ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA

Size: px
Start display at page:

Download "ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA"

Transcription

1 16 1 (Independent Component Analysis: ICA) ICA ICA ICA 1 ICA 198 Jutten Herault Comon[3], Amari & Cardoso[4] ICA Comon (PCA) projection persuit projection persuit ICA ICA ICA 1 [1] [] ICA ICA EEG [] fmri [6] [7, 8] [9, 1] J-F. Cardoso JADE [11] A. Hyvärinen FastICA [1] ICA central web page [13] Matlab ( ) ICA ICA ICA ICA 1

2 ICA.1 ICA. ICA 3 [14, 1] s(t) =(s 1 (t),...,s n (t)) T t =, 1,,... s(t) T x(t) =(x 1 (t),...,x m (t)) T t =, 1,,... x m n s(t) x(t) x(t) =As(t), (1) ( 1) A m n ICA s(t) A x(t) n s s 1 a 1 a 1 a 11 a 1: ICA n m n m W y(t) =W x(t), () y(t) WA= I (I n n ) y(t) s(t) y(t) WA = PD (P 1 n n D n n ) x x 1 JADE FastICA ICA s i () W x y y p(y)=p(y 1,,y n ) W y y i p(y i ) y i p(y) = n p(y i ) i=1 p(y) n i=1 p(y i) W p(y) n i=1 p(y i) Kullback-Leibler ( ) KL KL(W) = p(y) p(y) log n i=1 p(y dy i) (3) n = H(Y ; W )+ H(Y i ; W ). i=1 H(Y ; W ) H(Y i ; W ) p(y)dy = p(x)dx p(y) =p(x)/ W ( W W ) H(Y ; W ) H(Y i ; W ) p(x) W

3 H(Y ; W )= = p(y) log p(y)dy p(x)(log p(x) log W )dx x(t) = H(X) + log W, H(Y i ; W )= p(y) log p(y i )dy = p(x) log p(y i )dx KL(W) p(y i ) KL(W) W KL(W) W = ( (W T ) 1 E x [ϕ(y)x T ] ) = ( I E x [ϕ(y)y T ] ) (W T ) 1 (4) ( log p(y1 ) ϕ(y) =,..., log p(y ) T n) y 1 y n W (4) (W T ) 1 W T W [16] W ( I E x [ϕ(y)y T ] ) W () [17] η W W t+1 = W t + η ( I ϕ(y)y T) W t. ϕ(y) W [4] W ϕ(y) ICA x(t)x(t + τ) T = A s(t)s(t + τ) T A T R s1 (τ) = A... AT, R sn (τ) x(t) R si (τ) s i (t) s(t) τ s i (t) W y(t) y(t)y(t + τ) T = (WAs(t)) (WAs(t + τ)) T λ 1 R s 1 (τ) =..., λ n R s n (τ) 1,,...,n 1,,...,n λ i W τ y(t) x(t) τ i W [18] W x(t)x(t + τ i ) T W T = Λ i, i =1,...,r, (6) Λ i W [18] τ i [1] KL [19] 3

4 s i (t) [] { Q(t) = 1 n } log E[yi (t)] log det E[y(t)y(t) T ], i=1 (7) (E[ ] ) Q ICA Q E[y(t)y(t) T ] W W Q Q W 3 ICA ICA 3.1 MEG [1, ] MEG 1 MEG (1msec) ( mm) (1 14 T) MEG ( ) ( 1) 1 T Hz 1 14 a few 1 4 a few 1 () or : Low-Pass 1 ft x 1 x x time(msec) : MEG : msec 41msec 1 msec ICA x x = As 1 s 4

5 ICA x = As + ɛ ɛ ( ) x = As + ɛ = A s s =(A, I) ɛ ICA ɛ [] ICA A ɛ ICA 3 [3, 4] y 1 y y 3 y 4 y y 6 y 7 y 8 y 9 y 1 y 11 y 1 y 13 y 14 y 1 y 16 y time(msec) 3: 3. 3 ICA MEG (artifact) artifact 3 y 9 18Hz y 11 41msec 3 ft x 1 x x time(msec) 4:

6 MEG 4 ( 1msec msec) ( 8msec 1msec) MEG [] ICA 4 fmri ICA ( ) ICA ICA : MEG 1msec 8 1msec V1 ICA ICA 4 ICA ICA MEG, EEG, fmri 6

7 x(t) =A(t) s(t) x i (t) = a ik (t) s k (t), k a ik (t) s k (t) = a ik (τ)s k (t τ), τ= ( 6) (FIR ) s s 1 a (t) 1 1 a (t) a (t) 11 a (t) 6: W y(t) W (t) y(t) =W (t) x(t) W (t) ={w ij (t)} FIR (4) (7) [1, 6] [7, 1, 8] x(t), s(t), A(t) Fourier ω ˆx(ω), ŝ(ω), Â(ω) ˆx(ω) =Â(ω)ŝ(ω), msec x x 1 ˆx(ω, t s )=Â(ω)ŝ(ω, t s), ˆx(ω, t s ) ŝ(ω, t s ) x(t), s(t) windowed Fourier ω (1) (1) ICA W (ω) W (ω) 1 A(ω) W (ω) W (ω) 1 [8, 1] ICA ICA 3 4 ICA ICA 7

