An inspection-based compositional approach to the quantitative evaluation of assembly lines

Size: px
Start display at page:

Download "An inspection-based compositional approach to the quantitative evaluation of assembly lines"

Transcription

1 An inspection-based compositional approach to the quantitative evaluation of assembly lines Marco Biagi 1 Laura Carnevali 1 Tommaso Papini 1 Kumiko Tadano 2 Enrico Vicario 1 1 Department of Information Engineering, University of Florence, Italy 2 Data Science Research Labs, NEC Corporation, Kawasaki, Japan EPEW, Berlin - 8th September 2017 Assembly line analysis for transient measures evaluation subsequent to an inspection at steady-state subject to ambiguity on the logical state and on the remaining times 1 / 24

2 Analysis of assembly lines Why analyse assembly lines? Maximize throughput and efficiency speeding-up/slowing-down workstations in order to balance throughput identify bottlenecks and focus resources on them Minimize resources and energy consumption lower power consumption before bottlenecks Adapt production during runtime Industrie 4.0 e.g. schedule personnel/resources in a tactic perspective 2 / 24

3 Analysis of assembly lines Assembly lines Assembly line product arrival WS 1 WS 2... WS k... WS N production complete N sequential workstations WS 1,..., WS N with transfer blocking and no buffering capacity Workstation WS k can be in one of three states producing: WS k is working on a product done: WS k is done working on a product idling: WS k is waiting for a new product idling workstation WS k+1 has received, the product a product has arrived, from workstation WS k 1 done producing production, has finished 3 / 24

4 Analysis of assembly lines Assembly lines Workstation Each workstation WS k has no internal parallelism at most one item being processed in each workstation can implement complex workflows sequential/alternative/cyclic phases with random choices and has GEN phases durations WS k p 3a p 4a p 1 p 2 s 1 p 5 d p 3b p 4b s 2 The last phase has no duration and encodes the done state 4 / 24

5 Analysis of assembly lines Assembly lines Underlying stochastic process The underlying stochastic process of each isolated workstation is a Semi Markov Process (SMP) due to GEN durations and the absence of internal parallelism The whole assembly line finds a renewal in any case where every done station is in a queue before a bottleneck and everything else is idling arrival WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 completion 5 / 24

6 Analysis of assembly lines Inspection Inspection with partial observability The assembly line can be inspected by external observers the line can be considered at steady-state at inspection there can be ambiguity about the current phase An observation is a tuple ω = ω 0, ω 1,..., ω N ω 0 indicates if a new product is ready to enter the line or not ω k = σ k, φ k refers to WS k σ k indicates if WS k is idle/producing/done φ k identifies the set of possible current phases Two kinds of uncertainty about the actual current phase discrete about the remaining time in the current phase continuous WKk o1 p1 s1 o2 p2a o2 p2b d 6 / 24

7 Analysis of assembly lines Performance measures Performance measures Time To Done The remaining time until workstation k, according to observation ω, reaches the done state a product has arrived, from workstation WS k 1 idling producing, workstation WS k+1 has received the product production, has finished done 7 / 24

8 Analysis of assembly lines Performance measures Performance measures Time To Idle The remaining time until workstation k, according to observation ω, reaches the idling state a product has arrived, from workstation WS k 1 idling producing, workstation WS k+1 has received the product production, has finished done 8 / 24

9 Analysis of assembly lines Performance measures Performance measures Time To Start Next The remaining time until workstation k, according to observation ω, starts the production of a new product a product has arrived, from workstation WS k 1 idling producing, workstation WS k+1 has received the product production, has finished done 9 / 24

10 Modelling and solution technique Disambiguation of phases Disambiguation of observed phases Resolve observed (producing) phases ambiguity steady-state probability that WS k is in phase γ according to ω Given observation φ k for workstation WS k we compute probability P k,γ,ω that it was actually γ that produced φ k P k,γ,ω = π(γ) γ φ k π(γ ) π(γ) steady-state probability of phase γ in an isolated model of WS k 10 / 24

