to be more than 160 (about 0.9 ) and less than 180 ( ). To get the precise angle we can instead observe that the tenth power z 10 r 10 e j 10 (whose angle is 10 ) falls precisely on the imaginary axis, its angle appears to be precisely /2. solving 10 /2 2 m (for any integer m) for yields m {..., 0.05, 0.15, 0.35, 0.55, 0.75, 0.95, 1.15, 1.35,...}. Of these, the one that matches the at-a-glance-estimate of between 0.9 and is: Verify your answer in MATLAB: z 0.8*exp(0.95i*pi); plot(z.^(0:10),'o'); axis image

3 PROBLEM 1.3.* Find all solutions to the equation: z In other words, find the complex numbers z for which the above equation is true. (Hint: Since this is a 8-th order polynomial, there are 8 solutions.) These numbers are the so-called 8-th roots of unity. Plot them in the complex plane. Moving the 1 to the right-hand side, and using the fact that 1 e j2 m for any integer m, yields: z 8 e j2 m, for any integer m. Raising both sides to the power of 1/8 yields: z e j2 m/8, for any integer m. There are only 8 unique values, corresponding to m {0, 1, 2, 3, 4, 5, 6, 7}, namely: z {1, e j2 /8, e j4 /8, e j6 /8, e j8 /8, e j10 /8, e j12 /8, e j14 /8 }. These are eight equally spaced points on the unit circle in the complex plane, as shown below: Im{ z } e j4 /8 e j6 /8 e j2 /8 e j8 /8 1 Re{ z } e j10 /8 e j14 /8 e j12 /8

4 PROBLEM 1.4.* Plot two periods of the following sinusoids over the time-interval 0 t 2T, where T is the period: All of the plots will look the same, the only difference will be the scaling of the axes and the location of time zero. Given a sinusoid in standard form x( t ) Acos( t + ), there are three steps: Determine y-axis scale from A, since the sinusoid will range between ±A. Determine the scale of the x axis from the frequency 2 /T, where T is the period (distance between neighboring peaks). Determine the location of time zero from the phase. Since we know that a sinusoid with zero phase will achieve a peak at time 0, it follows that delaying such a sinusoid by t p will move the peak to time t p : cos( 0 (t t p )) cos( 0 t + ) t p / 0. When the phase is restricted to the standard range to, the corresponding delay t p will identify the location of the peak that is closest to the origin. (a) A sinusoid having a period of 3 secs, an amplitude of 14, and a phase of radians. TWO PERIODS t t p / / (b) x( t ) 1.2cos( -- t + -- ). 5 2 TWO PERIODS t t d / /

5 (c) x( t ) 2 cos(4 (t 0.05)). T 0.5, 4 (0.05) 0.2. TWO PERIODS t t d /

6 PROBLEM 1.5.* The waveform shown below can be represented by x( t ) Re{Xe j 0 t }: x( t ) Time t (seconds) t p (a) Find 0. By measuring the distance between peaks we see that the period is T 0.02 s. Therefore, the radian frequency is 0 2 /T 100 rad/s. Or 50 Hz. (b) Find the complex phasor X, expressed in polar form. The amplitude and phase of the phasor are the same as the amplitude and phase of the sinusoid. The amplitude can be read directly from the graph as A 6. The phase is 0 t p, where t p is the time of the peak nearest to time zero. From the plot the time delay of the peak closest to time zero is about t p , or equivalently 2.5 ms. Plugging this in, we find that 0.25 radians. 6e j0.25 Thus the phasor is X. (As a sanity check, this would imply that the sinusoid at time 0 would be x( 0 ) 6cos(0.25 ) 4.2, which appears to be pretty close to accurate.) (c) The waveform can also be written as x( t ) Acos( 0 t + ). Find the amplitude A and phase. The amplitude A and phase of the sinusoid are related to the complex amplitude X by: X Ae j A 6 and 0.25.