8 ICA ICA s A s s i [9] A A [3, 8] ICA [31] KL [3, 33] [34] 6 ICA web [3, 36, 37] 3 [38, 39] ICA ICA ICA ICA1 [4] ICA [41] 7 [1] Jutten, C. and Herault, J. (1991): Separation of sources, Part I, Signal Processing, Vol. 4, No. 1, pp [] Jutten, C. and Taleb, A.: Source separation: from dusk till dawn, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA), pp. 1 6 (). [3] Comon, P. (1994): Independent component analysis, A new concept?, Signal Processing, Vol. 36, No. 3, pp [4] Amari, S. and Cardoso, J.-F. (1997): Blind Source Separation Semiparametric Statistical Approach, 3 8

9 IEEE Transactions on Signal Processing, Vol. 4, No. 11, pp [] Makeig, S., Jung, T.-P., Bell, A. J., Ghahremani, D. and Sejnowski, T. J. (1997): Blind Separation of Auditory Event-related Brain Responses into Independent Components, Proc. Natl. Acad. Sci. USA, pp [6] Mckeown, M. J., Jung, T.-P., Makeig, S., Brown, G., Kindermann, S. S., Lee, T.-W. and Sejnowski, T. J.: Spatially independent activity patterns in functional magnetic resonance imaging data during the Stroop color-naming task, in Proceedings of the National Academy of Sciences, Vol. 9, pp (1998). [7] Bell, A. J. and Sejnowski, T. J. (1997): The independent component of natural scenes are edge filters, Vison Research, Vol. 37, pp [8] Olshausen, B. A. and Field, D. J. (1996): Emergence of simple-cell receptive field properties by learning a sparce code for natural images, Nature, Vol. 381, pp [9] Bell, A. J. and Sejnowski, T. J. (199): An information maximization approach to blind separation and blind deconvolution, Neural Computation, Vol. 7, No. 6, pp [1] Douglas, S. C. and Cichocki, A. (1997): Neural Networks for Blind Decorrelation of Signals, IEEE Transactions on Signal Processing, Vol. 4, No. 11, pp [11] [1] [13] [14] Cardoso, J.-F.: The three easy routes to independent component analysis; contrasts and geometry, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA1), pp. 1 6 (1). [1] Murata, N., Ikeda, S. and Ziehe, A. (1): An Approach to Blind Source Separation Based on Temporal Structure of Speech Signals, Neurocomputing, Vol. 41, No. 1-4, pp [16] Amari, S., Cichocki, A. and Yang, H. H.: A New Learning Algorightm for Blind Signal Separation, in Touretzky, D. S., Mozer, M. C. and Hasselmo, M. E. eds., Advances in Neural Information Processing Systems, Vol. 8, pp , The MIT Press, Cambridge MA (1996). [17] Amari, S., Chen, T. and Cichocki, A. (1997): Stability Analysis of Learning Algorithms for Blind Source Separation, Neural Networks, Vol. 1, No. 8, pp [18] Molgedey, L. and Schuster, H. G. (1994): Separation of a mixture of independent signals using time delayed correlations, Phys. Rev. Lett., Vol. 7, No. 3, pp [19] Amari, S.: ICA of temporally correlated signals learning algorithm, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA 99), pp (1999). [] Matsuoka, K., Ohya, M. and Kawamoto, M. (199): A Neural Net for Blind Separation of Nonstationary Signals, Neural Networks, Vol. 8, No. 3, pp [1] Ikeda, S.: ICA on Noisy Data: A Factor Analysis Approach, in Girolami, M. ed., Advances in Independent Component Analysis, chapter 11, pp. 1 1, Springer-Verlag London Ltd. (). [] Ikeda, S. and Toyama, K. (): Independent Component Analysis for Noisy Data MEG data analysis, Neural Networks, Vol. 13, No. 1, pp [3] Cao, J., Murata, N., Amari, S., Cichocki, A. and Takeda, T.: A Robust ICA Approach for unaveraged single-trial auditory evoked fields data decomposition, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA1), pp (1). [4] Kawanabe, M. and Murata, N.: Independent Component Analysis in the Presence of Gaussian noise based on estimating functions, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA), pp (). [] Toyama, K., Yoshikawa, K., Yoshida, Y., Kondo, Y., Tomita, S., Takanashi, Y., Ejima, Y. and Yoshizawa, S. (1999): A new method for magnetoencephalography: A three dimensional magnetometerspatial filter system, Neuroscience, Vol. 91, No., pp [6] Kawamoto, M., Matsuoka, K. and Ohnishi, N. (1998): A method of blind separation for convolved non-stationary signals, Neurocomputing, Vol., No. 1-3, pp [7] Smaragdis, P. (1998): Blind separation of convolved mixtures in the frequency domain, Neurocomputing, Vol., No. 1-3, pp [8] Ikeda, S. and Murata, N.: A method of blind separation based on temporal structure of signals, in Proceedings of 1998 International Conference on Neural Information Processing (ICONIP 98), Vol., pp , Kitakyushu, Japan (1998). [9] Rickard, S., Balan, R. and Rosca, J.: Real-Time Time-Frequency Based Blind Source Separation, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA1), pp (1). [3] Hyvärinen, A., Hoyer, P. and Inki, M. (1): Topographic Independent Component Analysis, Neural Computation, Vol. 13, No. 7, pp

