Convex optimization examples

Size: px
Start display at page:

Download "Convex optimization examples"

Transcription

1 Convex optimization examples multi-period processor speed scheduling minimum time optimal control grasp force optimization optimal broadcast transmitter power allocation phased-array antenna beamforming optimal receiver location 1

2 Multi-period processor speed scheduling processor adjusts its speed s t [s min,s max ] in each of T time periods energy consumed in period t is φ(s t ); total energy is E = T t=1 φ(s t) n jobs job i available at t = A i ; must finish by deadline t = D i job i requires total work W i 0 θ ti 0 is fraction of processor effort allocated to job i in period t 1 T θ t = 1, D i t=a i θ ti s t W i choose speeds s t and allocations θ ti to minimize total energy E 2

3 Minimum energy processor speed scheduling work with variables S ti = θ ti s t solve convex problem s t = n S ti, i=1 D i t=a i S ti W i minimize E = T t=1 φ(s t) subject to s min s t s max, t = 1,...,T s t = n i=1 S ti, t = 1,...,T Di t=a i S ti W i, i = 1,...,n a convex problem when φ is convex can recover θ t as θ ti = (1/s t)s ti 3

4 Example T = 16 periods, n = 12 jobs s min = 1, s max = 6, φ(s t ) = s 2 t jobs shown as bars over [A i,d i ] with area W i φ(st) 20 job i s t t 4

5 Optimal and uniform schedules uniform schedule: S ti = W i /(D i A i +1); gives E unif = optimal schedule: S ti ; gives E = optimal 6 uniform st 3 st t t 5

6 Minimum-time optimal control linear dynamical system: x t+1 = Ax t +Bu t, t = 0,1,...,K, x 0 = x init inputs constraints: u min u t u max, t = 0,1,...,K minimum time to reach state x des : f(u 0,...,u K ) = min{t x t = x des for T t K +1} 6

7 state transfer time f is quasiconvex function of (u 0,...,u K ): f(u 0,u 1,...,u K ) T if and only if for all t = T,...,K +1 x t = A t x init +A t 1 Bu 0 + +Bu t 1 = x des i.e., sublevel sets are affine minimum-time optimal control problem: minimize f(u 0,u 1,...,u K ) subject to u min u t u max, t = 0,...,K with variables u 0,...,u K a quasiconvex problem; can be solved via bisection 7

8 Minimum-time control example u 1 u 2 force (u t ) 1 moves object modeled as 3 masses (2 vibration modes) force (u t ) 2 used for active vibration suppression goal: move object to commanded position as quickly as possible, with (u t ) 1 1, (u t ) 2 0.1, t = 0,...,K 8

9 Ignoring vibration modes treat object as single mass; apply only u 1 analytical ( bang-bang ) solution (ut) (xt) (ut) t t t 9

10 With vibration modes no analytical solution a quasiconvex problem; solved using bisection (ut) (xt) (ut) t t t 10

11 Grasp force optimization choose K grasping forces on object resist external wrench respect friction cone constraints minimize maximum grasp force convex problem (second-order cone program): minimize max i f (i) 2 max contact force subject to i Q(i) f (i) = f ext force equillibrium i p(i) (Q (i) f (i) ) = τ ext torque equillibrium ( ) 1/2 µ i f (i) 3 f (i)2 1 +f (i)2 2 friction cone constraints variables f (i) R 3, i = 1,...,K (contact forces) 11

12 Example 12

13 Optimal broadcast transmitter power allocation m transmitters, mn receivers all at same frequency transmitter i wants to transmit to n receivers labeled (i,j), j = 1,...,n A ijk is path gain from transmitter k to receiver (i,j) N ij is (self) noise power of receiver (i,j) variables: transmitter powers p k, k = 1,...,m transmitter k receiver (i, j) transmitter i 13

14 at receiver (i, j): signal power: S ij = A iji p i noise plus interference power: I ij = k ia ijk p k +N ij signal to interference/noise ratio (SINR): S ij /I ij problem: choose p i to maximize smallest SINR: A iji p maximize min i i,j k i A ijkp k +N ij subject to 0 p i p max... a (generalized) linear fractional program 14

