Independent Subspace Analysis

Size: px
Start display at page:

Download "Independent Subspace Analysis"

Transcription

1 Independent Subspace Analysis Barnabás Póczos Supervisor: Dr. András Lőrincz Eötvös Loránd University Neural Information Processing Group Budapest, Hungary MPI, Tübingen, 24 July 2007.

2 Independent Component Analysis Sources Mixing A s(t) Observation Estimation y(t)=wx(t) x(t) = As(t) 2

3 Some ICA Applications Blind source separation Image denoising Medical signal processing fmri, ECG, EEG Modeling of the hippocampus Modeling of the visual cortex Feature extraction Face recognition Time series analysis Financial applications 3

4 Independent Subspace Analysis Sources Observation Estimation s 1 2 Rd x1 2 Rd y1 2 Rd s 2 2 Rd x2 2 Rd y2 2 Rd sm 2 xm 2 Rd y m 2 Rd Rd A 2 Rmd md W 2 Rmd md s s T ; : : : ; sm T T 2 Rdm x x T ; : : : ; xm T T 2 Rdm x As y y T ; : : : ; ym T T 2 Rdm y Wx 4

5 Independent Subspace Analysis The Efforts Cardoso, 1998 Akaho et al, 1999 kernel methods for mutual information estimation Theis, 2003 Processing of EEG-fMRI data 2-dimensional Edgeworth-expansion Bach & Jordan, 2003 Conjecture, ICA preprocessing followed by permutation Ambiguity issues, uniqueness of ISA Hyvärinen & Köster, 2006 FastISA: A fast fixed-point algorithm for independent subspace analysis 5

6 Independent Subspace Analysis The Ambiguity Ambiguity of ICA: Sources can be recovered only up to: arbitrary permutation arbitrary scaling factors sign Ambiguity of ISA: Sources can be recovered only up to: arbitrary permutation arbitrary invertible transformation 6

7 Independent Subspace Analysis pairwise independence joint independence In ICA case pairwise independence of the sources = joint independence of the sources (Comon, 1994) In ISA case pairwise independence of the subspaces joint independence of the subspaces Proof: Let ; s g; fs ; s ; s g; fs ; s ; s g fs ; s 3 of 3- dimensional independent sources, where the elements of each subspace are pairwise independent. Than fs ; s ; s g; fs ; s ; s g; fs ; s ; s g is a wrong 7 ISA solution.

8 The ISA Cost Functions R Mutual Information: I y ; : : : ; ym R p y dy p y p y m Shannon-entropy: H y p y p y dy 8

9 The ISA Cost Functions 9

10 Multidimensional Entropy Estimation

11 Multi-dimensional Entropy Estimations, Method of Kozahenko and Leonenko fz ; : : : ; z n g n z 2 Rd N ;j z j Then the nearest neighbour entropy estimation: n P z H nkn ;j z j k CE n j 1 R t CE e t dt This estimation is means-square consistent, but not robust. Let us try to use more neighbours! 11

12 Multi-dimensional Entropy Estimations R Let us apply Rényi sh f z dz entropy for estimating H f z f z dz the Shannon-entropy:! R Let us use - K-nearest neighbors - geodesic spanning trees for estimating the multi-dimensional Rényi s entropy. 12

13 Beadword - Halton - Hammersley Theorem fz ; : : : ; z n g n z 2 Rd Nk;j k z j d d n P P! H z c k v z j k kn j v2nk;j n! 1 13

14 Multi-dimensional Entropy Estimations Using Geodesic Spanning Forests Build first an Euclidean neighbourhood graph use the edges of the k nearest nodes to each node z p Find geodesic spanning forests on this graph (minimal spanning forests of the Euclidean neighbourhood graph) 14

15 Euclidean Graphs fz ; : : : ; z n g n z 2 Rd Euclidean neighbourhood graph E fe e p; q z p z q 2 Rd ; z q 2 Nk;pg Weight of minimal (γ-weighted) Euclidean spanning forest: L z P T2T e2t Where T kek is the set of all γ-weighted Euclidean spanning forests d d d L z! H z c n! 1 n 15