10 [31] Bach, F. R. and Jordan, M. I.: Kernel Independent Component Analysis, Technical Report UCB//CSD , University of California, Berkeley, (1). [3] Matsuyama, Y., Katsumata, N. and Imahara, S.: Convex Divergence as a Surrogate Function for Independence: The f-divergence ICA, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA1), pp (1). [33] Minami, M. and Eguchi, S.: Robust Blind Source Separation by β-divergence, to appear in Neural Computation (). [34] Akuzawa, T.: New Fast Factorization Method for Multivariate Optimization and its Realization as ICA Algorithm, in Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA1), pp (1). [3] Lee, T.-W. (1998): Independent Component Analysis, Kluwer Academic Publishers. [36] Hyvärinen, A., Karhunen, J. and Oja, E. (1): Independent Component Analysis, John Wiley & Sons, Inc. [37] Cichocki, A. and Amari, S. (): Adaptive Blind Signal and Image Processing, John Wiley & Sons, Inc. [38] Girolami, M. ed. (): Advances in Independent Component Analysis, Springer-Verlag London Ltd. [39] Haykin, S. ed. (): Unsupervised Adaptive Filtering, Volume 1, Blind Source Separation, Vol. 1, John Wiley & Sons, Inc. [4] [41] 1

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Natural Gradient Learning for Over- and Under-Complete Bases in ICA NOTE Communicated by Jean-François Cardoso Natural Gradient Learning for Over- and Under-Complete Bases in ICA Shun-ichi Amari RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan Independent

More information

Blind Machine Separation Te-Won Lee

Blind Machine Separation Te-Won Lee Blind Machine Separation Te-Won Lee University of California, San Diego Institute for Neural Computation Blind Machine Separation Problem we want to solve: Single microphone blind source separation & deconvolution

More information

Independent Component Analysis

Independent Component Analysis Independent Component Analysis James V. Stone November 4, 24 Sheffield University, Sheffield, UK Keywords: independent component analysis, independence, blind source separation, projection pursuit, complexity

More information

A METHOD OF ICA IN TIME-FREQUENCY DOMAIN

A METHOD OF ICA IN TIME-FREQUENCY DOMAIN A METHOD OF ICA IN TIME-FREQUENCY DOMAIN Shiro Ikeda PRESTO, JST Hirosawa 2-, Wako, 35-98, Japan Shiro.Ikeda@brain.riken.go.jp Noboru Murata RIKEN BSI Hirosawa 2-, Wako, 35-98, Japan Noboru.Murata@brain.riken.go.jp

More information

Analytical solution of the blind source separation problem using derivatives

Analytical solution of the blind source separation problem using derivatives Analytical solution of the blind source separation problem using derivatives Sebastien Lagrange 1,2, Luc Jaulin 2, Vincent Vigneron 1, and Christian Jutten 1 1 Laboratoire Images et Signaux, Institut National

More information

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata ' / PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE Noboru Murata Waseda University Department of Electrical Electronics and Computer Engineering 3--

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

Independent component analysis for noisy data MEG data analysis

Independent component analysis for noisy data MEG data analysis Independent component analysis for noisy data MEG data analysis Shiro Ikeda PRESTO, JST Keisuke Toyama Shimadzu Inc. Abstract ICA (independent component analysis) is a new, simple and powerful idea for

More information

Independent Component Analysis

Independent Component Analysis 1 Independent Component Analysis Background paper: http://www-stat.stanford.edu/ hastie/papers/ica.pdf 2 ICA Problem X = AS where X is a random p-vector representing multivariate input measurements. S

More information

ICA. Independent Component Analysis. Zakariás Mátyás

ICA. Independent Component Analysis. Zakariás Mátyás ICA Independent Component Analysis Zakariás Mátyás Contents Definitions Introduction History Algorithms Code Uses of ICA Definitions ICA Miture Separation Signals typical signals Multivariate statistics

More information

CIFAR Lectures: Non-Gaussian statistics and natural images

CIFAR Lectures: Non-Gaussian statistics and natural images CIFAR Lectures: Non-Gaussian statistics and natural images Dept of Computer Science University of Helsinki, Finland Outline Part I: Theory of ICA Definition and difference to PCA Importance of non-gaussianity

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Independent Component Analysis Barnabás Póczos Independent Component Analysis 2 Independent Component Analysis Model original signals Observations (Mixtures)

More information

Independent Component Analysis. Contents

Independent Component Analysis. Contents Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle

More information

x 1 (t) Spectrogram t s

x 1 (t) Spectrogram t s A METHOD OF ICA IN TIME-FREQUENCY DOMAIN Shiro Ikeda PRESTO, JST Hirosawa 2-, Wako, 35-98, Japan Shiro.Ikeda@brain.riken.go.jp Noboru Murata RIKEN BSI Hirosawa 2-, Wako, 35-98, Japan Noboru.Murata@brain.riken.go.jp

More information

A Constrained EM Algorithm for Independent Component Analysis

A Constrained EM Algorithm for Independent Component Analysis LETTER Communicated by Hagai Attias A Constrained EM Algorithm for Independent Component Analysis Max Welling Markus Weber California Institute of Technology, Pasadena, CA 91125, U.S.A. We introduce a

More information

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ BLIND SEPARATION OF NONSTATIONARY AND TEMPORALLY CORRELATED SOURCES FROM NOISY MIXTURES Seungjin CHOI x and Andrzej CICHOCKI y x Department of Electrical Engineering Chungbuk National University, KOREA

More information

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis Aapo Hyvarinen Helsinki University of Technology Laboratory of Computer and Information Science P.O.Box 5400,

More information

Undercomplete Independent Component. Analysis for Signal Separation and. Dimension Reduction. Category: Algorithms and Architectures.