11 Modelling and solution technique Disambiguation of phases Isolated workstation model The isolated workstation model represents a workstation repeatedly processing a product one product being processed after its production, it s moved back to the entry point of the workstation WSk p3a p4a p1 p2 s1 p5 d p3b p4b s2 It can be used for two reasons steady-state probabilities of producing phases are independent the inspection is at steady-state arrivals and productions can be considerer in equilibrium 11 / 24

12 Modelling and solution technique Evaluation of performance measures Time To Done TTD(k, ω) := P k,γ,ω (R(k, γ) + Z (k, γ)), if σ k = producing γ φ k TTD(k 1, ω) + V (k), if σ k = idling 0, if σ k = done P k,γ,ω steady-state probability that WS k is in phase γ according to ω R(k, γ) remaining time in phase γ of WS k Z (k, γ) execution time of phases of WS k that follow γ V (k) production time of WS k TTD 3 arrival WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 completion (R 1 +Z 1 ) + V 2 + V 3 Backward recursive evaluation 12 / 24

13 Modelling and solution technique Evaluation of performance measures Time To Idle TTI(k, ω) := { max{ttd(k, ω), TTI(k + 1, ω)}, if σk {producing, done} 0, if σ k = idling TTI(k, ω) = max{ttd(k, ω),..., TTD(k + n, ω)} WS j producing/done j [k, k + n] either WS k+n last workstation or WS k+n+1 idling WS k becomes idle when the bottleneck finishes its production TTI 4 arrival WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 completion max(0, (R 5 +Z 5 ), (R 6 +Z 6 )) Forward recursive evaluation 13 / 24

14 Modelling and solution technique Evaluation of performance measures Time To Start Next TTSN(k, ω) := max{tti(k, ω), TTD(k 1, ω)} TTSN 4 arrival WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 completion max( ((R 1 +Z 1 ) + V 2 + max( 0, V 3 ), (R 5 +Z 5 ), (R 6 +Z 6 ))) Forward and backward recursive evaluation 14 / 24

15 Modelling and solution technique Evaluation of performance measures Remaining time Evaluation of F R(k,γ) (t) = CDF of R(k, γ) Problem! R(k, γ) remaining time in phase γ of WS k remaining times of enabled GEN transitions are dependent joint probabilities don t allow for a compositional approach 1 /3 Immediate approximation assume that phase γ is inspected at its ending FR(k,γ) (t) = 1 t represents an upper bound 2 /3 Newly enabled approximation assume that phase γ is inspected at its beginning FR(k,γ) (t) = F γ(t) F γ(t) original CDF of the duration of γ represents a lower bound 15 / 24

16 Modelling and solution technique Evaluation of performance measures Remaining time 3/3 Independent remaining times approximation consider the remaining times of ongoing phases as independent represents a (better) lower bound Theorem: positive correlation & stochastic order If ˆR is an independent version of vector R of positively correlated remaining times of ongoing phases, then ˆR st R Steady-state distribution of ˆR(k, γ) computed according to the Key Renewal Theorem 1 F R(k,γ) (t) = 1 µ t 0 [1 F γ(s)]ds µ expected value of F γ(t) 1 Serfozo, R., Basics of applied stochastic processes. Springer Science & Business Media. 16 / 24

17 Modelling and solution technique Evaluation of performance measures Execution and producing time Evaluation of F Z (k,γ) (t) and F V (k) Z (k, γ) execution time of phases of WS k that follow γ V (k) production time of WS k CDFs of Z (k, γ) and V (k) are computed as transient probabilities F Z (k,γ) transient probability from phase after γ to final phase of WS k F V (k) transient probability from first phase to final phase of WS k Upper/lower bounds for TTD, TTI and TTSN can be evaluated convolution and max operations maintain stochastic order 17 / 24

18 Experimentation Experimentation Models and analyses implemented through the Oris tool 23 APIs modelled through PO-sTPN Partially Observable - stochastic Time Petri Nets workstations are state machine PNs and 1-safe duration1 k UNI[1,4] duration2 k UNI[2,3] WS kstart obs = o k,1 Phase2 k obs = o k,2 Done k obs = o k,d Experiments performed on a single core of an Intel Core i5-6600k processor with 16GB of RAM L. Carnevali, L. Ridi, and E. Vicario, "A Framework for Simulation and Symbolic State Space Analysis of Non-Markovian Models", ininternational Conference on Computer Safety, Reliability, and Security (SAFECOMP), Lecture Notes in Computer Science, pp ,Springer Berlin Heidelberg, / 24