16 Estimation of the Shannon-entropy 16

17 Mutual Information Estimation

18 Kernel covariance (KC) A. Gretton, R. Herbrich, A. Smola, F. Bach, M. Jordan The calculation of the supremum over function sets is extremely difficult. We can ease it using Reproducing Kernel Hilbert Spaces. 18

19 RKHS construction for x, y stochastic variables. 19

20 Kernel covariance (KC) And what is more, after some calculation we get, that 20

21 The ISA Separation Theorem

22 ISA Separation Theorem 22

23 The ISA Separation Theorem 23

24 Numerical Simulations

25 Numerical Simulations 2D Letters (i.i.d.) Sources Observation Estimated sources Performance matrix 25

26 Numerical Simulations 3D Curves (i.i.d.) Sources Observation Estimated sources Performance matrix 26

27 Numerical Simulations Facial images (i.i.d.) Sources Observation Estimated sources Performance matrix 27

28 Numerical Simulations 28

29 Working on Innovations These methods for entropy estimation need i.i.d. processes. What can we do with τ-order AR sources? si t F si t : : : F si t ¹ t Then the innovations are i.i.d. processes: si t si t E si t jsi t ; si t : : : ¹ t and the mixing matrix is the same for the innovations, so we can use ISA on innovations. A s t x t E x t jx t ; x t : : : x t 29

30 Results Using Innovations Original AR sources Mixed sources Estimated sources by plain ISA Performance of plain ISA Estimated sources using ISA on innovations Performance using30 innovations

31 Undercomplete Blind Subspace Deconvolution Multi-dimensional generalization of the undercomplete Blind Source Deconvolution (BSD) 31

32 BSSD reduction to ISA 32

33 BSSD reduction to ISA ISA task! 33

34 BSSD Results Database: Convolved mixture Performance Estimation 34

35 Post nonlinear ISA Has it any sense? 35

36 Post nonlinear ISA Separability theorem: 36

37 Post nonlinear ISA, results Original Observed Nonlinear functions Hinton diagram 37 Estimated functions

38 ISA for facial components In our database we had 800 different front view faces with the 6 basic facial expressions. We had thus 4,800 images in total. All images were sized to pixel. A large data matrix was compiled; rows of this matrix were 1600 dimensional vectors formed by the pixel values of the individual images. The columns of this matrix were considered as mixed signals. The observed 4800 dimensional signals were compressed by PCA to 60 dimensions and we searched for 4 pieces of ISA subspaces. 38

39 ISA for facial components eyes mouth eye brushes facial profiles Estimated subspaces 39

40 Ongoing Projects & Future Plans Multilinear (tenzorial) ISA BSSD in the Fourier domain EEG, fmri data processing Low-dimensional embedding with ICA / ISA constraints Low-dimensional embedding of time series Variational Bayesian Hidden Markov Factor Analyzer 40

41 Thanks for your attention! 41

42 References Independent Process Analysis without Combinatorial Efforts. Z. Szabó, B. Póczos and A. Lőrincz. (ICA2007, accepted) Post Nonlinear Independent Subspace Analysis. Z. Szabó, B. Póczos, G. Szirtes and A. Lőrincz (ICANN 2007, accepted) Undercomplete BSSD via Linear Prediction. Z. Szabó, B. Póczos and A. Lőrincz (ECML 2007, accepted) Undercomplete Blind Subspace Deconvolution Z. Szabó, B. Póczos and A. Lőrincz Journal of Machine Learning Research. vol. 8, pp Independent subspace analysis using geodesic spanning trees B. Póczos and A. Lőrincz Proc. of ICML 2005, Bonn, ICML: Cross-Entropy Optimization for Independent Process Analysis Z. Szabó, B. Póczos and A. Lőrincz Proc. of ICA 2006, Charleston, SC: LNCS 3889, , Springer Verlag 42