15 Phased-array antenna beamforming (x i,y i ) θ omnidirectional antenna elements at positions (x 1,y 1 ),..., (x n,y n ) unit plane wave incident from angle θ induces in ith element a signal e j(x icosθ+y i sinθ ωt) (j = 1, frequency ω, wavelength 2π) 15

16 demodulate to get output e j(x icosθ+y i sinθ) C linearly combine with complex weights w i : y(θ) = n w i e j(x icosθ+y i sinθ) i=1 y(θ) is (complex) antenna array gain pattern y(θ) gives sensitivity of array as function of incident angle θ depends on design variables Rew, Imw (called antenna array weights or shading coefficients) design problem: choose w to achieve desired gain pattern 16

17 Sidelobe level minimization make y(θ) small for θ θ tar > α (θ tar : target direction; 2α: beamwidth) via least-squares (discretize angles) minimize i y(θ i) 2 subject to y(θ tar ) = 1 (sum is over angles outside beam) least-squares problem with two (real) linear equality constraints 17

18 y(θ) 50 θ tar = 30 sidelobe level 10 18

19 minimize sidelobe level (discretize angles) (max over angles outside beam) minimize max i y(θ i ) subject to y(θ tar ) = 1 can be cast as SOCP minimize t subject to y(θ i ) t y(θ tar ) = 1 19

20 y(θ) 50 θ tar = 30 sidelobe level 10 20

21 convex (& quasiconvex) extensions: y(θ 0 ) = 0 (null in direction θ 0 ) w is real (amplitude only shading) Extensions w i 1 (attenuation only shading) minimize σ 2 n i=1 w i 2 (thermal noise power in y) minimize beamwidth given a maximum sidelobe level nonconvex extension: maximize number of zero weights 21

22 Optimal receiver location N transmitter frequencies 1,...,N transmitters at locations a i, b i R 2 use frequency i transmitters at a 1, a 2,..., a N are the wanted ones transmitters at b 1, b 2,..., b N are interfering receiver at position x R 2 b 3 a 3 x a 2 b 2 a 1 b 1 22

23 (signal) receiver power from a i : x a i α 2 (α 2.1) (interfering) receiver power from b i : x b i α 2 (α 2.1) worst signal to interference ratio, over all frequencies, is x a i α 2 S/I = min i x b i α 2 what receiver location x maximizes S/I? 23

24 S/I is quasiconcave on {x S/I 1}, i.e., on {x x a i 2 x b i 2, i = 1,...,N} b 3 a 3 a 2 b 2 a 1 b 1 can use bisection; every iteration is a convex quadratic feasibility problem 24

Lecture 4: Linear and quadratic problems

Lecture 4: Linear and quadratic problems Lecture 4: Linear and quadratic problems linear programming examples and applications linear fractional programming quadratic optimization problems (quadratically constrained) quadratic programming second-order

More information

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p

Example 1 linear elastic structure; forces f 1 ;:::;f 100 induce deections d 1 ;:::;d f i F max i, several hundred other constraints: max load p Convex Optimization in Electrical Engineering Stephen Boyd and Lieven Vandenberghe EE Dept., Stanford ISL EE370 Seminar, 2/9/96 1 Main idea many electrical engineering design problems can be cast as convex

More information

EE364 Review Session 4

EE364 Review Session 4 EE364 Review Session 4 EE364 Review Outline: convex optimization examples solving quasiconvex problems by bisection exercise 4.47 1 Convex optimization problems we have seen linear programming (LP) quadratic

More information

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012

Applications of Robust Optimization in Signal Processing: Beamforming and Power Control Fall 2012 Applications of Robust Optimization in Signal Processing: Beamforg and Power Control Fall 2012 Instructor: Farid Alizadeh Scribe: Shunqiao Sun 12/09/2012 1 Overview In this presentation, we study the applications

More information

Final exam.

