Parallel DEVS. An Introduction Using PythonPDEVS. Yentl Van Tendeloo, Hans Vangheluwe

Size: px
Start display at page:

Download "Parallel DEVS. An Introduction Using PythonPDEVS. Yentl Van Tendeloo, Hans Vangheluwe"

Transcription

1 Parallel DEVS An Introduction Using PythonPDEVS Yentl Van Tendeloo, Hans Vangheluwe

2 Introduction

3

4

5 Cellular Automata Process Interaction Discrete Event State Charts Petri Nets Activity Scanning Discrete Event Finite State Automata Event Scheduling Discrete Event DEVS

6

7 Experimentation

8 X t S t Y t

9 simple_experiment.py from pypdevs.simulator import Simulator from mymodel import MyModel model = MyModel() simulator = Simulator(model) simulator.setverbose() simulator.simulate()

10 Atomic Models

11 X Red 60s t S Yellow 3s t Y Green 57s t

12 Red 60s Yellow 3s Green 57s M = S, δ int, ta S : set of sequential states S = {red, yellow, green} δ int : S S δ int = {red green, green yellow, yellow red} ta : S R 0,+ ta = {red 60, green 57, yellow 3}

13 S = {red, yellow, green} δ int = { red green, green yellow, yellow red} ta = {red 60, green 57, yellow 3} atomic_int.py from pypdevs.devs import * class TrafficLightAutonomous(AtomicDEVS): def init (self): AtomicDEVS. init (self, Light ) self.state = red def inttransition(self): state = self.state return { red : green, yellow : red, green : yellow }[state] time = 0 current_state = green while True: time += ta(current_state) current_state = δ int (current_state) def timeadvance(self): state = self.state return { red : 60, yellow : 3, green : 57}[state]

14 X Red 60s!red t S Yellow 3s!green!yellow t Y Green 57s t

15 Red 60s!red Yellow 3s Green 57s!yellow!green M = Y, S, δ int, λ, ta S = {red, yellow, green} δ int = { red green, green yellow, yellow red} ta = {red 60, green 57, yellow 3} Y : set of output events Y = { red, green, yellow } λ : S Y b λ = { green [ yellow ], yellow [ red ], red [ green ]}

16 Y = { red, green, yellow } λ = {green yellow, yellow red, red green } atomic_out.py from pypdevs.devs import * class TrafficLightWithOutput(AtomicDEVS): def init (self): AtomicDEVS. init (self, light ) self.state = red self.observe = self.addoutport( observer ) time = 0 current_state = green while True: time += ta(current_state) output(λ(current_state)) current_state = δ int (current_state) def outputfnc(self): state = self.state if state == red : v = green elif state == yellow : v = red elif state == green : v = yellow return {self.observe: [v]}

17 X?manual Red 60s?auto!red S t Manual s Yellow 3s!green?manual!yellow Y t?manual Green 57s t

18 δ ext M = X, Y, S, δ int,, λ, ta?manual Manual s?auto?manual Red 60s!red Yellow 3s!green Y = { red, green, yellow } S = {red, yellow, green, manual} δ int = {red green, green yellow, yellow red} λ = {green yellow, yellow red, red green } ta = {red 60, green 57, yellow 3, manual }!yellow X : set of input events X = { auto, manual }?manual Green 57s δ ext : Q X b S δ ext = {( (*, *), [ manual ]) manual, ( ( manual, *), [ auto ]) red }

19 X = { auto, manual } δ ext = {( (*, *), [ manual ]) manual, ( ( manual, *), [ auto ]) red } time = 0 cur_state = red while True: next_time = time + ta(cur_state) if time_next_ev <= next_time: cur_state = δ ext ((cur_state, e), next_ev) time = time_next_ev else: time = next_time output(λ(current_state)) current_state = δ_int(current_state) atomic_ext.py from pypdevs.devs import * class TrafficLight(AtomicDEVS): def init (self): AtomicDEVS. init (self, light ) self.state = red self.observe = self.addoutport( observer ) self.interrupt = self.addinport( interrupt ) def exttransition(self, inputs): inp = inputs[self.interrupt][0] if inp == manual : return manual elif inp == auto : if self.state == manual : return red

20 M = X, Y, S, δ int, δ ext,, λ, ta X : set of input events Y : set of output events S : set of sequential states δ int : S S δ ext : Q X b S λ : S Y b ta : S R 0,+ δ conf : S X b S δ conf