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2026 Summer 2018 Problem Set #1 Assigned: May 14, 2018 Due: May 22, 2018 Reading: Chapter 1; App. A on Complex Numbers,

More information

SOLUTIONS to ECE 2026 Summer 2017 Problem Set #2

SOLUTIONS to ECE 2026 Summer 2017 Problem Set #2 SOLUTIONS to ECE 06 Summer 07 Problem Set # PROBLEM..* Put each of the following signals into the standard form x( t ) = Acos( t + ). (Standard form means that A 0, 0, and < Use the phasor addition theorem

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 26 Summer 14 Quiz #1 June 11, 14 NAME: (FIRST) (LAST) GT username: (e.g., gtxyz123) Circle your recitation section (otherwise

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #1 ATE: 4-Feb-11 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gtbuzz8) 3 points 3 points 3 points Recitation Section:

More information

a) Draw the angle in standard position. b) determine an angle that is co-terminal to c) Determine the reference angle of

a) Draw the angle in standard position. b) determine an angle that is co-terminal to c) Determine the reference angle of 1. a) Draw the angle in standard position. b) determine an angle that is co-terminal to c) Determine the reference angle of 2. Which pair of angles are co-terminal with? a., b., c., d., 3. During a routine,

More information

Circuits and Systems I

Circuits and Systems I Circuits and Systems I LECTURE #2 Phasor Addition lions@epfl Prof. Dr. Volkan Cevher LIONS/Laboratory for Information and Inference Systems License Info for SPFirst Slides This work released under a Creative

More information

Complex Numbers and Phasor Technique

Complex Numbers and Phasor Technique A P P E N D I X A Complex Numbers and Phasor Technique In this appendix, we discuss a mathematical technique known as the phasor technique, pertinent to operations involving sinusoidally time-varying quantities.

More information

Algebra II B Review 5

Algebra II B Review 5 Algebra II B Review 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the measure of the angle below. y x 40 ο a. 135º b. 50º c. 310º d. 270º Sketch

More information

CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic

CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic equations. They can be solved using a graph, a perfect square,

More information

Revision of Basic A.C. Theory

Revision of Basic A.C. Theory Revision of Basic A.C. Theory 1 Revision of Basic AC Theory (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Electricity is generated in power stations

More information

I. Signals & Sinusoids

I. Signals & Sinusoids I. Signals & Sinusoids [p. 3] Signal definition Sinusoidal signal Plotting a sinusoid [p. 12] Signal operations Time shifting Time scaling Time reversal Combining time shifting & scaling [p. 17] Trigonometric

More information

Algebra II CP Final Exam Review Packet. Calculator Questions

Algebra II CP Final Exam Review Packet. Calculator Questions Name: Algebra II CP Final Exam Review Packet Calculator Questions 1. Solve the equation. Check for extraneous solutions. (Sec. 1.6) 2 8 37 2. Graph the inequality 31. (Sec. 2.8) 3. If y varies directly

More information

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007

MAS.160 / MAS.510 / MAS.511 Signals, Systems and Information for Media Technology Fall 2007 MIT OpenCourseWare http://ocw.mit.edu MAS.60 / MAS.50 / MAS.5 Signals, Systems and Information for Media Technology Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Math 175: Chapter 6 Review: Trigonometric Functions

Math 175: Chapter 6 Review: Trigonometric Functions Math 175: Chapter 6 Review: Trigonometric Functions In order to prepare for a test on Chapter 6, you need to understand and be able to work problems involving the following topics. A. Can you sketch an

More information

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation

CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation CMPT 318: Lecture 5 Complex Exponentials, Spectrum Representation Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 23, 2006 1 Exponentials The exponential is

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - COMPLEX NUMBERS CONTENTS Be able to apply algebraic techniques Arithmetic progression (AP):

More information

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x AFM Midterm Review I Fall 06. Determine if the relation is a function.,6,,, 5,. Determine the domain of the function 7 h ( ). 4. Sketch the graph of f 4. Sketch the graph of f 5. Sketch the graph of f

More information

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2 Trigonometry 1st Semester Review Packet (#) Name Find the exact value of the trigonometric function. Do not use a calculator. 1) sec A) B) D) ) tan - 5 A) -1 B) - 1 D) - Find the indicated trigonometric

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Chapter 7 PHASORS ALGEBRA

Chapter 7 PHASORS ALGEBRA 164 Chapter 7 PHASORS ALGEBRA Vectors, in general, may be located anywhere in space. We have restricted ourselves thus for to vectors which are all located in one plane (co planar vectors), but they may

More information

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line. PreCalculus Review Review Questions 1 The following transformations are applied in the given order) to the graph of y = x I Vertical Stretch by a factor of II Horizontal shift to the right by units III

More information

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures.