19 Experimentation Case study assembly lines Sequential, alternative and cyclic workstations alternative sequential o2 p2a cyclic o1 o2 o1 o1 o2 p1 p2 d p1 s1 o2 d p1 s1 p2 d p2b Simple assembly line two sequential workstations both in phase p 1 at inspection arrival S 1 S 2 completion Complex assembly line three repetitions of sequential/alternative/cyclic ws all observed in producing arrival S 1 A 1 C 1 S 2 A 2 C 2 S 3 A 3 C 3 completion 19 / 24

20 Experimentation Simple assembly line Simple assembly line TTIdle 1.2 F TTI(1,ω) simulation independent remaining times immediate newly enabled t TTIdle computed in 45 min for simulation 0.18 s for bounds Due to steady-state probabilities steady-state probability of % of runs are discarded 20 / 24

21 Experimentation Simple assembly line Simple assembly line TTDone, TTIdle, TTStartNext F TTD(1,ω) F TTI(1,ω) F TTSN(2,ω) simulation independent 0.4 remaining times immediate 0.2 newly enabled t simulation independent 0.4 remaining times immediate 0.2 newly enabled t simulation independent 0.4 remaining times immediate 0.2 newly enabled t TTD, TTI and TTSN computed in 41/45/42 min for simulation 0.15/0.18/0.10 s for bounds Very good approximation results especially for independent remaining times Feasible approach very fast bounds evaluation compared to simulation 21 / 24

22 Experimentation Complex assembly line Complex assembly line TTIdle 1.2 F TTI(5,ω) independent remaining times immediate newly enabled t TTIdle computed in s for bounds Simulation would be too computationally expensive 22 / 24

23 Experimentation Complex assembly line Complex assembly line TTDone, TTIdle, TTStartNext F TTD(5,ω) F TTI(5,ω) F TTSN(5,ω) independent 0.4 remaining times immediate 0.2 newly enabled t independent 0.4 remaining times immediate 0.2 newly enabled t independent 0.4 remaining times immediate 0.2 newly enabled t TTD, TTI and TTSN computed in 0.126/0.123/0.75 s for bounds Scalable solution in a complex scenario simulation would be infeasible 23 / 24

24 Summary Summary We have proposed a compositional approach for analysis of assembly lines with transfer blocking and no buffer capacity after inspection subject to discrete/continuous ambiguity Leveraging the positive correlation among remaining times we have derived stochastic bounds of performance measures with good and scalable results Future directions introduce buffer capacity derive additional performance measures e.g. time to complete the production of a certain product or of the next N products 24 / 24

Probabilistic Deadline Miss Analysis of Real-Time Systems Using Regenerative Transient Analysis

Probabilistic Deadline Miss Analysis of Real-Time Systems Using Regenerative Transient Analysis Probabilistic Deadline Miss Analysis of Real-Time Systems Using Regenerative Transient Analysis L. Carnevali 1, A. Melani 2, L. Santinelli 3, G. Lipari 4 1 Department of Information Engineering, University

More information

Exploiting non-deterministic analysis in the integration of transient solution techniques for Markov Regenerative Processes

Exploiting non-deterministic analysis in the integration of transient solution techniques for Markov Regenerative Processes Exploiting non-deterministic analysis in the integration of transient solution techniques for Markov Regenerative Processes Marco Biagi 1, Laura Carnevali 1, Marco Paolieri, 2 Tommaso Papini 1, and Enrico

More information

A framework for simulation and symbolic state space analysis of non-markovian models

A framework for simulation and symbolic state space analysis of non-markovian models A framework for simulation and symbolic state space analysis of non-markovian models Laura Carnevali, Lorenzo Ridi, Enrico Vicario SW Technologies Lab (STLab) - Dip. Sistemi e Informatica (DSI) - Univ.