43 References Noncombinatorial estimation of independent auto-regressive sources B. Póczos and A. Lőrincz Neurocomputing vol. 69, pp Independent Subspace Analysis on Innovations B. Póczos, B. Takács and A. Lőrincz Proc. of. ECML 2005, Porto, LNAI 3720: , Springer-Verlag Independent subspace analysis using k-nearest neighborhood distances B. Póczos and A. Lőrincz Proc. of ICANN 2005, Warsaw, LNCS 3697: , Springer-Verlag Separation theorem for independent subspace analysis with sufficient conditions. Z. Szabó, B. Póczos and A. Lőrincz. Technical report, Eötvös Loránd University, Budapest. Cost component analysis András Lőrincz and Barnabás Póczos International Journal of Neural Systems, Vol. 13, pp

44 44

Cross-Entropy Optimization for Independent Process Analysis

Cross-Entropy Optimization for Independent Process Analysis Cross-Entropy Optimization for Independent Process Analysis Zoltán Szabó, Barnabás Póczos, and András Lőrincz Department of Information Systems Eötvös Loránd University, Budapest, Hungary Research Group

More information

Real and Complex Independent Subspace Analysis by Generalized Variance

Real and Complex Independent Subspace Analysis by Generalized Variance Real and Complex Independent Subspace Analysis by Generalized Variance Neural Information Processing Group, Department of Information Systems, Eötvös Loránd University, Budapest, Hungary ICA Research Network

More information

Independent Subspace Analysis on Innovations

Independent Subspace Analysis on Innovations Independent Subspace Analysis on Innovations Barnabás Póczos, Bálint Takács, and András Lőrincz Eötvös Loránd University, Pázmány P. sétány /C, Budapest, Hungary 7 barn@ludens.elte.hu, {takbal, andras.lorincz}@elte.hu,

More information

Complete Blind Subspace Deconvolution

Complete Blind Subspace Deconvolution Complete Blind Subspace Deconvolution Zoltán Szabó Department of Information Systems, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest H-1117, Hungary szzoli@cs.elte.hu http://nipg.inf.elte.hu

More information

Undercomplete Blind Subspace Deconvolution via Linear Prediction

Undercomplete Blind Subspace Deconvolution via Linear Prediction Undercomplete Blind Subspace Deconvolution via Linear Prediction Zoltán Szabó, Barnabás Póczos, and András L rincz Department of Information Systems, Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest

More information

Autoregressive Independent Process Analysis with Missing Observations

Autoregressive Independent Process Analysis with Missing Observations Autoregressive Independent Process Analysis with Missing Observations Zoltán Szabó Eötvös Loránd University - Department of Software Technology and Methodology Pázmány P. sétány 1/C, Budapest, H-1117 -

More information

Fast Parallel Estimation of High Dimensional Information Theoretical Quantities with Low Dimensional Random Projection Ensembles

Fast Parallel Estimation of High Dimensional Information Theoretical Quantities with Low Dimensional Random Projection Ensembles Fast Parallel Estimation of High Dimensional Information Theoretical Quantities with Low Dimensional Random Projection Ensembles Zoltán Szabó and András Lőrincz Department of Information Systems, Eötvös

More information

ICA and ISA Using Schweizer-Wolff Measure of Dependence

ICA and ISA Using Schweizer-Wolff Measure of Dependence Keywords: independent component analysis, independent subspace analysis, copula, non-parametric estimation of dependence Abstract We propose a new algorithm for independent component and independent subspace

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Independent Component Analysis Barnabás Póczos Independent Component Analysis 2 Independent Component Analysis Model original signals Observations (Mixtures)

More information

Complex Independent Process Analysis

Complex Independent Process Analysis Acta Cybernetica 19 (2009) 177190. Complex Independent Process Analysis Zoltán Szabó and András L rincz Abstract We present a general framework for the search of hidden independent processes in the complex

More information

LECTURE :ICA. Rita Osadchy. Based on Lecture Notes by A. Ng

LECTURE :ICA. Rita Osadchy. Based on Lecture Notes by A. Ng LECURE :ICA Rita Osadchy Based on Lecture Notes by A. Ng Cocktail Party Person 1 2 s 1 Mike 2 s 3 Person 3 1 Mike 1 s 2 Person 2 3 Mike 3 microphone signals are mied speech signals 1 2 3 ( t) ( t) ( t)