Undercomplete Independent Component. Analysis for Signal Separation and. Dimension Reduction. Category: Algorithms and Architectures. Undercomplete Independent Component Analysis for Signal Separation and Dimension Reduction John Porrill and James V Stone Psychology Department, Sheeld University, Sheeld, S10 2UR, England. Tel: 0114 222

More information

Independent component analysis: an introduction

Independent component analysis: an introduction Research Update 59 Techniques & Applications Independent component analysis: an introduction James V. Stone Independent component analysis (ICA) is a method for automatically identifying the underlying

More information

An Improved Cumulant Based Method for Independent Component Analysis

An Improved Cumulant Based Method for Independent Component Analysis An Improved Cumulant Based Method for Independent Component Analysis Tobias Blaschke and Laurenz Wiskott Institute for Theoretical Biology Humboldt University Berlin Invalidenstraße 43 D - 0 5 Berlin Germany

More information

Independent Component Analysis and Blind Source Separation

Independent Component Analysis and Blind Source Separation Independent Component Analysis and Blind Source Separation Aapo Hyvärinen University of Helsinki and Helsinki Institute of Information Technology 1 Blind source separation Four source signals : 1.5 2 3

More information

Independent Component Analysis

Independent Component Analysis A Short Introduction to Independent Component Analysis Aapo Hyvärinen Helsinki Institute for Information Technology and Depts of Computer Science and Psychology University of Helsinki Problem of blind

More information

Blind separation of sources that have spatiotemporal variance dependencies

Blind separation of sources that have spatiotemporal variance dependencies Blind separation of sources that have spatiotemporal variance dependencies Aapo Hyvärinen a b Jarmo Hurri a a Neural Networks Research Centre, Helsinki University of Technology, Finland b Helsinki Institute

More information

ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM. Brain Science Institute, RIKEN, Wako-shi, Saitama , Japan

ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM. Brain Science Institute, RIKEN, Wako-shi, Saitama , Japan ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM Pando Georgiev a, Andrzej Cichocki b and Shun-ichi Amari c Brain Science Institute, RIKEN, Wako-shi, Saitama 351-01, Japan a On leave from the Sofia

More information

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Yugoslav Journal of Operations Research 5 (25), Number, 79-95 ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS Slavica TODOROVIĆ-ZARKULA EI Professional Electronics, Niš, bssmtod@eunet.yu Branimir TODOROVIĆ,

More information

Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego

Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego Email: brao@ucsdedu References 1 Hyvarinen, A, Karhunen, J, & Oja, E (2004) Independent component analysis (Vol 46)

More information

Independent Component Analysis and Its Applications. By Qing Xue, 10/15/2004

Independent Component Analysis and Its Applications. By Qing Xue, 10/15/2004 Independent Component Analysis and Its Applications By Qing Xue, 10/15/2004 Outline Motivation of ICA Applications of ICA Principles of ICA estimation Algorithms for ICA Extensions of basic ICA framework

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) Independent Component Analysis (ICA) Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation

Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation Hsiao-Chun Wu and Jose C. Principe Computational Neuro-Engineering Laboratory Department of Electrical and Computer Engineering

More information

FASTICA BASED BLIND SOURCE SEPARATION FOR CT IMAGING UNDER NOISE CONDITIONS

FASTICA BASED BLIND SOURCE SEPARATION FOR CT IMAGING UNDER NOISE CONDITIONS FASTICA BASED BLIND SOURCE SEPARATION FOR CT IMAGING UNDER NOISE CONDITIONS Rohit Kumar Malik 1 and Ketaki Solanki 2 1 Applications Engineer, Oracle India Private Limited, Bangalore, Karnatka, India 2

More information

Lecture'12:' SSMs;'Independent'Component'Analysis;' Canonical'Correla;on'Analysis'

Lecture'12:' SSMs;'Independent'Component'Analysis;' Canonical'Correla;on'Analysis' Lecture'12:' SSMs;'Independent'Component'Analysis;' Canonical'Correla;on'Analysis' Lester'Mackey' May'7,'2014' ' Stats'306B:'Unsupervised'Learning' Beyond'linearity'in'state'space'modeling' Credit:'Alex'Simma'

More information

Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources

Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources LETTER Communicated by Jean-François Cardoso Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources Te-Won Lee Howard Hughes Medical Institute,

More information

Independent Component Analysis

Independent Component Analysis A Short Introduction to Independent Component Analysis with Some Recent Advances Aapo Hyvärinen Dept of Computer Science Dept of Mathematics and Statistics University of Helsinki Problem of blind source

More information

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Blind Source Separation (BSS) and Independent Componen Analysis (ICA) Massoud BABAIE-ZADEH Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Outline Part I Part II Introduction

More information

a 22(t) a nn(t) Correlation τ=0 τ=1 τ=2 (t) x 1 (t) x Time(sec)

a 22(t) a nn(t) Correlation τ=0 τ=1 τ=2 (t) x 1 (t) x Time(sec) A METHOD OF BLIND SEPARATION ON TEMPORAL STRUCTURE OF SIGNALS Shiro Ikeda and Noboru Murata Email:fShiro.Ikeda,Noboru.Muratag@brain.riken.go.jp RIKEN Brain Science Institute Hirosawa -, Wako, Saitama 3-98,

More information

Independent Subspace Analysis on Innovations

Independent Subspace Analysis on Innovations Independent Subspace Analysis on Innovations Barnabás Póczos, Bálint Takács, and András Lőrincz Eötvös Loránd University, Pázmány P. sétány /C, Budapest, Hungary 7 barn@ludens.elte.hu, {takbal, andras.lorincz}@elte.hu,