More information

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP Glossary availability The long-run average fraction of time that the processor is available for processing jobs, denoted by a (p. 113). cellular manufacturing The concept of organizing the factory into

More information

A stochastic model-based approach to online event prediction and response scheduling

A stochastic model-based approach to online event prediction and response scheduling A stochastic model-based approach to online event prediction and response scheduling M. Biagi, L. Carnevali, M. Paolieri, F. Patara, E. Vicario Department of Information Engineering, University of Florence,

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Exam of Discrete Event Systems

Exam of Discrete Event Systems Exam of Discrete Event Systems - 04.02.2016 Exercise 1 A molecule can switch among three equilibrium states, denoted by A, B and C. Feasible state transitions are from A to B, from C to A, and from B to

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

Performance Evaluation. Transient analysis of non-markovian models using stochastic state classes

Performance Evaluation. Transient analysis of non-markovian models using stochastic state classes Performance Evaluation ( ) Contents lists available at SciVerse ScienceDirect Performance Evaluation journal homepage: www.elsevier.com/locate/peva Transient analysis of non-markovian models using stochastic

More information

7. Queueing Systems. 8. Petri nets vs. State Automata

7. Queueing Systems. 8. Petri nets vs. State Automata Petri Nets 1. Finite State Automata 2. Petri net notation and definition (no dynamics) 3. Introducing State: Petri net marking 4. Petri net dynamics 5. Capacity Constrained Petri nets 6. Petri net models

More information

Specification models and their analysis Petri Nets

Specification models and their analysis Petri Nets Specification models and their analysis Petri Nets Kai Lampka December 10, 2010 1 30 Part I Petri Nets Basics Petri Nets Introduction A Petri Net (PN) is a weighted(?), bipartite(?) digraph(?) invented

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

ring structure Abstract Optical Grid networks allow many computing sites to share their resources by connecting

ring structure Abstract Optical Grid networks allow many computing sites to share their resources by connecting Markovian approximations for a grid computing network with a ring structure J. F. Pérez and B. Van Houdt Performance Analysis of Telecommunication Systems Research Group, Department of Mathematics and

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

2. Stochastic Time Petri Nets

2. Stochastic Time Petri Nets 316 A. Horváth et al. / Performance Evaluation 69 (2012) 315 335 kernels can be expressed in closed-form in terms of the exponential of the matrix describing the subordinated CTMC [8] and evaluated numerically

More information

Composition of product-form Generalized Stochastic Petri Nets: a modular approach

Composition of product-form Generalized Stochastic Petri Nets: a modular approach Composition of product-form Generalized Stochastic Petri Nets: a modular approach Università Ca Foscari di Venezia Dipartimento di Informatica Italy October 2009 Markov process: steady state analysis Problems

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

15 Closed production networks

15 Closed production networks 5 Closed production networks In the previous chapter we developed and analyzed stochastic models for production networks with a free inflow of jobs. In this chapter we will study production networks for

More information

Scheduling Markovian PERT networks to maximize the net present value: new results

Scheduling Markovian PERT networks to maximize the net present value: new results Scheduling Markovian PERT networks to maximize the net present value: new results Hermans B, Leus R. KBI_1709 Scheduling Markovian PERT networks to maximize the net present value: New results Ben Hermans,a

More information

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010

Stochastic Petri Nets. Jonatan Lindén. Modelling SPN GSPN. Performance measures. Almost none of the theory. December 8, 2010 Stochastic Almost none of the theory December 8, 2010 Outline 1 2 Introduction A Petri net (PN) is something like a generalized automata. A Stochastic Petri Net () a stochastic extension to Petri nets,

More information

Finding Steady State of Safety Systems Using the Monte Carlo Method

Finding Steady State of Safety Systems Using the Monte Carlo Method Finding Steady State of Safety Systems Using the Monte Carlo Method Ray Gallagher rayg@csc.liv.ac.uk Department of Computer Science, University of Liverpool Chadwick Building, Peach Street, Liverpool,

More information

Chapter 5. Elementary Performance Analysis

Chapter 5. Elementary Performance Analysis Chapter 5 Elementary Performance Analysis 1 5.0 2 5.1 Ref: Mischa Schwartz Telecommunication Networks Addison-Wesley publishing company 1988 3 4 p t T m T P(k)= 5 6 5.2 : arrived rate : service rate 7