Central to this is two linear transformations: the Fourier Transform and the Laplace Transform. Both will be considered in later lectures. In this second lecture, I will be considering signals from the frequency perspective. This is a complementary view of signals, that in the frequency domain, and is fundamental to the subject of signal

More information

Honors Math 4 Final Exam 2016 Lexington High School Mathematics Department

Honors Math 4 Final Exam 2016 Lexington High School Mathematics Department Name Teacher (circle): Runge Tracy Verner Class block (circle): A C D F G H Honors Math 4 Final Exam 2016 Lexington High School Mathematics Department This is a 90-minute exam, but you will be allowed

More information

ECE 301 Fall 2011 Division 1. Homework 1 Solutions.

ECE 301 Fall 2011 Division 1. Homework 1 Solutions. ECE 3 Fall 2 Division. Homework Solutions. Reading: Course information handout on the course website; textbook sections.,.,.2,.3,.4; online review notes on complex numbers. Problem. For each discrete-time

More information

Lesson 10.2 Radian Measure and Arc Length

Lesson 10.2 Radian Measure and Arc Length Lesson 10.1 Defining the Circular Functions 1. Find the eact value of each epression. a. sin 0 b. cos 5 c. sin 150 d. cos 5 e. sin(0 ) f. sin(10 ) g. sin 15 h. cos 0 i. sin(0 ) j. sin 90 k. sin 70 l. sin

More information

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator.

Math 5 Trigonometry Chapter 4 Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. Math 5 Trigonometry Chapter Test Fall 08 Name Show work for credit. Write all responses on separate paper. Do not use a calculator. 23 1. Consider an arclength of t = travelled counter-clockwise around

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Phasor mathematics. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Phasor mathematics. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Phasor mathematics This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

s=a+jb s=% x(t)=sin(&t)

s=a+jb s=% x(t)=sin(&t) Linearity input Ax (t)+bx (t) Time invariance x(t-$) x(t) Characteristic Functions Linear Time Invariant Systems Linear Time Invariant System scaling & superposition e st complex exponentials y(t) output

More information

3 What You Should Know About Complex Numbers

3 What You Should Know About Complex Numbers 3 What You Should Know About Complex Numbers Life is complex it has a real part, and an imaginary part Andrew Koenig. Complex numbers are an extension of the more familiar world of real numbers that make

More information

ATHS FC Math Department Al Ain Revision worksheet

ATHS FC Math Department Al Ain Revision worksheet ATHS FC Math Department Al Ain Revision worksheet Section Name ID Date Lesson Marks 3.3, 13.1 to 13.6, 5.1, 5.2, 5.3 Lesson 3.3 (Solving Systems of Inequalities by Graphing) Question: 1 Solve each system

More information

Learn how to use Desmos

Learn how to use Desmos Learn how to use Desmos Maclaurin and Taylor series 1 Go to www.desmos.com. Create an account (click on bottom near top right of screen) Change the grid settings (click on the spanner) to 1 x 3, 1 y 12

More information

= z 2. . Then, if z 1

= z 2. . Then, if z 1 M. J. Roberts - /8/07 Web Appendix P - Complex Numbers and Complex Functions P. Basic Properties of Complex Numbers In the history of mathematics there is a progressive broadening of the concept of numbers.

More information

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum

Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum Chapter 4 Discrete Fourier Transform (DFT) And Signal Spectrum CEN352, DR. Nassim Ammour, King Saud University 1 Fourier Transform History Born 21 March 1768 ( Auxerre ). Died 16 May 1830 ( Paris ) French

More information

8. Introduction and Chapter Objectives

8. Introduction and Chapter Objectives Real Analog - Circuits Chapter 8: Second Order Circuits 8. Introduction and Chapter Objectives Second order systems are, by definition, systems whose input-output relationship is a second order differential

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

Introduction to Complex Mathematics

Introduction to Complex Mathematics EEL335: Discrete-Time Signals and Systems. Introduction In our analysis of discrete-time signals and systems, complex numbers will play an incredibly important role; virtually everything we do from here

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

04-Electric Power. ECEGR 452 Renewable Energy Systems

04-Electric Power. ECEGR 452 Renewable Energy Systems 04-Electric Power ECEGR 452 Renewable Energy Systems Overview Review of Electric Circuits Phasor Representation Electrical Power Power Factor Dr. Louie 2 Introduction Majority of the electrical energy

More information

(A) 30 (B) -60 (C) 135 (D) -150 (E) 210 (F) 225 (G) 240 (H) 270. (C) - 2 p. (H) 3 p. (C) tan 5 p. (G) cos 7 p. (K) sin - 2 p