More information

Temporal Coherence, Natural Image Sequences, and the Visual Cortex

Temporal Coherence, Natural Image Sequences, and the Visual Cortex Temporal Coherence, Natural Image Sequences, and the Visual Cortex Jarmo Hurri and Aapo Hyvärinen Neural Networks Research Centre Helsinki University of Technology P.O.Box 9800, 02015 HUT, Finland {jarmo.hurri,aapo.hyvarinen}@hut.fi

More information

Blind Separation of Post-nonlinear Mixtures using Linearizing Transformations and Temporal Decorrelation

Blind Separation of Post-nonlinear Mixtures using Linearizing Transformations and Temporal Decorrelation Journal of Machine Learning Research 4 (3) 39-338 Submitted /; Published /3 Blind Separation of Post-nonlinear Mixtures using Linearizing Transformations and Temporal Decorrelation Andreas Ziehe Motoaki

More information

Recursive Generalized Eigendecomposition for Independent Component Analysis

Recursive Generalized Eigendecomposition for Independent Component Analysis Recursive Generalized Eigendecomposition for Independent Component Analysis Umut Ozertem 1, Deniz Erdogmus 1,, ian Lan 1 CSEE Department, OGI, Oregon Health & Science University, Portland, OR, USA. {ozertemu,deniz}@csee.ogi.edu

More information

Blind signal processing algorithms

Blind signal processing algorithms 12th Int. Workshop on Systems, Signals & Image Processing, 22-24 September 2005, Chalkida, Greece 105 Blind signal processing algorithms Athanasios Margaris and Efthimios Kotsialos Department of Applied

More information

NONLINEAR BLIND SOURCE SEPARATION USING KERNEL FEATURE SPACES.

NONLINEAR BLIND SOURCE SEPARATION USING KERNEL FEATURE SPACES. NONLINEAR BLIND SOURCE SEPARATION USING KERNEL FEATURE SPACES Stefan Harmeling 1, Andreas Ziehe 1, Motoaki Kawanabe 1, Benjamin Blankertz 1, Klaus-Robert Müller 1, 1 GMD FIRST.IDA, Kekuléstr. 7, 1489 Berlin,

More information

Extraction of Sleep-Spindles from the Electroencephalogram (EEG)

Extraction of Sleep-Spindles from the Electroencephalogram (EEG) Extraction of Sleep-Spindles from the Electroencephalogram (EEG) Allan Kardec Barros Bio-mimetic Control Research Center, RIKEN, 2271-13 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463, Japan Roman Rosipal,

More information

Independent Component Analysis

Independent Component Analysis Independent Component Analysis Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr March 4, 2009 1 / 78 Outline Theory and Preliminaries

More information

Non-Euclidean Independent Component Analysis and Oja's Learning

Non-Euclidean Independent Component Analysis and Oja's Learning Non-Euclidean Independent Component Analysis and Oja's Learning M. Lange 1, M. Biehl 2, and T. Villmann 1 1- University of Appl. Sciences Mittweida - Dept. of Mathematics Mittweida, Saxonia - Germany 2-

More information

Wavelet de-noising for blind source separation in noisy mixtures.

Wavelet de-noising for blind source separation in noisy mixtures. Wavelet for blind source separation in noisy mixtures. Bertrand Rivet 1, Vincent Vigneron 1, Anisoara Paraschiv-Ionescu 2 and Christian Jutten 1 1 Institut National Polytechnique de Grenoble. Laboratoire

More information

Independent Components Analysis by Direct Entropy Minimization

Independent Components Analysis by Direct Entropy Minimization Independent Components Analysis by Direct Entropy Minimization Erik G. Miller egmil@eecs.berkeley.edu Computer Science Division University of California Berkeley, CA 94720, USA John W. Fisher III fisher@ai.mit.edu

More information

Nonlinear reverse-correlation with synthesized naturalistic noise

Nonlinear reverse-correlation with synthesized naturalistic noise Cognitive Science Online, Vol1, pp1 7, 2003 http://cogsci-onlineucsdedu Nonlinear reverse-correlation with synthesized naturalistic noise Hsin-Hao Yu Department of Cognitive Science University of California

More information

Independent Component Analysis of Incomplete Data

Independent Component Analysis of Incomplete Data Independent Component Analysis of Incomplete Data Max Welling Markus Weber California Institute of Technology 136-93 Pasadena, CA 91125 fwelling,rmwg@vision.caltech.edu Keywords: EM, Missing Data, ICA

More information

CONVOLUTIVE NON-NEGATIVE MATRIX FACTORISATION WITH SPARSENESS CONSTRAINT

CONVOLUTIVE NON-NEGATIVE MATRIX FACTORISATION WITH SPARSENESS CONSTRAINT CONOLUTIE NON-NEGATIE MATRIX FACTORISATION WITH SPARSENESS CONSTRAINT Paul D. O Grady Barak A. Pearlmutter Hamilton Institute National University of Ireland, Maynooth Co. Kildare, Ireland. ABSTRACT Discovering

More information

CONTROL SYSTEMS ANALYSIS VIA BLIND SOURCE DECONVOLUTION. Kenji Sugimoto and Yoshito Kikkawa

CONTROL SYSTEMS ANALYSIS VIA BLIND SOURCE DECONVOLUTION. Kenji Sugimoto and Yoshito Kikkawa CONTROL SYSTEMS ANALYSIS VIA LIND SOURCE DECONVOLUTION Kenji Sugimoto and Yoshito Kikkawa Nara Institute of Science and Technology Graduate School of Information Science 896-5 Takayama-cho, Ikoma-city,