21 atomic_conf.py from pypdevs.devs import * class TrafficLight(AtomicDEVS): def conftransition(self, inputs): self.elapsed = 0.0 self.state = self.inttransition() self.state = self.exttransition(inputs) return self.state

22 Coupled Models

23 Work 360s!manual!auto Idle 20s

24 ?manual Red 60s Work 360s?auto!red!manual!auto Manual s?manual Yellow 3s!green Idle 20s!yellow?manual Green 57s M = X, Y, D, M i, I i, Z i,j

25 trafficlight_system.py from pypdevs.devs import * from trafficlight import TrafficLight from policeman import Policeman class TrafficLightSystem(CoupledDEVS): def init (self): CoupledDEVS. init (self, system ) self.light = self.addsubmodel(trafficlight()) self.police = self.addsubmodel(policeman()) self.connectports(self.police.out, self.light.interrupt)

26

27 City House Road Traffic light Road Commerce Generator Queue Queue Queue Queue Processor Processor Collector Queue Queue

28

29 Root coordinator (done, t) (done, t) (*, t) Coordinator Coupled DEVS (*, t) (x, t) (*, t) (y, t) Simulator (done, t) (done, t) Simulator Atomic DEVS Atomic DEVS

30 Applications

31

32

33

34

35 Conclusions

36 Conclusions (Y, t) (X, t) (*, t) (done, t) Atomic DEVS Coupled DEVS Closure under coupling Abstract Simulator?manual?auto R 60s!red Work 360s M s Y 3s!green!manual!auto?manual!yellow Idle 20s?manual G 57s

37

38 Formalisms Standardization Performance Model libraries Applications Dynamic Structure Tools Algorithms Example Real-time Activity Languages Cell DEVS Distribution Reusable Verification Interoperable Parallel

INTRODUCTION TO PARALLEL DEVS MODELLING AND SIMULATION

INTRODUCTION TO PARALLEL DEVS MODELLING AND SIMULATION INTRODUCTION TO PARALLEL DEVS MODELLING AND SIMULATION Yentl Van Tendeloo University of Antwerp, Belgium Yentl.VanTendeloo@uantwerpen.be Hans Vangheluwe University of Antwerp, Belgium Flanders Make, Belgium

More information

MDE: Modelling the DEVS formalism

MDE: Modelling the DEVS formalism MDE: Modelling the DEVS formalism Yentl Van Tendeloo Yentl.VanTendeloo@student.ua.ac.be January 24, 2013 1 / 25 The problem: Difficult to comprehend c l a s s Root ( CoupledDEVS ) : d e f i n i t ( s e

More information

The Discrete EVent System specification (DEVS) formalism

The Discrete EVent System specification (DEVS) formalism The Discrete EVent System specification (DEVS) formalism Hans Vangheluwe The DEVS formalism was conceived by Zeigler [Zei84a, Zei84b] to provide a rigourous common basis for discrete-event modelling and

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

The Cellular Automata Formalism and its Relationship to DEVS

The Cellular Automata Formalism and its Relationship to DEVS The Cellular Automata Formalism and its Relationship to DEVS Hans L.M. Vangheluwe and Ghislain C. Vansteenkiste School of Computer Science McGill University, Montréal, Québec, Canada e-mail: hv@cs.mcgill.ca

More information

Causal Block Diagrams: Compiler to LaTeX and DEVS

Causal Block Diagrams: Compiler to LaTeX and DEVS Causal Block Diagrams: Compiler to LaTeX and DEVS Nicolas Demarbaix University of Antwerp Antwerp, Belgium nicolas.demarbaix@student.uantwerpen.be Abstract In this report I present the results of my project

More information

Implementing Parallel Cell-DEVS

Implementing Parallel Cell-DEVS Implementing Parallel Cell-DEVS Alejandro Troccoli Gabriel Wainer Departamento de Computación. Department of Systems and Computing Pabellón I. Ciudad Universitaria Engineering, Carleton University. 1125

More information

Computational Models: Class 1

Computational Models: Class 1 Computational Models: Class 1 Benny Chor School of Computer Science Tel Aviv University October 19, 2015 Based on slides by Maurice Herlihy, Brown University, and modifications by Iftach Haitner and Yishay

More information

Lecture 4 Event Systems

Lecture 4 Event Systems Lecture 4 Event Systems This lecture is based on work done with Mark Bickford. Marktoberdorf Summer School, 2003 Formal Methods One of the major research challenges faced by computer science is providing