(A) 30 (B) -60 (C) 135 (D) -150 (E) 210 (F) 225 (G) 240 (H) 270. (C) - 2 p. (H) 3 p. (C) tan 5 p. (G) cos 7 p. (K) sin - 2 p Geometry (H) Review: Third Quarter Trigonometric Functions 1. Convert each angle in degrees to an equivalent angle in radians. (A) 0 (B) -0 (C) 15 (D) -150 (E) 210 (F) 225 (G) 20 (H) 270 2. Convert each

More information

Newington College Mathematics Trial HSC 2012 (D) 2 2

Newington College Mathematics Trial HSC 2012 (D) 2 2 Section I Attempt Questions 1-10 All questions are equal value. Use the multiple choice answer sheet for Questions 1-10 1 Evaluated to three significant figures, 1 e 0.1 is (A) 0.095 (B) 0.095 (C) 0.0951

More information

Chapter 3 Data Acquisition and Manipulation

Chapter 3 Data Acquisition and Manipulation 1 Chapter 3 Data Acquisition and Manipulation In this chapter we introduce z transf orm, or the discrete Laplace Transform, to solve linear recursions. Section 3.1 z-transform Given a data stream x {x

More information

Calculus : Summer Study Guide Mr. Kevin Braun Bishop Dunne Catholic School. Calculus Summer Math Study Guide

Calculus : Summer Study Guide Mr. Kevin Braun Bishop Dunne Catholic School. Calculus Summer Math Study Guide 1 Calculus 2018-2019: Summer Study Guide Mr. Kevin Braun (kbraun@bdcs.org) Bishop Dunne Catholic School Name: Calculus Summer Math Study Guide After you have practiced the skills on Khan Academy (list

More information

Discrete-Time Signals: Time-Domain Representation

Discrete-Time Signals: Time-Domain Representation Discrete-Time Signals: Time-Domain Representation 1 Signals represented as sequences of numbers, called samples Sample value of a typical signal or sequence denoted as x[n] with n being an integer in the

More information

UNIT 1 EQUATIONS, INEQUALITIES, FUNCTIONS

UNIT 1 EQUATIONS, INEQUALITIES, FUNCTIONS UNIT 1 EQUATIONS, INEQUALITIES, FUNCTIONS Act 1 Act 2 A rental car company charges $50.00 per day, plus $0.05 per mile driven. Write a function to model the story. How far did Angie drive if she rented

More information

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ 27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential

More information

Discrete-Time Signals: Time-Domain Representation

Discrete-Time Signals: Time-Domain Representation Discrete-Time Signals: Time-Domain Representation 1 Signals represented as sequences of numbers, called samples Sample value of a typical signal or sequence denoted as x[n] with n being an integer in the

More information

PART I: NO CALCULATOR (144 points)

PART I: NO CALCULATOR (144 points) Math 10 Practice Final Trigonometry 11 th edition Lial, Hornsby, Schneider, and Daniels (Ch. 1-8) PART I: NO CALCULATOR (1 points) (.1,.,.,.) For the following functions: a) Find the amplitude, the period,

More information

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/

Name (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/ Name (print): Lab (circle): W8 Th8 Th11 Th2 F8 Trigonometric Identities ( cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos θ π ) 2 Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees)

More information

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15 Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A. 0.09 B. 0.18 C. 151.83 D. 303.67. Determine the period of y = 6cos x + 8. 15 15 A. B. C. 15 D. 30 15 3. Determine the exact value of

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

Music 270a: Complex Exponentials and Spectrum Representation

Music 270a: Complex Exponentials and Spectrum Representation Music 270a: Complex Exponentials and Spectrum Representation Tamara Smyth, trsmyth@ucsd.edu Department of Music, University of California, San Diego (UCSD) October 24, 2016 1 Exponentials The exponential

More information

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives Pre-Calculus MATH 119 Fall 2013 Learning Objectives Section 1.1 1. Use the Distance Formula 2. Use the Midpoint Formula 4. Graph Equations Using a Graphing Utility 5. Use a Graphing Utility to Create Tables

More information

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response Frequency response XE3EO2 Lecture Pavel Máša - Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function

More information

Midterm Exam Solutions

Midterm Exam Solutions SIMG-455 Midterm Exam Solutions 1. We used the Argand diagram (also called the phasor diagram) to represent temporal oscillatory motion. (a) Use the Argand diagram to demonstrate that the superposition