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

15 Closed production networks

15 Closed production networks 5 Closed production networks In the previous chapter we developed and analyzed stochastic models for production networks with a free inflow of jobs. In this chapter we will study production networks for

More information

Networked Embedded Systems WS 2016/17

Networked Embedded Systems WS 2016/17 Networked Embedded Systems WS 2016/17 Lecture 2: Real-time Scheduling Marco Zimmerling Goal of Today s Lecture Introduction to scheduling of compute tasks on a single processor Tasks need to finish before

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

EDF Feasibility and Hardware Accelerators

EDF Feasibility and Hardware Accelerators EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo, Waterloo, Canada, arrmorton@uwaterloo.ca Wayne M. Loucks University of Waterloo, Waterloo, Canada, wmloucks@pads.uwaterloo.ca

More information

Quantitative evaluation of concurrent systems with non-markovian temporal parameters

Quantitative evaluation of concurrent systems with non-markovian temporal parameters Quantitative evaluation of concurrent systems with non-markovian temporal parameters Enrico Vicario Lab. of Software and Data Science Dept. of Information Engineering, University of Florence, Italy int.

More information

Real-time Systems: Scheduling Periodic Tasks

Real-time Systems: Scheduling Periodic Tasks Real-time Systems: Scheduling Periodic Tasks Advanced Operating Systems Lecture 15 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

ON THE NON-EXISTENCE OF PRODUCT-FORM SOLUTIONS FOR QUEUEING NETWORKS WITH RETRIALS

ON THE NON-EXISTENCE OF PRODUCT-FORM SOLUTIONS FOR QUEUEING NETWORKS WITH RETRIALS ON THE NON-EXISTENCE OF PRODUCT-FORM SOLUTIONS FOR QUEUEING NETWORKS WITH RETRIALS J.R. ARTALEJO, Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid,

More information

A Semiconductor Wafer

A Semiconductor Wafer M O T I V A T I O N Semi Conductor Wafer Fabs A Semiconductor Wafer Clean Oxidation PhotoLithography Photoresist Strip Ion Implantation or metal deosition Fabrication of a single oxide layer Etching MS&E324,

More information

On the Applicability of an Interval Time Structure for Protocol Verification

On the Applicability of an Interval Time Structure for Protocol Verification On the Applicability of an Interval Time Structure for Protocol Verification Jerzy BRZZIŃSKI, Michał SAJKOWSKI Institute of Computing Science, Poznań University of Technology Piotrowo 3a, 60-965 Poznań,

More information

Stochastic Modeling and Analysis of Generalized Kanban Controlled Unsaturated finite capacitated Multi-Stage Production System

Stochastic Modeling and Analysis of Generalized Kanban Controlled Unsaturated finite capacitated Multi-Stage Production System Stochastic Modeling and Analysis of Generalized anban Controlled Unsaturated finite capacitated Multi-Stage Production System Mitnala Sreenivasa Rao 1 orada Viswanatha Sharma 2 1 Department of Mechanical

More information

A POPULATION-MIX DRIVEN APPROXIMATION FOR QUEUEING NETWORKS WITH FINITE CAPACITY REGIONS

A POPULATION-MIX DRIVEN APPROXIMATION FOR QUEUEING NETWORKS WITH FINITE CAPACITY REGIONS A POPULATION-MIX DRIVEN APPROXIMATION FOR QUEUEING NETWORKS WITH FINITE CAPACITY REGIONS J. Anselmi 1, G. Casale 2, P. Cremonesi 1 1 Politecnico di Milano, Via Ponzio 34/5, I-20133 Milan, Italy 2 Neptuny

More information

Marwan Burelle. Parallel and Concurrent Programming. Introduction and Foundation

Marwan Burelle.  Parallel and Concurrent Programming. Introduction and Foundation and and marwan.burelle@lse.epita.fr http://wiki-prog.kh405.net Outline 1 2 and 3 and Evolutions and Next evolutions in processor tends more on more on growing of cores number GPU and similar extensions

More information

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France

As Soon As Probable. O. Maler, J.-F. Kempf, M. Bozga. March 15, VERIMAG Grenoble, France As Soon As Probable O. Maler, J.-F. Kempf, M. Bozga VERIMAG Grenoble, France March 15, 2013 O. Maler, J.-F. Kempf, M. Bozga (VERIMAG Grenoble, France) As Soon As Probable March 15, 2013 1 / 42 Executive