More information

Logic Model Checking

Logic Model Checking Logic Model Checking Lecture Notes 10:18 Caltech 101b.2 January-March 2004 Course Text: The Spin Model Checker: Primer and Reference Manual Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs. the assignment

More information

Two Way Deterministic Finite Automata

Two Way Deterministic Finite Automata Two Way Deterministic Finite Automata Jagvir Singh and Pavan Kumar Akulakrishna Indian Institute of Science November 29, 2013 Jagvir Singh and Pavan Kumar Akulakrishna (IISC) 2DFA November 29, 2013 1 /

More information

A Framework for. Security Analysis. with Team Automata

A Framework for. Security Analysis. with Team Automata A Framework for Security Analysis with Team Automata Marinella Petrocchi Istituto di Informatica e Telematica National Research Council IIT-CNR Pisa, Italy Tuesday 8 June 2004 DIMACS with Maurice ter Beek

More information

Overview. 1 Lecture 1: Introduction. 2 Lecture 2: Message Sequence Charts. Joost-Pieter Katoen Theoretical Foundations of the UML 1/32

Overview. 1 Lecture 1: Introduction. 2 Lecture 2: Message Sequence Charts. Joost-Pieter Katoen Theoretical Foundations of the UML 1/32 Overview 1 Lecture 1: Introduction 2 Lecture 2: Message Sequence Charts Joost-Pieter Katoen Theoretical Foundations of the UML 1/32 Theoretical Foundations of the UML Lecture 1: Introduction Joost-Pieter

More information

Formal Methods in Software Engineering

Formal Methods in Software Engineering Formal Methods in Software Engineering Modeling Prof. Dr. Joel Greenyer October 21, 2014 Organizational Issues Tutorial dates: I will offer two tutorial dates Tuesdays 15:00-16:00 in A310 (before the lecture,

More information

Supervisory Control: Advanced Theory and Applications

Supervisory Control: Advanced Theory and Applications Supervisory Control: Advanced Theory and Applications Dr Rong Su S1-B1b-59, School of EEE Nanyang Technological University Tel: +65 6790-6042, Email: rsu@ntu.edu.sg EE6226, Discrete Event Systems 1 Introduction

More information

Improved cellular models with parallel Cell-DEVS

Improved cellular models with parallel Cell-DEVS Improved cellular models with parallel Cell-DEVS Gabriel A. Wainer Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón I - Ciudad Universitaria Buenos

More information

Technical report bds:00-21

Technical report bds:00-21 Delft University of Technology Fac. of Information Technology and Systems Control Systems Engineering Technical report bds:00-21 Stability Analysis of Discrete Event Systems (by K.M. Passino and K.L. Burgess,

More information

Software Verification with Abstraction-Based Methods

Software Verification with Abstraction-Based Methods Software Verification with Abstraction-Based Methods Ákos Hajdu PhD student Department of Measurement and Information Systems, Budapest University of Technology and Economics MTA-BME Lendület Cyber-Physical

More information

Design and Analysis of Distributed Interacting Systems

Design and Analysis of Distributed Interacting Systems Design and Analysis of Distributed Interacting Systems Organization Prof. Dr. Joel Greenyer April 11, 2013 Organization Lecture: Thursdays, 10:15 11:45, F 128 Tutorial: Thursdays, 13:00 13:45, G 323 first

More information

Lecture 9: DC Implementables II

Lecture 9: DC Implementables II Real-Time Systems Lecture 9: DC Implementables II 2017-11-28 Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany 9 2017-11-28 main Content Correctness Proof for the Gas Burner Implementables

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Monotonic Abstraction in Parameterized Verification

Monotonic Abstraction in Parameterized Verification Monotonic Abstraction in Parameterized Verification Parosh Aziz Abdulla 1 Department of Information Technology Uppsala University Sweden Giorgio Delzanno 2 Dipartimento Informatica e Scienze dell Informazione

More information

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr Semantic Equivalences and the Verification of Infinite-State Systems Richard Mayr Department of Computer Science Albert-Ludwigs-University Freiburg Germany Verification of Infinite-State Systems 1 c 2004

More information

A Timed CTL Model Checker for Real-Time Maude

A Timed CTL Model Checker for Real-Time Maude A Timed CTL Model Checker for Real-Time Maude Daniela Lepri 1, Erika Ábrahám 2, and Peter Csaba Ölveczky 1 1 University of Oslo and 2 RWTH Aachen Real-Time Maude Extends Maude to real-time systems Object-oriented