Final exam. EE364a Convex Optimization I March 14 15 or March 15 16, 2008. Prof. S. Boyd Final exam You may use any books, notes, or computer programs (e.g., Matlab, cvx), but you may not discuss the exam with anyone

More information

CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING

CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING 50 CHAPTER 3 ROBUST ADAPTIVE BEAMFORMING 3.1 INTRODUCTION Adaptive beamforming is used for enhancing a desired signal while suppressing noise and interference at the output of an array of sensors. It is

More information

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem

Exercises. Exercises. Basic terminology and optimality conditions. 4.2 Consider the optimization problem Exercises Basic terminology and optimality conditions 4.1 Consider the optimization problem f 0(x 1, x 2) 2x 1 + x 2 1 x 1 + 3x 2 1 x 1 0, x 2 0. Make a sketch of the feasible set. For each of the following

More information

Tutorial on Convex Optimization: Part II

Tutorial on Convex Optimization: Part II Tutorial on Convex Optimization: Part II Dr. Khaled Ardah Communications Research Laboratory TU Ilmenau Dec. 18, 2018 Outline Convex Optimization Review Lagrangian Duality Applications Optimal Power Allocation

More information

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex Optimization in Convex and Control Theory System Stephen Boyd Engineering Department Electrical University Stanford 3rd SIAM Conf. Control & Applications 1 Basic idea Many problems arising in system and

More information

Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers

Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers Efficient Computation of the Pareto Boundary for the Two-User MISO Interference Channel with Multi-User Decoding Capable Receivers Johannes Lindblom, Eleftherios Karipidis and Erik G. Larsson Linköping

More information

ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH

ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH Progress In Electromagnetics Research Letters, Vol. 25, 37 46, 2011 ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH R. Mallipeddi 1, J. P. Lie 2, S.

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

Disciplined Convex Programming

Disciplined Convex Programming Disciplined Convex Programming Stephen Boyd Michael Grant Electrical Engineering Department, Stanford University University of Pennsylvania, 3/30/07 Outline convex optimization checking convexity via convex

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Optimization

More information

EE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15

EE5138R: Problem Set 5 Assigned: 16/02/15 Due: 06/03/15 EE538R: Problem Set 5 Assigned: 6/0/5 Due: 06/03/5. BV Problem 4. The feasible set is the convex hull of (0, ), (0, ), (/5, /5), (, 0) and (, 0). (a) x = (/5, /5) (b) Unbounded below (c) X opt = {(0, x

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

Lecture 1 Introduction and overview

Lecture 1 Introduction and overview ESE504 (Fall 2013) Lecture 1 Introduction and overview linear programming example course topics software integer linear programming 1 1 Linear program (LP) minimize subject to n c j x j j=1 n a ij x j

More information

COM Optimization for Communications 8. Semidefinite Programming

COM Optimization for Communications 8. Semidefinite Programming COM524500 Optimization for Communications 8. Semidefinite Programming Institute Comm. Eng. & Dept. Elect. Eng., National Tsing Hua University 1 Semidefinite Programming () Inequality form: min c T x s.t.

More information

Array Antennas. Chapter 6

Array Antennas. Chapter 6 Chapter 6 Array Antennas An array antenna is a group of antenna elements with excitations coordinated in some way to achieve desired properties for the combined radiation pattern. When designing an array

More information

Linear Optimum Filtering: Statement

Linear Optimum Filtering: Statement Ch2: Wiener Filters Optimal filters for stationary stochastic models are reviewed and derived in this presentation. Contents: Linear optimal filtering Principle of orthogonality Minimum mean squared error

More information

Optimization in Wireless Communication

Optimization in Wireless Communication Zhi-Quan (Tom) Luo Department of Electrical and Computer Engineering University of Minnesota 200 Union Street SE Minneapolis, MN 55455 2007 NSF Workshop Challenges Optimization problems from wireless applications

More information

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation Mikael Fallgren Royal Institute of Technology December, 2009 Abstract

More information

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and

More information

J. Liang School of Automation & Information Engineering Xi an University of Technology, China

J. Liang School of Automation & Information Engineering Xi an University of Technology, China Progress In Electromagnetics Research C, Vol. 18, 245 255, 211 A NOVEL DIAGONAL LOADING METHOD FOR ROBUST ADAPTIVE BEAMFORMING W. Wang and R. Wu Tianjin Key Lab for Advanced Signal Processing Civil Aviation

More information

New Rank-One Matrix Decomposition Techniques and Applications to Signal Processing

New Rank-One Matrix Decomposition Techniques and Applications to Signal Processing New Rank-One Matrix Decomposition Techniques and Applications to Signal Processing Yongwei Huang Hong Kong Baptist University SPOC 2012 Hefei China July 1, 2012 Outline Trust-region subproblems in nonlinear