More information

SYMBOLS AND ABBREVIATIONS

SYMBOLS AND ABBREVIATIONS APPENDIX A SYMBOLS AND ABBREVIATIONS This appendix contains definitions of common symbols and abbreviations used frequently and consistently throughout the text. Symbols that are used only occasionally

More information

A stochastic model-based approach to online event prediction and response scheduling

A stochastic model-based approach to online event prediction and response scheduling A stochastic model-based approach to online event prediction and response scheduling Marco Biagi, Laura Carnevali, Marco Paolieri, Fulvio Patara, and Enrico Vicario Department of Information Engineering,

More information

Trellis-based Detection Techniques

Trellis-based Detection Techniques Chapter 2 Trellis-based Detection Techniques 2.1 Introduction In this chapter, we provide the reader with a brief introduction to the main detection techniques which will be relevant for the low-density

More information

6 Solving Queueing Models

6 Solving Queueing Models 6 Solving Queueing Models 6.1 Introduction In this note we look at the solution of systems of queues, starting with simple isolated queues. The benefits of using predefined, easily classified queues will

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models Jeff A. Bilmes (bilmes@cs.berkeley.edu) International Computer Science Institute

More information

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY SECOND EDITION ACADEMIC PRESS An imprint of Elsevier Science Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents

More information

Business Process Verification with Constraint Temporal Answer Set Programming

Business Process Verification with Constraint Temporal Answer Set Programming 1 Online appendix for the paper Business Process Verification with Constraint Temporal Answer Set Programming published in Theory and Practice of Logic Programming Laura Giordano DISIT, Università del

More information

Stochastic Dynamic Thermal Management: A Markovian Decision-based Approach. Hwisung Jung, Massoud Pedram

Stochastic Dynamic Thermal Management: A Markovian Decision-based Approach. Hwisung Jung, Massoud Pedram Stochastic Dynamic Thermal Management: A Markovian Decision-based Approach Hwisung Jung, Massoud Pedram Outline Introduction Background Thermal Management Framework Accuracy of Modeling Policy Representation

More information

Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server

Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server S. Jehoashan Kingsly 1, S. Padmasekaran and K. Jeganathan 3 1 Department of Mathematics, Adhiyamaan

More information

Discrete Event Systems

Discrete Event Systems DI DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE E SCIENZE MATEMATICHE Lecture notes of Discrete Event Systems Simone Paoletti Version 0.3 October 27, 2015 Indice Notation 1 Introduction 2 1 Basics of systems

More information

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved.

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers. Unlike the other tools of OR, queuing theory is not an optimization technique. Rather, it determines

More information

THROUGHPUT ANALYSIS OF MANUFACTURING CELLS USING TIMED PETRI NETS

THROUGHPUT ANALYSIS OF MANUFACTURING CELLS USING TIMED PETRI NETS c 1994 IEEE. Published in the Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, October 2 5, 1994. Personal use of this material is permitted. However,

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal October 16, 2012 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

Performance analysis of clouds with phase-type arrivals

Performance analysis of clouds with phase-type arrivals Performance analysis of clouds with phase-type arrivals Farah Ait Salaht, Hind Castel-Taleb To cite this version: Farah Ait Salaht, Hind Castel-Taleb. Performance analysis of clouds with phase-type arrivals.

More information

MIT Manufacturing Systems Analysis Lectures 6 9: Flow Lines

MIT Manufacturing Systems Analysis Lectures 6 9: Flow Lines 2.852 Manufacturing Systems Analysis 1/165 Copyright 2010 c Stanley B. Gershwin. MIT 2.852 Manufacturing Systems Analysis Lectures 6 9: Flow Lines Models That Can Be Analyzed Exactly Stanley B. Gershwin

More information

Single-part-type, multiple stage systems

Single-part-type, multiple stage systems MIT 2.853/2.854 Introduction to Manufacturing Systems Single-part-type, multiple stage systems Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Single-stage,