More information

Discrete Event Systems Exam

Discrete Event Systems Exam Computer Engineering and Networks Laboratory TEC, NSG, DISCO HS 2016 Prof. L. Thiele, Prof. L. Vanbever, Prof. R. Wattenhofer Discrete Event Systems Exam Friday, 3 rd February 2017, 14:00 16:00. Do not

More information

A Formal Framework for Stochastic DEVS Modeling and Simulation

A Formal Framework for Stochastic DEVS Modeling and Simulation A Formal Framework for Stochastic DEVS Modeling and Simulation Rodrigo Castro, Ernesto Kofman Universidad Nacional de Rosario rodrigocastro@ieee.org; kofman@fceia.unr.edu.ar Gabriel Wainer Carleton University

More information

6.01: Introduction to EECS I. Optimizing a Search

6.01: Introduction to EECS I. Optimizing a Search 6.0: Introduction to CS I Optimizing a Search May 3, 0 Nano-Quiz Makeups Wednesday, May 4, 6-pm, 34-50. everyone can makeup/retake NQ everyone can makeup/retake two additional NQs you can makeup/retake

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

Marwan Burelle. Parallel and Concurrent Programming. Introduction and Foundation

Marwan Burelle.  Parallel and Concurrent Programming. Introduction and Foundation and and marwan.burelle@lse.epita.fr http://wiki-prog.kh405.net Outline 1 2 and 3 and Evolutions and Next evolutions in processor tends more on more on growing of cores number GPU and similar extensions

More information

DYNAMIC STRUCTURE CELLULAR AUTOMATA IN A FIRE SPREADING APPLICATION

DYNAMIC STRUCTURE CELLULAR AUTOMATA IN A FIRE SPREADING APPLICATION DYNAMIC STRUCTURE CELLULAR AUTOMATA IN A FIRE SPREADING APPLICATION Alexandre Muzy, Eric Innocenti, Antoine Aïello, Jean-François Santucci, Paul-Antoine Santoni University of Corsica SPE UMR CNRS 6134

More information

2. Elements of the Theory of Computation, Lewis and Papadimitrou,

2. Elements of the Theory of Computation, Lewis and Papadimitrou, Introduction Finite Automata DFA, regular languages Nondeterminism, NFA, subset construction Regular Epressions Synta, Semantics Relationship to regular languages Properties of regular languages Pumping

More information

Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 07 - Introduction to nets 1 Object Overview of the basic concepts of

More information

Stochastic models in product form: the (E)RCAT methodology

Stochastic models in product form: the (E)RCAT methodology Stochastic models in product form: the (E)RCAT methodology 1 Maria Grazia Vigliotti 2 1 Dipartimento di Informatica Università Ca Foscari di Venezia 2 Department of Computing Imperial College London Second

More information

CS1110. Lecture 20: Sequence algorithms. Announcements

CS1110. Lecture 20: Sequence algorithms. Announcements CS1110 Lecture 20: Sequence algorithms Announcements Upcoming schedule Today (April 4) A6 out: A4 due tomorrow. Fix to memotable printing posted; see Piazza @303. Tu Apr 9: lecture on searching &sorting

More information

VECTOR CELLULAR AUTOMATA BASED GEOGRAPHICAL ENTITY

VECTOR CELLULAR AUTOMATA BASED GEOGRAPHICAL ENTITY Geoinformatics 2004 Proc. 12th Int. Conf. on Geoinformatics Geospatial Information Research: Bridging the Pacific and Atlantic University of Gävle, Sweden, 7-9 June 2004 VECTOR CELLULAR AUTOMATA BASED

More information

A Formal Framework for Stochastic Discrete Event System Specification Modeling and Simulation

A Formal Framework for Stochastic Discrete Event System Specification Modeling and Simulation A Formal Framework for Stochastic Discrete Event System Specification Modeling and Simulation Rodrigo Castro Ernesto Kofman Universidad Nacional de Rosario, Riobamba 245 bis, Rosario 2000, Santa Fe, Argentina

More information

A Tighter Analysis of Work Stealing

A Tighter Analysis of Work Stealing A Tighter Analysis of Work Stealing Marc Tchiboukdjian Nicolas Gast Denis Trystram Jean-Louis Roch Julien Bernard Laboratoire d Informatique de Grenoble INRIA Marc Tchiboukdjian A Tighter Analysis of Work

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Review of CFG, CFL, ambiguity What is the language generated by the CFG below: G 1 = ({S,T 1,T 2 }, {0,1,2}, { S