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

EE 313 Linear Systems and Signals The University of Texas at Austin. Solution Set for Homework #1 on Sinusoidal Signals

EE 313 Linear Systems and Signals The University of Texas at Austin. Solution Set for Homework #1 on Sinusoidal Signals Solution Set for Homework #1 on Sinusoidal Signals By Mr. Houshang Salimian and Prof. Brian L. Evans September 7, 2018 1. Prologue: This problem helps you to identify the points of interest in a sinusoidal

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Polynomials A Polynomial in one variable, x, is an expression of the form a n x 0 a 1 x n 1... a n 2 x 2 a n 1 x a n The coefficients represent complex numbers (real or imaginary),

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK:

DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: Name: Class Period: DISCOVERING THE PYTHAGOREAN IDENTITIES LEARNING TASK: An identity is an equation that is valid for all values of the variable for which the epressions in the equation are defined. You

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #2 DATE: 14-Mar-08 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Step 1: Greatest Common Factor Step 2: Count the number of terms If there are: 2 Terms: Difference of 2 Perfect Squares ( + )( - )

Step 1: Greatest Common Factor Step 2: Count the number of terms If there are: 2 Terms: Difference of 2 Perfect Squares ( + )( - ) Review for Algebra 2 CC Radicals: r x p 1 r x p p r = x p r = x Imaginary Numbers: i = 1 Polynomials (to Solve) Try Factoring: i 2 = 1 Step 1: Greatest Common Factor Step 2: Count the number of terms If

More information

General Directions: When asked for EXACT SOLUTIONS, leave answers in fractional or radical form - not decimal form. That is, leave numbers like 2

General Directions: When asked for EXACT SOLUTIONS, leave answers in fractional or radical form - not decimal form. That is, leave numbers like 2 General Directions: When asked for EXACT SOLUTIONS, leave answers in fractional or radical form - not decimal form. That is, leave numbers like,, π, and e as part of your answer.. State the domain of each

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 08 Final Exam July 7, 08 NAME: Important Notes: Do not unstaple the test. Closed book and notes, except for three

More information

D. 6. Correct to the nearest tenth, the perimeter of the shaded portion of the rectangle is:

D. 6. Correct to the nearest tenth, the perimeter of the shaded portion of the rectangle is: Trigonometry PART 1 Machine Scored Answers are on the back page Full, worked out solutions can be found at MATH 0-1 PRACTICE EXAM 1. An angle in standard position θ has reference angle of 0 with sinθ

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

6.003 (Fall 2011) Quiz #3 November 16, 2011

6.003 (Fall 2011) Quiz #3 November 16, 2011 6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Chapter 9 - Polarization

Chapter 9 - Polarization Chapter 9 - Polarization Gabriel Popescu University of Illinois at Urbana Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

Chapter 4: Graphing Sinusoidal Functions

Chapter 4: Graphing Sinusoidal Functions Haberman MTH 2 Section I: The Trigonometric Functions Chapter : Graphing Sinusoidal Functions DEFINITION: A sinusoidal function is function of the form sinw or y A t h k where A, w, h, k. y Acosw t h k,

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Complete the identity. 1 1) sec - sec =? 1) ) csc (sin + cos ) =? ) 3) sin 1 + sin - sin 1 - sin =? 3)

More information

Math 180, Exam 2, Spring 2013 Problem 1 Solution

Math 180, Exam 2, Spring 2013 Problem 1 Solution Math 80, Eam, Spring 0 Problem Solution. Find the derivative of each function below. You do not need to simplify your answers. (a) tan ( + cos ) (b) / (logarithmic differentiation may be useful) (c) +

More information

The Hilbert Transform

The Hilbert Transform The Hilbert Transform David Hilbert 1 ABSTRACT: In this presentation, the basic theoretical background of the Hilbert Transform is introduced. Using this transform, normal real-valued time domain functions

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

Math 140 Study Guide. Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1)

Math 140 Study Guide. Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. 1) Math 40 Study Guide Find the exact values of the indicated trigonometric functions. Write fractions in lowest terms. ) 0 4) If csc q =, find cot q. A) C) B) 8 Find sin A and cos A. A) sin A = 3 ; cos A

More information

Lecture 13: Pole/Zero Diagrams and All Pass Systems

Lecture 13: Pole/Zero Diagrams and All Pass Systems EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 13: Pole/Zero Diagrams and All Pass Systems No4, 2001 Prof: J. Bilmes