More information

NONPARAMETRIC DIVERGENCE ESTIMATORS FOR INDEPENDENT SUBSPACE ANALYSIS

NONPARAMETRIC DIVERGENCE ESTIMATORS FOR INDEPENDENT SUBSPACE ANALYSIS NONPARAMETRIC DIVERGENCE ESTIMATORS FOR INDEPENDENT SUBSPACE ANALYSIS Barnabás Póczos, Zoltán Szabó 2, and Jeff Schneider School of Computer Science, Carnegie Mellon University, 5 Forbes Ave, 523, Pittsburgh,

More information

Online Dictionary Learning with Group Structure Inducing Norms

Online Dictionary Learning with Group Structure Inducing Norms Online Dictionary Learning with Group Structure Inducing Norms Zoltán Szabó 1, Barnabás Póczos 2, András Lőrincz 1 1 Eötvös Loránd University, Budapest, Hungary 2 Carnegie Mellon University, Pittsburgh,

More information

Separation Theorem for Independent Subspace Analysis and its Consequences

Separation Theorem for Independent Subspace Analysis and its Consequences Separation Theorem for Independent Subspace Analysis and its Consequences Zoltán Szabó a,, Barnabás Póczos b, András Lőrincz a a Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/C,

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

NONPARAMETRIC DIVERGENCE ESTIMATORS FOR INDEPENDENT SUBSPACE ANALYSIS

NONPARAMETRIC DIVERGENCE ESTIMATORS FOR INDEPENDENT SUBSPACE ANALYSIS NONPARAMETRIC DIVERGENCE ESTIMATORS FOR INDEPENDENT SUBSPACE ANALYSIS Barnabás Póczos, oltán Szabó 2, and Je Schneider School of Computer Science, Carnegie Mellon University, 5 Forbes Ave, 523, Pittsburgh,

More information

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello

Artificial Intelligence Module 2. Feature Selection. Andrea Torsello Artificial Intelligence Module 2 Feature Selection Andrea Torsello We have seen that high dimensional data is hard to classify (curse of dimensionality) Often however, the data does not fill all the space

More information

Independent Component Analysis. Contents

Independent Component Analysis. Contents Contents Preface xvii 1 Introduction 1 1.1 Linear representation of multivariate data 1 1.1.1 The general statistical setting 1 1.1.2 Dimension reduction methods 2 1.1.3 Independence as a guiding principle

More information

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Natural Gradient Learning for Over- and Under-Complete Bases in ICA NOTE Communicated by Jean-François Cardoso Natural Gradient Learning for Over- and Under-Complete Bases in ICA Shun-ichi Amari RIKEN Brain Science Institute, Wako-shi, Hirosawa, Saitama 351-01, Japan Independent

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models JMLR Workshop and Conference Proceedings 6:17 164 NIPS 28 workshop on causality Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University

More information

Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA

Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA with Hiroshi Morioka Dept of Computer Science University of Helsinki, Finland Facebook AI Summit, 13th June 2016 Abstract

More information

Information Theoretical Estimators Toolbox

Information Theoretical Estimators Toolbox Journal of Machine Learning Research 15 (2014) 283-287 Submitted 10/12; Revised 9/13; Published 1/14 Information Theoretical Estimators Toolbox Zoltán Szabó Gatsby Computational Neuroscience Unit Centre

More information

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models Kun Zhang Dept of Computer Science and HIIT University of Helsinki 14 Helsinki, Finland kun.zhang@cs.helsinki.fi Aapo Hyvärinen

More information

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II

Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts I-II Gatsby Unit University College London 27 Feb 2017 Outline Part I: Theory of ICA Definition and difference

More information

Robust Laplacian Eigenmaps Using Global Information

Robust Laplacian Eigenmaps Using Global Information Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-9-) Robust Laplacian Eigenmaps Using Global Information Shounak Roychowdhury ECE University of Texas at Austin, Austin, TX