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

Design of Distributed Systems Melinda Tóth, Zoltán Horváth

Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Publication date 2014 Copyright 2014 Melinda Tóth, Zoltán Horváth Supported by TÁMOP-412A/1-11/1-2011-0052

More information

Sleptsov Net Computing

Sleptsov Net Computing International Humanitarian University http://mgu.edu.ua Sleptsov Net Computing Dmitry Zaitsev http://member.acm.org/~daze Write Programs or Draw Programs? Flow charts Process Charts, Frank and Lillian

More information

Lecture 4. Finite Automata and Safe State Machines (SSM) Daniel Kästner AbsInt GmbH 2012

Lecture 4. Finite Automata and Safe State Machines (SSM) Daniel Kästner AbsInt GmbH 2012 Lecture 4 Finite Automata and Safe State Machines (SSM) Daniel Kästner AbsInt GmbH 2012 Initialization Analysis 2 Is this node well initialized? node init1() returns (out: int) let out = 1 + pre( 1 ->

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Methods for the specification and verification of business processes MPB (6 cfu, 295AA)

Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Methods for the specification and verification of business processes MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 07 - Introduction to nets 1 Object Overview of the basic concepts of

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Regular Model Checking and Verification of Cellular Automata

Regular Model Checking and Verification of Cellular Automata Aalborg University Master Thesis Regular Model Checking and Verification of Cellular Automata Authors: Joakim Byg Kenneth Yrke Jørgensen {jokke,kyrke}@cs.aau.dk Department of Computer Science Dat 6 June

More information

Composition of product-form Generalized Stochastic Petri Nets: a modular approach

Composition of product-form Generalized Stochastic Petri Nets: a modular approach Composition of product-form Generalized Stochastic Petri Nets: a modular approach Università Ca Foscari di Venezia Dipartimento di Informatica Italy October 2009 Markov process: steady state analysis Problems

More information

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes

ADVANCED ROBOTICS. PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes ADVANCED ROBOTICS PLAN REPRESENTATION Generalized Stochastic Petri nets and Markov Decision Processes Pedro U. Lima Instituto Superior Técnico/Instituto de Sistemas e Robótica September 2009 Reviewed April

More information

Analysing the microrna-17-92/myc/e2f/rb Compound Toggle Switch by Theorem Proving

Analysing the microrna-17-92/myc/e2f/rb Compound Toggle Switch by Theorem Proving Analysing the microrna-17-92/myc/e2f/rb Compound Toggle Switch by Theorem Proving Giampaolo Bella and Pietro Liò @ Catania and Cambridge Under the auspices of British Council's grant ``Computer-assisted

More information

CS477 Formal Software Dev Methods

CS477 Formal Software Dev Methods CS477 Formal Software Dev Methods Elsa L Gunter 2112 SC, UIUC egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul Agha

More information

Business Processes Modelling MPB (6 cfu, 295AA)

Business Processes Modelling MPB (6 cfu, 295AA) Business Processes Modelling MPB (6 cfu, 295AA) Roberto Bruni http://www.di.unipi.it/~bruni 07 - Introduction to nets!1 Object Overview of the basic concepts of Petri nets Free Choice Nets (book, optional

More information

Proofs of Correctness: Introduction to Axiomatic Verification

Proofs of Correctness: Introduction to Axiomatic Verification Proofs of Correctness: Introduction to Axiomatic Verification Introduction Weak correctness predicate Assignment statements Sequencing Selection statements Iteration 1 Introduction What is Axiomatic Verification?

More information

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010 Stochastic Almost none of the theory December 8, 2010 Outline 1 2 Introduction A Petri net (PN) is something like a generalized automata. A Stochastic Petri Net () a stochastic extension to Petri nets,

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) CS/ECE 374: Algorithms & Models of Computation, Fall 28 Deterministic Finite Automata (DFAs) Lecture 3 September 4, 28 Chandra Chekuri (UIUC) CS/ECE 374 Fall 28 / 33 Part I DFA Introduction Chandra Chekuri

More information

Stéphane Lafortune. August 2006

Stéphane Lafortune. August 2006 UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE LECTURE NOTES FOR EECS 661 CHAPTER 1: INTRODUCTION TO DISCRETE EVENT SYSTEMS Stéphane Lafortune August 2006 References for

More information

Simulation of Spiking Neural P Systems using Pnet Lab

Simulation of Spiking Neural P Systems using Pnet Lab Simulation of Spiking Neural P Systems using Pnet Lab Venkata Padmavati Metta Bhilai Institute of Technology, Durg vmetta@gmail.com Kamala Krithivasan Indian Institute of Technology, Madras kamala@iitm.ac.in

More information

Timed Automata VINO 2011

Timed Automata VINO 2011 Timed Automata VINO 2011 VeriDis Group - LORIA July 18, 2011 Content 1 Introduction 2 Timed Automata 3 Networks of timed automata Motivation Formalism for modeling and verification of real-time systems.