More information

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Convex Functions. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Convex Functions Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Definition convex function Examples

More information

Beamspace Adaptive Beamforming and the GSC

Beamspace Adaptive Beamforming and the GSC April 27, 2011 Overview The MVDR beamformer: performance and behavior. Generalized Sidelobe Canceller reformulation. Implementation of the GSC. Beamspace interpretation of the GSC. Reduced complexity of

More information

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP)

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP) Agenda 1 Cone programming 2 Convex cones 3 Generalized inequalities 4 Linear programming (LP) 5 Second-order cone programming (SOCP) 6 Semidefinite programming (SDP) 7 Examples Optimization problem in

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB

INTERIOR-POINT METHODS ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB 1 INTERIOR-POINT METHODS FOR SECOND-ORDER-CONE AND SEMIDEFINITE PROGRAMMING ROBERT J. VANDERBEI JOINT WORK WITH H. YURTTAN BENSON REAL-WORLD EXAMPLES BY J.O. COLEMAN, NAVAL RESEARCH LAB Outline 2 Introduction

More information

Multiuser Downlink Beamforming: Rank-Constrained SDP

Multiuser Downlink Beamforming: Rank-Constrained SDP Multiuser Downlink Beamforming: Rank-Constrained SDP Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Convex Optimization Fourth lecture, 05.05.2010 Jun.-Prof. Matthias Hein Reminder from last time Convex functions: first-order condition: f(y) f(x) + f x,y x, second-order

More information

Response Vector Constrained Robust LCMV. Beamforming Based on Semidefinite Programming

Response Vector Constrained Robust LCMV. Beamforming Based on Semidefinite Programming 1.119/TSP.215.246221, IEEE Transactions on Signal Processing Response Vector Constrained Robust LCMV 1 Beamforming Based on Semidefinite Programming Jingwei Xu, Guisheng Liao, Member, IEEE, Shengqi Zhu,

More information

EE221A Linear System Theory Final Exam

EE221A Linear System Theory Final Exam EE221A Linear System Theory Final Exam Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2016 12/16/16, 8-11am Your answers must be supported by analysis,

More information

A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance Seung Jean Kim Stephen Boyd Alessandro Magnani MIT ORC Sear 12/8/05 Outline A imax theorem Robust Fisher discriant

More information

SINR Balancing in the Downlink of Cognitive Radio Networks with Imperfect Channel Knowledge

SINR Balancing in the Downlink of Cognitive Radio Networks with Imperfect Channel Knowledge SINR Balancing in the Downlink of Cognitive Radio Networks with Imperfect Channel Knowledge Muhammad Fainan Hanif, Peter J. Smith and Mohamed-Slim Alouini Department of Electrical and Computer Engineering,

More information

Overview of Beamforming

Overview of Beamforming Overview of Beamforming Arye Nehorai Preston M. Green Department of Electrical and Systems Engineering Washington University in St. Louis March 14, 2012 CSSIP Lab 1 Outline Introduction Spatial and temporal

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

EE364a: Convex Optimization I March or March 15 16, Final Exam

EE364a: Convex Optimization I March or March 15 16, Final Exam EE364a: Convex Optimization I March 14 15 or March 15 16, 2014 S. Boyd Final Exam This is a 24 hour take-home final. Please turn it in at Bytes Cafe in the Packard building, 24 hours after you pick it

More information

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

ADAPTIVE ANTENNAS. SPATIAL BF

ADAPTIVE ANTENNAS. SPATIAL BF ADAPTIVE ANTENNAS SPATIAL BF 1 1-Spatial reference BF -Spatial reference beamforming may not use of embedded training sequences. Instead, the directions of arrival (DoA) of the impinging waves are used

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

CMSC 451: Lecture 7 Greedy Algorithms for Scheduling Tuesday, Sep 19, 2017

CMSC 451: Lecture 7 Greedy Algorithms for Scheduling Tuesday, Sep 19, 2017 CMSC CMSC : Lecture Greedy Algorithms for Scheduling Tuesday, Sep 9, 0 Reading: Sects.. and. of KT. (Not covered in DPV.) Interval Scheduling: We continue our discussion of greedy algorithms with a number