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

CIFAR Lectures: Non-Gaussian statistics and natural images

CIFAR Lectures: Non-Gaussian statistics and natural images CIFAR Lectures: Non-Gaussian statistics and natural images Dept of Computer Science University of Helsinki, Finland Outline Part I: Theory of ICA Definition and difference to PCA Importance of non-gaussianity

More information

ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA

ICA [6] ICA) [7, 8] ICA ICA ICA [9, 10] J-F. Cardoso. [13] Matlab ICA. Comon[3], Amari & Cardoso[4] ICA ICA 16 1 (Independent Component Analysis: ICA) 198 9 ICA ICA ICA 1 ICA 198 Jutten Herault Comon[3], Amari & Cardoso[4] ICA Comon (PCA) projection persuit projection persuit ICA ICA ICA 1 [1] [] ICA ICA EEG

More information

Recursive Generalized Eigendecomposition for Independent Component Analysis

Recursive Generalized Eigendecomposition for Independent Component Analysis Recursive Generalized Eigendecomposition for Independent Component Analysis Umut Ozertem 1, Deniz Erdogmus 1,, ian Lan 1 CSEE Department, OGI, Oregon Health & Science University, Portland, OR, USA. {ozertemu,deniz}@csee.ogi.edu

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Blind Source Separation (BSS) and Independent Componen Analysis (ICA) Massoud BABAIE-ZADEH Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39 Outline Part I Part II Introduction

More information

Blind Machine Separation Te-Won Lee

Blind Machine Separation Te-Won Lee Blind Machine Separation Te-Won Lee University of California, San Diego Institute for Neural Computation Blind Machine Separation Problem we want to solve: Single microphone blind source separation & deconvolution

More information

Separation Principles in Independent Process Analysis

Separation Principles in Independent Process Analysis Separation Principles in Independent Process Analysis Zoltán Szabó Ph.D. Thesis Eötvös Loránd University Faculty of Informatics Department of Information Systems Supervisor: Prof. habil. András L rincz

More information

Independent Component Analysis (ICA)

Independent Component Analysis (ICA) Independent Component Analysis (ICA) Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Non-Euclidean Independent Component Analysis and Oja's Learning

Non-Euclidean Independent Component Analysis and Oja's Learning Non-Euclidean Independent Component Analysis and Oja's Learning M. Lange 1, M. Biehl 2, and T. Villmann 1 1- University of Appl. Sciences Mittweida - Dept. of Mathematics Mittweida, Saxonia - Germany 2-

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata ' / PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE Noboru Murata Waseda University Department of Electrical Electronics and Computer Engineering 3--

More information

Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel)

Diffeomorphic Warping. Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) Diffeomorphic Warping Ben Recht August 17, 2006 Joint work with Ali Rahimi (Intel) What Manifold Learning Isn t Common features of Manifold Learning Algorithms: 1-1 charting Dense sampling Geometric Assumptions

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

A two-layer ICA-like model estimated by Score Matching

A two-layer ICA-like model estimated by Score Matching A two-layer ICA-like model estimated by Score Matching Urs Köster and Aapo Hyvärinen University of Helsinki and Helsinki Institute for Information Technology Abstract. Capturing regularities in high-dimensional

More information

FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS

FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS FINDING CLUSTERS IN INDEPENDENT COMPONENT ANALYSIS Francis R. Bach Computer Science Division University of California Berkeley, CA 94720, USA fbach@cs.berkeley.edu Michael I. Jordan Computer Science Division

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

MTTS1 Dimensionality Reduction and Visualization Spring 2014 Jaakko Peltonen

MTTS1 Dimensionality Reduction and Visualization Spring 2014 Jaakko Peltonen MTTS1 Dimensionality Reduction and Visualization Spring 2014 Jaakko Peltonen Lecture 3: Linear feature extraction Feature extraction feature extraction: (more general) transform the original to (k < d).