More information

Special Nodes for Interface

Special Nodes for Interface fi fi Special Nodes for Interface SW on processors Chip-level HW Board-level HW fi fi C code VHDL VHDL code retargetable compilation high-level synthesis SW costs HW costs partitioning (solve ILP) cluster

More information

Sequential Circuits. Circuits with state. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L06-1

Sequential Circuits. Circuits with state. Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L06-1 Sequential Circuits Circuits with state Silvina Hanono Wachman Computer Science & Artificial Intelligence Lab M.I.T. L06-1 Combinational circuits A 0 A 1 A n-1. Sel lg(n) O Mux A B Comparator Result: LT,

More information

Size reduction of multitape automata

Size reduction of multitape automata Literature: Size reduction of multitape automata Hellis Tamm Tamm, H. On minimality and size reduction of one-tape and multitape finite automata. PhD thesis, Department of Computer Science, University

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Part I DFA Introduction Sariel

More information

Discrete-event simulations

Discrete-event simulations Discrete-event simulations Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Why do we need simulations? Step-by-step simulations; Classifications;

More information

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino

Formal Verification Techniques. Riccardo Sisto, Politecnico di Torino Formal Verification Techniques Riccardo Sisto, Politecnico di Torino State exploration State Exploration and Theorem Proving Exhaustive exploration => result is certain (correctness or noncorrectness proof)

More information

Research Statement Christopher Hardin

Research Statement Christopher Hardin Research Statement Christopher Hardin Brief summary of research interests. I am interested in mathematical logic and theoretical computer science. Specifically, I am interested in program logics, particularly

More information

2.1 general items of cellular automata (1)definition of cellular automata. Cellular automata

2.1 general items of cellular automata (1)definition of cellular automata. Cellular automata 2.Cellular Automata automata: golem automatic machine, sequential machine [John von Neuman] Autonomously replicating automata: self-propagating program with local neighborhood rule, discrete system Cellular

More information

Causal Dataflow Analysis for Concurrent Programs

Causal Dataflow Analysis for Concurrent Programs Causal Dataflow Analysis for Concurrent Programs Azadeh Farzan P. Madhusudan Department of Computer Science, University of Illinois at Urbana-Champaign. {afarzan,madhu}@cs.uiuc.edu Abstract. We define

More information

Hierarchical Modeling of Urban Traffic Systems for Multi-Agent Based Simulation

Hierarchical Modeling of Urban Traffic Systems for Multi-Agent Based Simulation Hierarchical Modeling of Urban Traffic Systems for Multi-Agent Based Simulation E. López-Neri, A. Ramírez-Treviño and E. López-Mellado Abstract A hierarchical and modular modeling methodology for specifying

More information

Modelica An Object-Oriented Language for Physical System Modeling

Modelica An Object-Oriented Language for Physical System Modeling Modelica An Object-Oriented Language for Physical System Modeling by Steven Xu Feb 19, 2003 Overview The Modelica design was initiated by Hilding Elmqvist in Sept. 1996 Has been designed by the developers

More information

Regular Expressions and Language Properties

Regular Expressions and Language Properties Regular Expressions and Language Properties Mridul Aanjaneya Stanford University July 3, 2012 Mridul Aanjaneya Automata Theory 1/ 47 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

CS 370. FCFS, SJF and Round Robin. Yashwanth Virupaksha and Abhishek Yeluri

CS 370. FCFS, SJF and Round Robin. Yashwanth Virupaksha and Abhishek Yeluri CS 370 FCFS, SJF and Round Robin Yashwanth Virupaksha and Abhishek Yeluri Homework-4 Review Write a C program to demonstrate the following scheduling algorithms First Come First Serve. (20 pts) Shortest

More information

Real-Time Systems. Lecture 15: The Universality Problem for TBA Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany

Real-Time Systems. Lecture 15: The Universality Problem for TBA Dr. Bernd Westphal. Albert-Ludwigs-Universität Freiburg, Germany Real-Time Systems Lecture 15: The Universality Problem for TBA 2013-06-26 15 2013-06-26 main Dr. Bernd Westphal Albert-Ludwigs-Universität Freiburg, Germany Contents & Goals Last Lecture: Extended Timed