More information

Near Optimal Adaptive Robust Beamforming

Near Optimal Adaptive Robust Beamforming Near Optimal Adaptive Robust Beamforming The performance degradation in traditional adaptive beamformers can be attributed to the imprecise knowledge of the array steering vector and inaccurate estimation

More information

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Progress In Electromagnetics Research Letters, Vol. 16, 53 60, 2010 A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Y. P. Liu and Q. Wan School of Electronic Engineering University of Electronic

More information

4. Convex optimization problems (part 1: general)

4. Convex optimization problems (part 1: general) EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem

More information

On Solving SOCPs with an Interior-Point Method for NLP

On Solving SOCPs with an Interior-Point Method for NLP On Solving SOCPs with an Interior-Point Method for NLP Robert Vanderbei and Hande Y. Benson INFORMS Nov 5, 2001 Miami Beach, FL Operations Research and Financial Engineering, Princeton University http://www.princeton.edu/

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

DOWNLINK transmit beamforming has recently received

DOWNLINK transmit beamforming has recently received 4254 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010 A Dual Perspective on Separable Semidefinite Programming With Applications to Optimal Downlink Beamforming Yongwei Huang, Member,

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

Research Article Robust STAP for MIMO Radar Based on Direct Data Domain Approach

Research Article Robust STAP for MIMO Radar Based on Direct Data Domain Approach Hindawi International Journal of Antennas and Propagation Volume 217, Article ID 696713, 9 pages https://doi.org/1.1155/217/696713 Research Article Robust STAP for MIMO Radar Based on Direct Data Domain

More information

Electromagnetic Waves

Electromagnetic Waves Physics 8 Electromagnetic Waves Overview. The most remarkable conclusion of Maxwell s work on electromagnetism in the 860 s was that waves could exist in the fields themselves, traveling with the speed

More information

Research Article Optimal Spatial Matrix Filter Design for Array Signal Preprocessing

Research Article Optimal Spatial Matrix Filter Design for Array Signal Preprocessing Applied Mathematics, Article ID 564976, 8 pages http://dx.doi.org/.55/24/564976 Research Article Optimal Spatial Matrix Filter Design for Array Signal Preprocessing Haiyong Zhang, Dong Han,,2 Kai Ji, Zhong

More information

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L.

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L. Physics 142 Wave Optics 1 Page 1 Wave Optics 1 For every complex problem there is one solution that is simple, neat, and wrong. H.L. Mencken Interference and diffraction of waves The essential characteristic

More information

WIDEBAND STAP (WB-STAP) FOR PASSIVE SONAR. J. R. Guerci. Deputy Director DARPA/SPO Arlington, VA

WIDEBAND STAP (WB-STAP) FOR PASSIVE SONAR. J. R. Guerci. Deputy Director DARPA/SPO Arlington, VA WIDEBAND STAP (WB-STAP) FOR PASSIVE SONAR S. U. Pillai Dept. of Electrical Engg. Polytechnic University Brooklyn, NY 1121 pillai@hora.poly.edu J. R. Guerci Deputy Director DARPA/SPO Arlington, VA 2223

More information

RECOMMENDATION ITU-R S.1559

RECOMMENDATION ITU-R S.1559 Rec. ITU-R S.1559 1 RECOMMENDATION ITU-R S.1559 Methodology for computing the geographical distribution of maximum downlink equivalent power flux-density levels generated by nongeostationary fixed-satellite

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids

Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids Alejandro D. Domínguez-García Coordinated Science Laboratory Department of Electrical and Computer Engineering

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Authors: Christian Lameiro, Alfredo Nazábal, Fouad Gholam, Javier Vía and Ignacio Santamaría University of Cantabria,

More information

Resonance on String. Weight Box Sine wave generator Mass Holder

Resonance on String. Weight Box Sine wave generator Mass Holder Resonance on String Objectives a. Study of resonance phenomenon on a stressed string. b. To find the value of acceleration due to gravity using the principle of resonance. c. To apply error analysis principles

More information

EE363 homework 8 solutions

EE363 homework 8 solutions EE363 Prof. S. Boyd EE363 homework 8 solutions 1. Lyapunov condition for passivity. The system described by ẋ = f(x, u), y = g(x), x() =, with u(t), y(t) R m, is said to be passive if t u(τ) T y(τ) dτ

More information

Minimum Mean Squared Error Interference Alignment

Minimum Mean Squared Error Interference Alignment Minimum Mean Squared Error Interference Alignment David A. Schmidt, Changxin Shi, Randall A. Berry, Michael L. Honig and Wolfgang Utschick Associate Institute for Signal Processing Technische Universität

More information

Module 7 : Antenna. Lecture 52 : Array Synthesis. Objectives. In this course you will learn the following. Array specified by only its nulls.