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA 2/TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY Friday, January 29, 2016-9:15 a.m. to 12:15 p.m., only The possession or use of any

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2-May-05 COURSE: ECE-2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when

More information

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10. Complete Solutions to Examination Questions 0 Complete Solutions to Examination Questions 0. (i We need to determine + given + j, j: + + j + j (ii The product ( ( + j6 + 6 j 8 + j is given by ( + j( j

More information

Practice Test - Chapter 4

Practice Test - Chapter 4 Find the value of x. Round to the nearest tenth, if necessary. Find the measure of angle θ. Round to the nearest degree, if necessary. 1. An acute angle measure and the length of the hypotenuse are given,

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

Chapter 7: Trigonometric Equations and Identities

Chapter 7: Trigonometric Equations and Identities Chapter 7: Trigonometric Equations and Identities In the last two chapters we have used basic definitions and relationships to simplify trigonometric expressions and equations. In this chapter we will

More information

Problems with an # after the number are the only ones that a calculator is required for in the solving process.

Problems with an # after the number are the only ones that a calculator is required for in the solving process. Instructions: Make sure all problems are numbered in order. (Level : If the problem had an *please skip that number) All work is in pencil, and is shown completely. Graphs are drawn out by hand. If you

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis

More information

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016 Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions Math&1 November 8, 016 1. Convert the angle in degrees to radian. Express the answer as a multiple of π. a 87 π rad 180 = 87π 180 rad b 16 π rad

More information

Pre-Calculus and Trigonometry Capacity Matrix

Pre-Calculus and Trigonometry Capacity Matrix Review Polynomials A1.1.4 A1.2.5 Add, subtract, multiply and simplify polynomials and rational expressions Solve polynomial equations and equations involving rational expressions Review Chapter 1 and their

More information

Fourier Transform Fast Fourier Transform discovered by Carl Gauss ~1805 re- re invented by Cooley & Tukey in 1965

Fourier Transform Fast Fourier Transform discovered by Carl Gauss ~1805 re- re invented by Cooley & Tukey in 1965 ourier Transform ast ourier Transform discovered by Carl Gauss ~85 re-invented by Cooley & Tukey in 965 wikipedia Next concepts Shannon s Theorem ourier analysis Complex notation Rotating vectors Angular

More information

Basics of Electric Circuits

Basics of Electric Circuits António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and

More information

ENGIN 211, Engineering Math. Complex Numbers

ENGIN 211, Engineering Math. Complex Numbers ENGIN 211, Engineering Math Complex Numbers 1 Imaginary Number and the Symbol J Consider the solutions for this quadratic equation: x 2 + 1 = 0 x = ± 1 1 is called the imaginary number, and we use the

More information

The Graphs of Polynomial Functions

The Graphs of Polynomial Functions Section 4.3 The Graphs of Polynomial Functions Objective 1: Understanding the Definition of a Polynomial Function Definition Polynomial Function n n 1 n 2 The function f() x = anx + an 1x + an 2x + L +

More information

FLC Math 370 Precalculus Basic Skills Handout Use A = {1, 2, 3, 5, 8}, B = {2, 3, 5, 7}, and C = {1, 4, 9} to find the set.

FLC Math 370 Precalculus Basic Skills Handout Use A = {1, 2, 3, 5, 8}, B = {2, 3, 5, 7}, and C = {1, 4, 9} to find the set. FLC Math 370 Precalculus Basic Skills Handout Use A = {1, 2, 3, 5, 8}, B = {2, 3, 5, 7}, and C = {1, 4, 9} to find the set. 1) (A B) C Determine which value(s), if any, must be excluded from the domain

More information

Pre-Exam. 4 Location of 3. 4 sin 3 ' = b Location of 180 ' = c Location of 315

Pre-Exam. 4 Location of 3. 4 sin 3 ' = b Location of 180 ' = c Location of 315 MATH-330 Pre-Exam Spring 09 Name Rocket Number INSTRUCTIONS: You must show enough work to justify your answer on ALL problems except for Problem 6. Correct answers with no work or inconsistent work shown

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How a sinusoidal

More information

Chapter 7: Trigonometric Equations and Identities

Chapter 7: Trigonometric Equations and Identities Chapter 7: Trigonometric Equations and Identities In the last two chapters we have used basic definitions and relationships to simplify trigonometric expressions and equations. In this chapter we will

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information