More information

Queueing systems in a random environment with applications

Queueing systems in a random environment with applications Queueing systems in a random environment with applications Ruslan Krenzler, Hans Daduna Universität Hamburg OR 2013 3.-6. September 2013 Krenzler, Daduna (Uni HH) Queues in rnd. environment OR 2013 1 /

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

Multiserver Queueing Model subject to Single Exponential Vacation

Multiserver Queueing Model subject to Single Exponential Vacation Journal of Physics: Conference Series PAPER OPEN ACCESS Multiserver Queueing Model subject to Single Exponential Vacation To cite this article: K V Vijayashree B Janani 2018 J. Phys.: Conf. Ser. 1000 012129

More information

CSL model checking of biochemical networks with Interval Decision Diagrams

CSL model checking of biochemical networks with Interval Decision Diagrams CSL model checking of biochemical networks with Interval Decision Diagrams Brandenburg University of Technology Cottbus Computer Science Department http://www-dssz.informatik.tu-cottbus.de/software/mc.html

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Michaelmas Term 2003 R. J. Gibbens Problem sheet William Gates Building JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

Advanced Computer Networks Lecture 3. Models of Queuing

Advanced Computer Networks Lecture 3. Models of Queuing Advanced Computer Networks Lecture 3. Models of Queuing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/13 Terminology of

More information

Discrete-event simulations

Discrete-event simulations Discrete-event simulations Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Why do we need simulations? Step-by-step simulations; Classifications;

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 5, MAY

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 5, MAY IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 5, MAY 1998 631 Centralized and Decentralized Asynchronous Optimization of Stochastic Discrete-Event Systems Felisa J. Vázquez-Abad, Christos G. Cassandras,

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Markov Processes and Queues

Markov Processes and Queues MIT 2.853/2.854 Introduction to Manufacturing Systems Markov Processes and Queues Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology Markov Processes

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

Single-part-type, multiple stage systems. Lecturer: Stanley B. Gershwin

Single-part-type, multiple stage systems. Lecturer: Stanley B. Gershwin Single-part-type, multiple stage systems Lecturer: Stanley B. Gershwin Flow Line... also known as a Production or Transfer Line. M 1 B 1 M 2 B 2 M 3 B 3 M 4 B 4 M 5 B 5 M 6 Machine Buffer Machines are

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis TCOM 50: Networking Theory & Fundamentals Lecture 6 February 9, 003 Prof. Yannis A. Korilis 6- Topics Time-Reversal of Markov Chains Reversibility Truncating a Reversible Markov Chain Burke s Theorem Queues

More information

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling Scheduling I Today! Introduction to scheduling! Classical algorithms Next Time! Advanced topics on scheduling Scheduling out there! You are the manager of a supermarket (ok, things don t always turn out

More information

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS

Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS Chapter 2 SOME ANALYTICAL TOOLS USED IN THE THESIS 63 2.1 Introduction In this chapter we describe the analytical tools used in this thesis. They are Markov Decision Processes(MDP), Markov Renewal process

More information

ORI 390Q Models and Analysis of Manufacturing Systems First Exam, fall 1994

ORI 390Q Models and Analysis of Manufacturing Systems First Exam, fall 1994 ORI 90Q Models and Analysis of Manufacturing Systems First Exam, fall 1994 (time, defect rate) (12,0.05) 5 6 V A (16,0.07) (15,0.07) (5,0) M 1 1 2 M1 M2 O A (10,0.1) 7 8 V B (8,0.2) M4 2 4 M5 The figure

More information

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem Wade Trappe Lecture Overview Network of Queues Introduction Queues in Tandem roduct Form Solutions Burke s Theorem What

More information

Fine Grain Quality Management

Fine Grain Quality Management Fine Grain Quality Management Jacques Combaz Jean-Claude Fernandez Mohamad Jaber Joseph Sifakis Loïc Strus Verimag Lab. Université Joseph Fourier Grenoble, France DCS seminar, 10 June 2008, Col de Porte

More information

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models

DES. 4. Petri Nets. Introduction. Different Classes of Petri Net. Petri net properties. Analysis of Petri net models 4. Petri Nets Introduction Different Classes of Petri Net Petri net properties Analysis of Petri net models 1 Petri Nets C.A Petri, TU Darmstadt, 1962 A mathematical and graphical modeling method. Describe