More information

Group-Structured and Independent Subspace Based Dictionary Learning

Group-Structured and Independent Subspace Based Dictionary Learning Group-Structured and Independent Subspace Based Dictionary Learning Zoltán Szabó Eötvös Loránd University Supervisor: András Lőrincz Senior Researcher, CSc Ph.D. School of Mathematics Miklós Laczkovich

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Estimation of linear non-gaussian acyclic models for latent factors

Estimation of linear non-gaussian acyclic models for latent factors Estimation of linear non-gaussian acyclic models for latent factors Shohei Shimizu a Patrik O. Hoyer b Aapo Hyvärinen b,c a The Institute of Scientific and Industrial Research, Osaka University Mihogaoka

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Introduction Consider a zero mean random vector R n with autocorrelation matri R = E( T ). R has eigenvectors q(1),,q(n) and associated eigenvalues λ(1) λ(n). Let Q = [ q(1)

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

Biomedical signal processing application of optimization methods for machine learning problems

Biomedical signal processing application of optimization methods for machine learning problems Biomedical signal processing application of optimization methods for machine learning problems Fabian J. Theis Computational Modeling in Biology Institute of Bioinformatics and Systems Biology Helmholtz

More information

Collaborative Filtering via Group-Structured Dictionary Learning

Collaborative Filtering via Group-Structured Dictionary Learning Collaborative Filtering via Group-Structured Dictionary Learning Zoltán Szabó 1, Barnabás Póczos 2, and András Lőrincz 1 1 Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Tree-dependent Component Analysis

Tree-dependent Component Analysis Tree-dependent Component Analysis Francis R. Bach Computer Science Division University of California Berkeley, CA 94720, USA fbach@cs.berkeley.edu Abstract We present a generalization of independent component

More information

Tutorial on Blind Source Separation and Independent Component Analysis

Tutorial on Blind Source Separation and Independent Component Analysis Tutorial on Blind Source Separation and Independent Component Analysis Lucas Parra Adaptive Image & Signal Processing Group Sarnoff Corporation February 09, 2002 Linear Mixtures... problem statement...

More information

Independent Component Analysis of Incomplete Data

Independent Component Analysis of Incomplete Data Independent Component Analysis of Incomplete Data Max Welling Markus Weber California Institute of Technology 136-93 Pasadena, CA 91125 fwelling,rmwg@vision.caltech.edu Keywords: EM, Missing Data, ICA

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

VARIABLE SELECTION AND INDEPENDENT COMPONENT

VARIABLE SELECTION AND INDEPENDENT COMPONENT VARIABLE SELECTION AND INDEPENDENT COMPONENT ANALYSIS, PLUS TWO ADVERTS Richard Samworth University of Cambridge Joint work with Rajen Shah and Ming Yuan My core research interests A broad range of methodological

More information

Machine learning strategies for fmri analysis

Machine learning strategies for fmri analysis Machine learning strategies for fmri analysis DTU Informatics Technical University of Denmark Co-workers: Morten Mørup, Kristoffer Madsen, Peter Mondrup, Daniel Jacobsen, Stephen Strother,. OUTLINE Do

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information

Metric Learning. 16 th Feb 2017 Rahul Dey Anurag Chowdhury

Metric Learning. 16 th Feb 2017 Rahul Dey Anurag Chowdhury Metric Learning 16 th Feb 2017 Rahul Dey Anurag Chowdhury 1 Presentation based on Bellet, Aurélien, Amaury Habrard, and Marc Sebban. "A survey on metric learning for feature vectors and structured data."