Module 7 : Antenna. Lecture 52 : Array Synthesis. Objectives. In this course you will learn the following. Array specified by only its nulls. Objectives In this course you will learn the following Array specified by only its nulls. Radiation pattern of a general array. Array synthesis. Criterion for choosing number of elements in synthesized

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Multi-objective Optimization and Pareto optimality

Multi-objective Optimization and Pareto optimality Multi-objective Optimization and Pareto optimality Akshay Kumar 12072 Email: akshakr@iitk.ac.in Anurendra Kumar 12047 Email: anurendk@iitk.ac.in Abstract Multi-objective optimization, an area of multiple

More information

Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems

Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems 2382 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 59, NO 5, MAY 2011 Characterization of Convex and Concave Resource Allocation Problems in Interference Coupled Wireless Systems Holger Boche, Fellow, IEEE,

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Distributed Computation of Minimum Time Consensus for Multi-Agent Systems

Distributed Computation of Minimum Time Consensus for Multi-Agent Systems Distributed Computation of Minimum Time Consensus for Multi-Agent Systems Ameer Mulla, Deepak Patil, Debraj Chakraborty IIT Bombay, India Conference on Decision and Control 2014 Los Angeles, California,

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information

An Adaptive Sensor Array Using an Affine Combination of Two Filters

An Adaptive Sensor Array Using an Affine Combination of Two Filters An Adaptive Sensor Array Using an Affine Combination of Two Filters Tõnu Trump Tallinn University of Technology Department of Radio and Telecommunication Engineering Ehitajate tee 5, 19086 Tallinn Estonia

More information

Novel spectrum sensing schemes for Cognitive Radio Networks

Novel spectrum sensing schemes for Cognitive Radio Networks Novel spectrum sensing schemes for Cognitive Radio Networks Cantabria University Santander, May, 2015 Supélec, SCEE Rennes, France 1 The Advanced Signal Processing Group http://gtas.unican.es The Advanced

More information

PHYSICS 149: Lecture 22

PHYSICS 149: Lecture 22 PHYSICS 149: Lecture 22 Chapter 11: Waves 11.1 Waves and Energy Transport 11.2 Transverse and Longitudinal Waves 11.3 Speed of Transverse Waves on a String 11.4 Periodic Waves Lecture 22 Purdue University,

More information

1 Introduction. 2 Successive Convexification Algorithm

1 Introduction. 2 Successive Convexification Algorithm 1 Introduction There has been growing interest in cooperative group robotics [], with potential applications in construction and assembly. Most of this research focuses on grounded or mobile manipulator

More information

ORF 363/COS 323 Final Exam, Fall 2015

ORF 363/COS 323 Final Exam, Fall 2015 Name: Princeton University ORF 363/COS 323 Final Exam, Fall 2015 January 13, 2016 Instructor: AIs: A.A. Ahmadi G. Hall, H. Hao, J. Ye, Z. Zhu 1. Please write out and sign the following pledge on top of

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Beamforming. A brief introduction. Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University

Beamforming. A brief introduction. Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University Beamforming A brief introduction Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University March 2008 References Barry D. Van Veen and Kevin Buckley, Beamforming:

More information

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization

ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization ELE539A: Optimization of Communication Systems Lecture 16: Pareto Optimization and Nonconvex Optimization Professor M. Chiang Electrical Engineering Department, Princeton University March 16, 2007 Lecture

More information

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters

Laplacian Filters. Sobel Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters. Laplacian Filters Sobel Filters Note that smoothing the image before applying a Sobel filter typically gives better results. Even thresholding the Sobel filtered image cannot usually create precise, i.e., -pixel wide, edges.