More information

arxiv: v1 [cs.pl] 3 Jul 2017

arxiv: v1 [cs.pl] 3 Jul 2017 Checking Linearizability of Concurrent Priority Queues Ahmed Bouajjani 1, Constantin Enea 1, and Chao Wang 1 1 Institut de Recherche en Informatique Fondamentale, {abou,cenea,wangch}@irif.fr arxiv:1707.00639v1

More information

Software Testing Lecture 7 Property Based Testing. Justin Pearson

Software Testing Lecture 7 Property Based Testing. Justin Pearson Software Testing Lecture 7 Property Based Testing Justin Pearson 2017 1 / 13 When are there enough unit tests? Lets look at a really simple example. import u n i t t e s t def add ( x, y ) : return x+y

More information

Analysis for Dynamic of Analog Circuits by using HSPN

Analysis for Dynamic of Analog Circuits by using HSPN Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 207 Analysis for Dynamic of Analog Circuits by using HSPN MENG ZHANG, SHENGBING

More information

Information Flow Inference for ML

Information Flow Inference for ML POPL 02 INRIA Rocquencourt Projet Cristal Francois.Pottier@inria.fr http://cristal.inria.fr/~fpottier/ Vincent.Simonet@inria.fr http://cristal.inria.fr/~simonet/ Information flow analysis account number

More information

PERFORMANCE OF A CROSSBAR NETWORK USING MARKOV CHAINS

PERFORMANCE OF A CROSSBAR NETWORK USING MARKOV CHAINS PERFORANCE OF A CROSSBAR NETWORK USING ARKOV CHAINS D. BENAZZOUZ 1 A. FARAH 2 1- Laboratoire LSS, FSI, Université of Boumerdes, 5, Algeria 2- AUST, Faculty of Computer Science and Engineering, UAE Phone/fax

More information

An inspection-based compositional approach to the quantitative evaluation of assembly lines

An inspection-based compositional approach to the quantitative evaluation of assembly lines An inspection-based compositional approach to the quantitative evaluation of assembly lines Marco Biagi 1 Laura Carnevali 1 Tommaso Papini 1 Kumiko Tadano 2 Enrico Vicario 1 1 Department of Information

More information

Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions

Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions Andrés Sicard-Ramírez Universidad EAFIT Semester 2018-2 Introduction Equivalences DFA NFA -NFA RE Finite Automata and Regular

More information

Research on Library Queuing Model Based on Data Mining

Research on Library Queuing Model Based on Data Mining The 2018 International Conference of Organizational Innovation Volume 2018 Conference Paper Research on ibrary Queuing Model Based on Data Mining ongjie Sun and Kaijun Yu ibrary of Shanghai University

More information

Spatio-temporal models

Spatio-temporal models Spatio-temporal models Involve a least a three dimensional representation of one or more key attribute variation in planar (X-Y) space and through time. (a 4 th dimension could also be use, like Z for

More information

APPENDIX I: Traffic Forecasting Model and Assumptions

APPENDIX I: Traffic Forecasting Model and Assumptions APPENDIX I: Traffic Forecasting Model and Assumptions Appendix I reports on the assumptions and traffic model specifications that were developed to support the Reaffirmation of the 2040 Long Range Plan.

More information

Cyclic Path Covering Number of Euler Graphs

Cyclic Path Covering Number of Euler Graphs Global Journal of Mathematical Sciences: Theory and Practical. ISSN 0974-3200 Volume 4, Number 4 (2012), pp. 465 473 International Research Publication House http://www.irphouse.com Cyclic Path Covering

More information

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar Büchi Automata and their closure properties - Ajith S and Ankit Kumar Motivation Conventional programs accept input, compute, output result, then terminate Reactive program : not expected to terminate

More information

The Underlying Semantics of Transition Systems

The Underlying Semantics of Transition Systems The Underlying Semantics of Transition Systems J. M. Crawford D. M. Goldschlag Technical Report 17 December 1987 Computational Logic Inc. 1717 W. 6th St. Suite 290 Austin, Texas 78703 (512) 322-9951 1

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Spring 29 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, January 22, 29 L A TEXed: December 27, 28 8:25 Chan, Har-Peled, Hassanieh (UIUC) CS374 Spring

More information

Single-part-type, multiple stage systems

Single-part-type, multiple stage systems MIT 2.853/2.854 Introduction to Manufacturing Systems Single-part-type, multiple stage systems Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Single-stage,

More information

2/5/07 CSE 30341: Operating Systems Principles

2/5/07 CSE 30341: Operating Systems Principles page 1 Shortest-Job-First (SJR) Scheduling Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time Two schemes: nonpreemptive once

More information

Recent results on Timed Systems

Recent results on Timed Systems Recent results on Timed Systems Time Petri Nets and Timed Automata Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS berard@lamsade.dauphine.fr Based on joint work with F. Cassez, S. Haddad, D.