More information

Feature Extraction with Weighted Samples Based on Independent Component Analysis

Feature Extraction with Weighted Samples Based on Independent Component Analysis Feature Extraction with Weighted Samples Based on Independent Component Analysis Nojun Kwak Samsung Electronics, Suwon P.O. Box 105, Suwon-Si, Gyeonggi-Do, KOREA 442-742, nojunk@ieee.org, WWW home page:

More information

Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego

Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego Email: brao@ucsdedu References 1 Hyvarinen, A, Karhunen, J, & Oja, E (2004) Independent component analysis (Vol 46)

More information

Independent Component Analysis

Independent Component Analysis Independent Component Analysis James V. Stone November 4, 24 Sheffield University, Sheffield, UK Keywords: independent component analysis, independence, blind source separation, projection pursuit, complexity

More information

Natural Image Statistics

Natural Image Statistics Natural Image Statistics A probabilistic approach to modelling early visual processing in the cortex Dept of Computer Science Early visual processing LGN V1 retina From the eye to the primary visual cortex

More information

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method

Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Using Kernel PCA for Initialisation of Variational Bayesian Nonlinear Blind Source Separation Method Antti Honkela 1, Stefan Harmeling 2, Leo Lundqvist 1, and Harri Valpola 1 1 Helsinki University of Technology,

More information

ICA. Independent Component Analysis. Zakariás Mátyás

ICA. Independent Component Analysis. Zakariás Mátyás ICA Independent Component Analysis Zakariás Mátyás Contents Definitions Introduction History Algorithms Code Uses of ICA Definitions ICA Miture Separation Signals typical signals Multivariate statistics

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Distribution Regression: A Simple Technique with Minimax-optimal Guarantee

Distribution Regression: A Simple Technique with Minimax-optimal Guarantee Distribution Regression: A Simple Technique with Minimax-optimal Guarantee (CMAP, École Polytechnique) Joint work with Bharath K. Sriperumbudur (Department of Statistics, PSU), Barnabás Póczos (ML Department,

More information

Dimensionality Reduction AShortTutorial

Dimensionality Reduction AShortTutorial Dimensionality Reduction AShortTutorial Ali Ghodsi Department of Statistics and Actuarial Science University of Waterloo Waterloo, Ontario, Canada, 2006 c Ali Ghodsi, 2006 Contents 1 An Introduction to

More information

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Olga Kouropteva, Oleg Okun, Matti Pietikäinen Machine Vision Group, Infotech Oulu and

More information

(Non-linear) dimensionality reduction. Department of Computer Science, Czech Technical University in Prague

(Non-linear) dimensionality reduction. Department of Computer Science, Czech Technical University in Prague (Non-linear) dimensionality reduction Jiří Kléma Department of Computer Science, Czech Technical University in Prague http://cw.felk.cvut.cz/wiki/courses/a4m33sad/start poutline motivation, task definition,

More information

Unsupervised dimensionality reduction

Unsupervised dimensionality reduction Unsupervised dimensionality reduction Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 Guillaume Obozinski Unsupervised dimensionality reduction 1/30 Outline 1 PCA 2 Kernel PCA 3 Multidimensional

More information

A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS

A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS Yi-Ou Li and Tülay Adalı University of Maryland Baltimore County Baltimore, MD Vince D. Calhoun The MIND Institute

More information

One-unit Learning Rules for Independent Component Analysis

One-unit Learning Rules for Independent Component Analysis One-unit Learning Rules for Independent Component Analysis Aapo Hyvarinen and Erkki Oja Helsinki University of Technology Laboratory of Computer and Information Science Rakentajanaukio 2 C, FIN-02150 Espoo,

More information

Kernel Learning via Random Fourier Representations

Kernel Learning via Random Fourier Representations Kernel Learning via Random Fourier Representations L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Module 5: Machine Learning L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Kernel Learning via Random

More information

Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets.

Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. R.R. Coifman, S. Lafon, MM Mathematics Department Program of Applied Mathematics. Yale University Motivations The main

More information

Unsupervised Kernel Dimension Reduction Supplemental Material

Unsupervised Kernel Dimension Reduction Supplemental Material Unsupervised Kernel Dimension Reduction Supplemental Material Meihong Wang Dept. of Computer Science U. of Southern California Los Angeles, CA meihongw@usc.edu Fei Sha Dept. of Computer Science U. of Southern