More information

Transmit Beamforming Techniques for Wireless Information and Power Transfer in MISO Interference Channels

Transmit Beamforming Techniques for Wireless Information and Power Transfer in MISO Interference Channels Transmit Beamforming Techniques for Wireless Information and Power Transfer in MISO Interference Channels Hoon Lee, Student Member, IEEE, Sang-Rim Lee, Student Member, IEEE, Kyoung-Jae Lee, Member, IEEE,

More information

Sequential Convex Programming

Sequential Convex Programming Sequential Convex Programming sequential convex programming alternating convex optimization convex-concave procedure Prof. S. Boyd, EE364b, Stanford University Methods for nonconvex optimization problems

More information

EE236A Linear Programming Exercises. Prof. L. Vandenberghe Electrical Engineering Department University of California, Los Angeles

EE236A Linear Programming Exercises. Prof. L. Vandenberghe Electrical Engineering Department University of California, Los Angeles EE236A Linear Programming Exercises Prof. L. Vandenberghe Electrical Engineering Department University of California, Los Angeles Winter Quarter 2012-2013 1 1 Linear inequalities, halfspaces, polyhedra

More information

A Probabilistic Downlink Beamforming Approach with Multiplicative and Additive Channel Errors

A Probabilistic Downlink Beamforming Approach with Multiplicative and Additive Channel Errors A Probabilistic Downlin Beamforming Approach with Multiplicative and Additive Channel Errors Andreas Gründinger, Johannes Picart, Michael Joham, Wolfgang Utschic Fachgebiet Methoden der Signalverarbeitung,

More information

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Convex Optimization Prof. Nati Srebro Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Equality Constrained Optimization f 0 (x) s. t. A R p n, b R p Using access to: 2 nd order oracle

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Lecture 2: Convex functions

Lecture 2: Convex functions Lecture 2: Convex functions f : R n R is convex if dom f is convex and for all x, y dom f, θ [0, 1] f is concave if f is convex f(θx + (1 θ)y) θf(x) + (1 θ)f(y) x x convex concave neither x examples (on

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS

NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS NEW ZEALAND SCHOLARSHIP 2004 ASSESSMENT SCHEDULE FOR PHYSICS SECTION A: SHORT QUESTIONS 1(i) 2 210 4 206 84Po! 2He + 82Pb Initial mass m i = 209.983 amu Final mass m f = 209.977 amu Candidates do not successfully

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Acoustic Source Separation with Microphone Arrays CCNY

Acoustic Source Separation with Microphone Arrays CCNY Acoustic Source Separation with Microphone Arrays Lucas C. Parra Biomedical Engineering Department City College of New York CCNY Craig Fancourt Clay Spence Chris Alvino Montreal Workshop, Nov 6, 2004 Blind

More information

Algorithm-Hardware Co-Optimization of Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems

Algorithm-Hardware Co-Optimization of Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems L.C.Smith College of Engineering and Computer Science Algorithm-Hardware Co-Optimization of Memristor-Based Framework for Solving SOCP and Homogeneous QCQP Problems Ao Ren Sijia Liu Ruizhe Cai Wujie Wen

More information

Lecture 36 Date:

Lecture 36 Date: Lecture 36 Date: 5.04.04 Reflection of Plane Wave at Oblique Incidence (Snells Law, Brewster s Angle, Parallel Polarization, Perpendicular Polarization etc.) Introduction to RF/Microwave Introduction One

More information

Convex Optimization in Communications and Signal Processing

Convex Optimization in Communications and Signal Processing Convex Optimization in Communications and Signal Processing Prof. Dr.-Ing. Wolfgang Gerstacker 1 University of Erlangen-Nürnberg Institute for Digital Communications National Technical University of Ukraine,

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

A Unified Approach to the Design of Interpolated and Frequency Response Masking FIR Filters

A Unified Approach to the Design of Interpolated and Frequency Response Masking FIR Filters A Unified Approach to the Design of Interpolated and Frequency Response Masking FIR Filters Wu Sheng Lu akao Hinamoto University of Victoria Hiroshima University Victoria, Canada Higashi Hiroshima, Japan

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications

ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications ELE539A: Optimization of Communication Systems Lecture 6: Quadratic Programming, Geometric Programming, and Applications Professor M. Chiang Electrical Engineering Department, Princeton University February

More information