More information

11 Discrete Event Simulation

11 Discrete Event Simulation 11 Discrete Event Simulation Preview This chapter explores a new way of approximating differential equations, replacing the time discretization by a quantization of the state variables. We shall see that

More information

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 4 Greedy Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 4.1 Interval Scheduling Interval Scheduling Interval scheduling. Job j starts at s j and

More information

Slicing Petri Nets. Astrid Rakow. Department für Informatik, Univeristät Oldenburg

Slicing Petri Nets. Astrid Rakow. Department für Informatik, Univeristät Oldenburg Slicing Petri Nets Astrid Rakow Department für Informatik, Univeristät Oldenburg astrid.rakow@informatik.uni-oldenburg.de Abstract. In this paper we introduce the notion of net-slice to describe a subnet

More information

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata

Control Synthesis of Discrete Manufacturing Systems using Timed Finite Automata Control Synthesis of Discrete Manufacturing Systems using Timed Finite utomata JROSLV FOGEL Institute of Informatics Slovak cademy of Sciences ratislav Dúbravská 9, SLOVK REPULIC bstract: - n application

More information

Automata and Formal Languages - CM0081 Algebraic Laws for Regular Expressions

Automata and Formal Languages - CM0081 Algebraic Laws for Regular Expressions Automata and Formal Languages - CM0081 Algebraic Laws for Regular Expressions Andrés Sicard-Ramírez Universidad EAFIT Semester 2017-2 Algebraic Laws for Regular Expressions Definition (Equivalence of regular

More information

On Computational Semantics as a Precise Foundation of an Industrial Toolchain for Analysis and Design of Multi-domain Systems

On Computational Semantics as a Precise Foundation of an Industrial Toolchain for Analysis and Design of Multi-domain Systems On Computational Semantics as a Precise Foundation of an Industrial Toolchain for Analysis and Design of Multi-domain Systems Pieter J. Mosterman Senior Research Scientist Design Automation Department

More information

CS256/Winter 2009 Lecture #1. Zohar Manna. Instructor: Zohar Manna Office hours: by appointment

CS256/Winter 2009 Lecture #1. Zohar Manna. Instructor: Zohar Manna   Office hours: by appointment CS256/Winter 2009 Lecture #1 Zohar Manna FORMAL METHODS FOR REACTIVE SYSTEMS Instructor: Zohar Manna Email: manna@cs.stanford.edu Office hours: by appointment TA: Boyu Wang Email: wangboyu@stanford.edu

More information

Convex optimization examples

Convex optimization examples Convex optimization examples multi-period processor speed scheduling minimum time optimal control grasp force optimization optimal broadcast transmitter power allocation phased-array antenna beamforming

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 9 Verification and Validation of Simulation Models Purpose & Overview The goal of the validation process is: To produce a model that represents true

More information

Lecture 26. Sequence Algorithms (Continued)

Lecture 26. Sequence Algorithms (Continued) Lecture 26 Sequence Algorithms (Continued) Announcements for This Lecture Lab/Finals Lab 12 is the final lab Can use Consulting hours Due next Wednesday 9:30 Final: Dec 10 th 2:00-4:30pm Study guide is

More information

Number of Projects. Project Value (THB Million) Year Q ,711 2Q ,154 3Q ,871 4Q ,743. Number of Projects

Number of Projects. Project Value (THB Million) Year Q ,711 2Q ,154 3Q ,871 4Q ,743. Number of Projects A n a l y s t M e e t i n g 1 Q 2 0 1 1 2 4 M a y 2 0 1 1 S e m i n a r R o o m, 1 6 / F S a n s i r i P u b l i c C o m p a n y L i m i t e d A g e n d a P r o j e c t L a u n c h P r e s a l e s U p

More information

Parallel Performance Theory

Parallel Performance Theory AMS 250: An Introduction to High Performance Computing Parallel Performance Theory Shawfeng Dong shaw@ucsc.edu (831) 502-7743 Applied Mathematics & Statistics University of California, Santa Cruz Outline

More information