More information

ICA and ISA Using Schweizer-Wolff Measure of Dependence

ICA and ISA Using Schweizer-Wolff Measure of Dependence Keywords: independent component analysis, independent subspace analysis, copula, non-parametric estimation of dependence Abstract We propose a new algorithm for independent component and independent subspace

More information

1 Introduction Blind source separation (BSS) is a fundamental problem which is encountered in a variety of signal processing problems where multiple s

1 Introduction Blind source separation (BSS) is a fundamental problem which is encountered in a variety of signal processing problems where multiple s Blind Separation of Nonstationary Sources in Noisy Mixtures Seungjin CHOI x1 and Andrzej CICHOCKI y x Department of Electrical Engineering Chungbuk National University 48 Kaeshin-dong, Cheongju Chungbuk

More information

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Antti Honkela 1, Stefan Harmeling 2, Leo Lundqvist 1, and Harri Valpola 1 1 Helsinki University of Technology,

More information

Fundamentals of Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Independent Vector Analysis (IVA)

Fundamentals of Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Independent Vector Analysis (IVA) Fundamentals of Principal Component Analysis (PCA),, and Independent Vector Analysis (IVA) Dr Mohsen Naqvi Lecturer in Signal and Information Processing, School of Electrical and Electronic Engineering,

More information

ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS. Maria Funaro, Erkki Oja, and Harri Valpola

ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS. Maria Funaro, Erkki Oja, and Harri Valpola ARTEFACT DETECTION IN ASTROPHYSICAL IMAGE DATA USING INDEPENDENT COMPONENT ANALYSIS Maria Funaro, Erkki Oja, and Harri Valpola Neural Networks Research Centre, Helsinki University of Technology P.O.Box

More information

To appear in Proceedings of the ICA'99, Aussois, France, A 2 R mn is an unknown mixture matrix of full rank, v(t) is the vector of noises. The

To appear in Proceedings of the ICA'99, Aussois, France, A 2 R mn is an unknown mixture matrix of full rank, v(t) is the vector of noises. The To appear in Proceedings of the ICA'99, Aussois, France, 1999 1 NATURAL GRADIENT APPROACH TO BLIND SEPARATION OF OVER- AND UNDER-COMPLETE MIXTURES L.-Q. Zhang, S. Amari and A. Cichocki Brain-style Information

More information

ACENTRAL problem in neural-network research, as well

ACENTRAL problem in neural-network research, as well 626 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999 Fast and Robust Fixed-Point Algorithms for Independent Component Analysis Aapo Hyvärinen Abstract Independent component analysis (ICA)

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information

Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation

Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation LETTER Communicated by Klaus Obermayer Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation Shun-ichi Amari Tian-Ping Chen Andrzej Cichocki RIKEN Brain Science Institute, Brain-Style

More information

Independent Component Analysis on the Basis of Helmholtz Machine

Independent Component Analysis on the Basis of Helmholtz Machine Independent Component Analysis on the Basis of Helmholtz Machine Masashi OHATA *1 ohatama@bmc.riken.go.jp Toshiharu MUKAI *1 tosh@bmc.riken.go.jp Kiyotoshi MATSUOKA *2 matsuoka@brain.kyutech.ac.jp *1 Biologically

More information

MINIMIZATION-PROJECTION (MP) APPROACH FOR BLIND SOURCE SEPARATION IN DIFFERENT MIXING MODELS

MINIMIZATION-PROJECTION (MP) APPROACH FOR BLIND SOURCE SEPARATION IN DIFFERENT MIXING MODELS MINIMIZATION-PROJECTION (MP) APPROACH FOR BLIND SOURCE SEPARATION IN DIFFERENT MIXING MODELS Massoud Babaie-Zadeh ;2, Christian Jutten, Kambiz Nayebi 2 Institut National Polytechnique de Grenoble (INPG),

More information

NONLINEAR INDEPENDENT FACTOR ANALYSIS BY HIERARCHICAL MODELS

NONLINEAR INDEPENDENT FACTOR ANALYSIS BY HIERARCHICAL MODELS NONLINEAR INDEPENDENT FACTOR ANALYSIS BY HIERARCHICAL MODELS Harri Valpola, Tomas Östman and Juha Karhunen Helsinki University of Technology, Neural Networks Research Centre P.O. Box 5400, FIN-02015 HUT,

More information

Complete Blind Subspace Deconvolution

Complete Blind Subspace Deconvolution Complete Blind Subspace Deconvolution Zoltán Szabó Department of Information Systems, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest H-1117, Hungary szzoli@cs.elte.hu http://nipg.inf.elte.hu

More information

THE functional role of simple and complex cells has

THE functional role of simple and complex cells has 37 A Novel Temporal Generative Model of Natural Video as an Internal Model in Early Vision Jarmo Hurri and Aapo Hyvärinen Neural Networks Research Centre Helsinki University of Technology P.O.Box 9800,

More information

FUNDAMENTAL LIMITATION OF FREQUENCY DOMAIN BLIND SOURCE SEPARATION FOR CONVOLVED MIXTURE OF SPEECH

FUNDAMENTAL LIMITATION OF FREQUENCY DOMAIN BLIND SOURCE SEPARATION FOR CONVOLVED MIXTURE OF SPEECH FUNDAMENTAL LIMITATION OF FREQUENCY DOMAIN BLIND SOURCE SEPARATION FOR CONVOLVED MIXTURE OF SPEECH Shoko Araki Shoji Makino Ryo Mukai Tsuyoki Nishikawa Hiroshi Saruwatari NTT Communication Science Laboratories