More information

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II TDDB68 Concurrent programming and operating systems Lecture: CPU Scheduling II Mikael Asplund, Senior Lecturer Real-time Systems Laboratory Department of Computer and Information Science Copyright Notice:

More information

Lecture 3: Decidability

Lecture 3: Decidability Lecture 3: Decidability January 11, 2011 Lecture 3, Slide 1 ECS 235B, Foundations of Information and Computer Security January 11, 2011 1 Review 2 Decidability of security Mono-operational command case

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES. Richard W. Katz LECTURE 5

STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES. Richard W. Katz LECTURE 5 STOCHASTIC MODELING OF ENVIRONMENTAL TIME SERIES Richard W Katz LECTURE 5 (1) Hidden Markov Models: Applications (2) Hidden Markov Models: Viterbi Algorithm (3) Non-Homogeneous Hidden Markov Model (1)

More information

On the Optimality of Randomized Deadlock Avoidance Policies

On the Optimality of Randomized Deadlock Avoidance Policies On the Optimality of Randomized Deadlock Avoidance Policies Spyros A. Reveliotis and Jin Young Choi School of Industrial & Systems Engineering Georgia Institute of Technology Atlanta, GA 30332 Abstract

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Simulation of Process Scheduling Algorithms

Simulation of Process Scheduling Algorithms Simulation of Process Scheduling Algorithms Project Report Instructor: Dr. Raimund Ege Submitted by: Sonal Sood Pramod Barthwal Index 1. Introduction 2. Proposal 3. Background 3.1 What is a Process 4.

More information

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID:

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID: Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam 1 2 3 4 5 6 7 8 9 10 7 questions. 1. [5+5] Let X and Y be independent exponential random variables where X has

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modeling and Simulation NETW 707 Lecture 6 ARQ Modeling: Modeling Error/Flow Control Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Data Link Layer Data Link Layer provides

More information

Georg Frey ANALYSIS OF PETRI NET BASED CONTROL ALGORITHMS

Georg Frey ANALYSIS OF PETRI NET BASED CONTROL ALGORITHMS Georg Frey ANALYSIS OF PETRI NET BASED CONTROL ALGORITHMS Proceedings SDPS, Fifth World Conference on Integrated Design and Process Technologies, IEEE International Conference on Systems Integration, Dallas,

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Lecture 5 Simplex Method. September 2, 2009

Lecture 5 Simplex Method. September 2, 2009 Simplex Method September 2, 2009 Outline: Lecture 5 Re-cap blind search Simplex method in steps Simplex tableau Operations Research Methods 1 Determining an optimal solution by exhaustive search Lecture

More information

Quantitative Model Checking (QMC) - SS12

Quantitative Model Checking (QMC) - SS12 Quantitative Model Checking (QMC) - SS12 Lecture 06 David Spieler Saarland University, Germany June 4, 2012 1 / 34 Deciding Bisimulations 2 / 34 Partition Refinement Algorithm Notation: A partition P over

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Non-Markovian analysis for model-driven engineering of real-time software

Non-Markovian analysis for model-driven engineering of real-time software Non-Markovian analysis for model-driven engineering of real-time software Laura Carnevali, Marco Paolieri, Alessandro Santoni, Enrico Vicario Dipartimento di Ingegneria dell Informazione Università di

More information

Batch Arrival Queuing Models with Periodic Review

Batch Arrival Queuing Models with Periodic Review Batch Arrival Queuing Models with Periodic Review R. Sivaraman Ph.D. Research Scholar in Mathematics Sri Satya Sai University of Technology and Medical Sciences Bhopal, Madhya Pradesh National Awardee

More information

Autonomous Agent Behaviour Modelled in PRISM A Case Study

Autonomous Agent Behaviour Modelled in PRISM A Case Study Autonomous Agent Behaviour Modelled in PRISM A Case Study Ruth Hoffmann 1, Murray Ireland 1, Alice Miller 1, Gethin Norman 1, and Sandor Veres 2 1 University of Glasgow, Glasgow, G12 8QQ, Scotland 2 University

More information