More information

GAUSSIAN PROCESS TRANSFORMS

GAUSSIAN PROCESS TRANSFORMS GAUSSIAN PROCESS TRANSFORMS Philip A. Chou Ricardo L. de Queiroz Microsoft Research, Redmond, WA, USA pachou@microsoft.com) Computer Science Department, Universidade de Brasilia, Brasilia, Brazil queiroz@ieee.org)

More information

Graph Metrics and Dimension Reduction

Graph Metrics and Dimension Reduction Graph Metrics and Dimension Reduction Minh Tang 1 Michael Trosset 2 1 Applied Mathematics and Statistics The Johns Hopkins University 2 Department of Statistics Indiana University, Bloomington November

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Hilbert Schmidt Independence Criterion

Hilbert Schmidt Independence Criterion Hilbert Schmidt Independence Criterion Thanks to Arthur Gretton, Le Song, Bernhard Schölkopf, Olivier Bousquet Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

Blind separation of instantaneous mixtures of dependent sources

Blind separation of instantaneous mixtures of dependent sources Blind separation of instantaneous mixtures of dependent sources Marc Castella and Pierre Comon GET/INT, UMR-CNRS 7, 9 rue Charles Fourier, 9 Évry Cedex, France marc.castella@int-evry.fr, CNRS, I3S, UMR

More information

FuncICA for time series pattern discovery

FuncICA for time series pattern discovery FuncICA for time series pattern discovery Nishant Mehta and Alexander Gray Georgia Institute of Technology The problem Given a set of inherently continuous time series (e.g. EEG) Find a set of patterns

More information

Independent Component Analysis

Independent Component Analysis A Short Introduction to Independent Component Analysis Aapo Hyvärinen Helsinki Institute for Information Technology and Depts of Computer Science and Psychology University of Helsinki Problem of blind

More information

Statistical Convergence of Kernel CCA

Statistical Convergence of Kernel CCA Statistical Convergence of Kernel CCA Kenji Fukumizu Institute of Statistical Mathematics Tokyo 106-8569 Japan fukumizu@ism.ac.jp Francis R. Bach Centre de Morphologie Mathematique Ecole des Mines de Paris,

More information

Kernel Measures of Conditional Dependence

Kernel Measures of Conditional Dependence Kernel Measures of Conditional Dependence Kenji Fukumizu Institute of Statistical Mathematics 4-6-7 Minami-Azabu, Minato-ku Tokyo 6-8569 Japan fukumizu@ism.ac.jp Arthur Gretton Max-Planck Institute for

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

Semi-Blind approaches to source separation: introduction to the special session

Semi-Blind approaches to source separation: introduction to the special session Semi-Blind approaches to source separation: introduction to the special session Massoud BABAIE-ZADEH 1 Christian JUTTEN 2 1- Sharif University of Technology, Tehran, IRAN 2- Laboratory of Images and Signals

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection

COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection COMP 551 Applied Machine Learning Lecture 13: Dimension reduction and feature selection Instructor: Herke van Hoof (herke.vanhoof@cs.mcgill.ca) Based on slides by:, Jackie Chi Kit Cheung Class web page:

More information

Research on Feature Extraction Method for Handwritten Chinese Character Recognition Based on Kernel Independent Component Analysis

Research on Feature Extraction Method for Handwritten Chinese Character Recognition Based on Kernel Independent Component Analysis Research Journal of Applied Sciences, Engineering and echnology 6(7): 183-187, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 013 Submitted: November 13, 01 Accepted: January 11,

More information

Distribution Regression

Distribution Regression Zoltán Szabó (École Polytechnique) Joint work with Bharath K. Sriperumbudur (Department of Statistics, PSU), Barnabás Póczos (ML Department, CMU), Arthur Gretton (Gatsby Unit, UCL) Dagstuhl Seminar 16481

More information

Linear and Non-Linear Dimensionality Reduction

Linear and Non-Linear Dimensionality Reduction Linear and Non-Linear Dimensionality Reduction Alexander Schulz aschulz(at)techfak.uni-bielefeld.de University of Pisa, Pisa 4.5.215 and 7.5.215 Overview Dimensionality Reduction Motivation Linear Projections

More information