More information

Nonlinear Blind Source Separation Using a Radial Basis Function Network

Nonlinear Blind Source Separation Using a Radial Basis Function Network 124 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 1, JANUARY 2001 Nonlinear Blind Source Separation Using a Radial Basis Function Network Ying Tan, Member, IEEE, Jun Wang, Senior Member, IEEE, and

More information

Independent component analysis for biomedical signals

Independent component analysis for biomedical signals INSTITUTE OF PHYSICS PUBLISHING Physiol. Meas. 26 (2005) R15 R39 PHYSIOLOGICAL MEASUREMENT doi:10.1088/0967-3334/26/1/r02 TOPICAL REVIEW Independent component analysis for biomedical signals Christopher

More information

Tutorial on Blind Source Separation and Independent Component Analysis

Tutorial on Blind Source Separation and Independent Component Analysis Tutorial on Blind Source Separation and Independent Component Analysis Lucas Parra Adaptive Image & Signal Processing Group Sarnoff Corporation February 09, 2002 Linear Mixtures... problem statement...

More information

A Convex Cauchy-Schwarz Divergence Measure for Blind Source Separation

A Convex Cauchy-Schwarz Divergence Measure for Blind Source Separation INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume, 8 A Convex Cauchy-Schwarz Divergence Measure for Blind Source Separation Zaid Albataineh and Fathi M. Salem Abstract We propose

More information

A Canonical Genetic Algorithm for Blind Inversion of Linear Channels

A Canonical Genetic Algorithm for Blind Inversion of Linear Channels A Canonical Genetic Algorithm for Blind Inversion of Linear Channels Fernando Rojas, Jordi Solé-Casals, Enric Monte-Moreno 3, Carlos G. Puntonet and Alberto Prieto Computer Architecture and Technology

More information

FREQUENCY-DOMAIN IMPLEMENTATION OF BLOCK ADAPTIVE FILTERS FOR ICA-BASED MULTICHANNEL BLIND DECONVOLUTION

FREQUENCY-DOMAIN IMPLEMENTATION OF BLOCK ADAPTIVE FILTERS FOR ICA-BASED MULTICHANNEL BLIND DECONVOLUTION FREQUENCY-DOMAIN IMPLEMENTATION OF BLOCK ADAPTIVE FILTERS FOR ICA-BASED MULTICHANNEL BLIND DECONVOLUTION Kyungmin Na, Sang-Chul Kang, Kyung Jin Lee, and Soo-Ik Chae School of Electrical Engineering Seoul

More information

SPARSE REPRESENTATION AND BLIND DECONVOLUTION OF DYNAMICAL SYSTEMS. Liqing Zhang and Andrzej Cichocki

SPARSE REPRESENTATION AND BLIND DECONVOLUTION OF DYNAMICAL SYSTEMS. Liqing Zhang and Andrzej Cichocki SPARSE REPRESENTATON AND BLND DECONVOLUTON OF DYNAMCAL SYSTEMS Liqing Zhang and Andrzej Cichocki Lab for Advanced Brain Signal Processing RKEN Brain Science nstitute Wako shi, Saitama, 351-198, apan zha,cia

More information

Learning Overcomplete Representations

Learning Overcomplete Representations LETTER Communicated by Joachim Buhmann Learning Overcomplete Representations Michael S. Lewicki Computer Science Dept. and Center for the Neural Basis of Cognition, Carnegie Mellon Univ., 115 Mellon Inst.,

More information

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services. Internal

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

On Information Maximization and Blind Signal Deconvolution

On Information Maximization and Blind Signal Deconvolution On Information Maximization and Blind Signal Deconvolution A Röbel Technical University of Berlin, Institute of Communication Sciences email: roebel@kgwtu-berlinde Abstract: In the following paper we investigate

More information

Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA

Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA with Hiroshi Morioka Dept of Computer Science University of Helsinki, Finland Facebook AI Summit, 13th June 2016 Abstract

More information

Clutter Rejection for Doppler Ultrasound Based on Blind Source Separation

Clutter Rejection for Doppler Ultrasound Based on Blind Source Separation RESEARCH ARTICLE Copyright 13 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Medical Imaging and Health Informatics Vol. 3, 1 8, 13 Clutter Rejection

More information

Blind channel deconvolution of real world signals using source separation techniques

Blind channel deconvolution of real world signals using source separation techniques Blind channel deconvolution of real world signals using source separation techniques Jordi Solé-Casals 1, Enric Monte-Moreno 2 1 Signal Processing Group, University of Vic, Sagrada Família 7, 08500, Vic

More information

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces

Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces LETTER Communicated by Bartlett Mel Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces Aapo Hyvärinen Patrik Hoyer Helsinki University

More information

Estimation of linear non-gaussian acyclic models for latent factors

Estimation of linear non-gaussian acyclic models for latent factors Estimation of linear non-gaussian acyclic models for latent factors Shohei Shimizu a Patrik O. Hoyer b Aapo Hyvärinen b,c a The Institute of Scientific and Industrial Research, Osaka University Mihogaoka

More information

Linear Prediction Based Blind Source Extraction Algorithms in Practical Applications

Linear Prediction Based Blind Source Extraction Algorithms in Practical Applications Linear Prediction Based Blind Source Extraction Algorithms in Practical Applications Zhi-Lin Zhang 1,2 and Liqing Zhang 1 1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,

More information

Independent Subspace Analysis

Independent Subspace Analysis Independent Subspace Analysis Barnabás Póczos Supervisor: Dr. András Lőrincz Eötvös Loránd University Neural Information Processing Group Budapest, Hungary MPI, Tübingen, 24 July 2007. Independent Component

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Autoregressive Independent Process Analysis with Missing Observations

Autoregressive Independent Process Analysis with Missing Observations Autoregressive Independent Process Analysis with Missing Observations Zoltán Szabó Eötvös Loránd University - Department of Software Technology and Methodology Pázmány P. sétány 1/C, Budapest, H-1117 -

More information

Across-Frequency Processing in Convolutive Blind Source Separation

Across-Frequency Processing in Convolutive Blind Source Separation Across-Frequency Processing in Convolutive Blind Source Separation Jörn Anemüller geboren am 21. Mai 1971 in Lippstadt Vom Fachbereich Physik der Universität Oldenburg zur Erlangung des Grades eines Doktors

More information

FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS

FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS Francis R. Bach Computer Science Division University of California Berkeley, CA 94720, USA fbach@cs.berkeley.edu Michael I. Jordan Computer Science Division

More information

Viewpoint invariant face recognition using independent component analysis and attractor networks

Viewpoint invariant face recognition using independent component analysis and attractor networks Viewpoint invariant face recognition using independent component analysis and attractor networks Marian Stewart Bartlett University of California San Diego The Salk Institute La Jolla, CA 92037 marni@salk.edu

More information

MEAN FIELD IMPLEMENTATION OF BAYESIAN ICA

MEAN FIELD IMPLEMENTATION OF BAYESIAN ICA MEAN FIELD IMPLEMENTATION OF BAYESIAN ICA Pedro Højen-Sørensen, Lars Kai Hansen Ole Winther Informatics and Mathematical Modelling Technical University of Denmark, B32 DK-28 Lyngby, Denmark Center for

More information

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri

EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING. Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri EXTENSIONS OF ICA AS MODELS OF NATURAL IMAGES AND VISUAL PROCESSING Aapo Hyvärinen, Patrik O. Hoyer and Jarmo Hurri Neural Networks Research Centre Helsinki University of Technology P.O. Box 5400, FIN-02015

More information

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH Yuanqing Li, Andrzej Cichocki, and Shun-Ichi Amari, Fellow, IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 2, MARCH Yuanqing Li, Andrzej Cichocki, and Shun-Ichi Amari, Fellow, IEEE IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL 17, NO 2, MARCH 2006 419 Blind Estimation of Channel Parameters and Source Components for EEG Signals: A Sparse Factorization Approach Yuanqing Li, Andrzej Cichocki,

More information

ORIENTED PCA AND BLIND SIGNAL SEPARATION

ORIENTED PCA AND BLIND SIGNAL SEPARATION ORIENTED PCA AND BLIND SIGNAL SEPARATION K. I. Diamantaras Department of Informatics TEI of Thessaloniki Sindos 54101, Greece kdiamant@it.teithe.gr Th. Papadimitriou Department of Int. Economic Relat.

More information

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES Mika Inki and Aapo Hyvärinen Neural Networks Research Centre Helsinki University of Technology P.O. Box 54, FIN-215 HUT, Finland ABSTRACT

More information

Estimating Overcomplete Independent Component Bases for Image Windows

Estimating Overcomplete Independent Component Bases for Image Windows Journal of Mathematical Imaging and Vision 17: 139 152, 2002 c 2002 Kluwer Academic Publishers. Manufactured in The Netherlands. Estimating Overcomplete Independent Component Bases for Image Windows AAPO

More information

Final Report For Undergraduate Research Opportunities Project Name: Biomedical Signal Processing in EEG. Zhang Chuoyao 1 and Xu Jianxin 2

Final Report For Undergraduate Research Opportunities Project Name: Biomedical Signal Processing in EEG. Zhang Chuoyao 1 and Xu Jianxin 2 ABSTRACT Final Report For Undergraduate Research Opportunities Project Name: Biomedical Signal Processing in EEG Zhang Chuoyao 1 and Xu Jianxin 2 Department of Electrical and Computer Engineering, National

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Introduction Consider a zero mean random vector R n with autocorrelation matri R = E( T ). R has eigenvectors q(1),,q(n) and associated eigenvalues λ(1) λ(n). Let Q = [ q(1)

More information

MONAURAL ICA OF WHITE NOISE MIXTURES IS HARD. Lars Kai Hansen and Kaare Brandt Petersen

MONAURAL ICA OF WHITE NOISE MIXTURES IS HARD. Lars Kai Hansen and Kaare Brandt Petersen MONAURAL ICA OF WHITE NOISE MIXTURES IS HARD Lars Kai Hansen and Kaare Brandt Petersen Informatics and Mathematical Modeling, Technical University of Denmark, DK-28 Lyngby, DENMARK. email: lkh,kbp@imm.dtu.dk

More information

Phase Aliasing Correction For Robust Blind Source Separation Using DUET

Phase Aliasing Correction For Robust Blind Source Separation Using DUET IEEE TRANSACTION ON SIGNAL PROCESSING 1 Phase Aliasing Correction For Robust Blind Source Separation Using DUET Yang Wang 1,3, Özgür Yılmaz 2 and Zhengfang Zhou 1 Abstract Degenerate Unmixing Estimation

More information