Assignment # 1. STA 355 (K. Knight) February 8, (a) by the Central Limit Theorem. n(g( Xn ) g(µ)) by the delta method ( ) (b) i.

Size: px
Start display at page:

Download "Assignment # 1. STA 355 (K. Knight) February 8, (a) by the Central Limit Theorem. n(g( Xn ) g(µ)) by the delta method ( ) (b) i."

Transcription

1 STA 355 (K. Knight) February 8, 2014 Assignment # 1 Saša Milić (a) n( n ) d N (0, σ 2 ()) by the Central Limit Theorem n(g( n ) g()) d g (θ)n (0, σ 2 ()) by the delta method σ 2 ()g (θ) 2 1 g (θ)y N (0, g (θ) 2 σ 2 ()), where Y N (0, σ 2 ()) g () ± 1 σ() (b) i. ii. ( ) 1 1/2 ( ) 1 1/2 g () ± σ 2 ± () g() ± 1/2 d ±2 1/2 + c where c is some constant. ( ) 1 1/2 ( ) 1 1/2 g () ± σ 2 ± () 2 ± 1 1 g() ± d ± ln + c where c is some constant. 2. (a) θ(f ) E F (F ) ln (F ) [ ] ( [ ]) E F ln E F (F ) (F ) E F () (F ) ln ( ) EF () (F ) by Jensen s inequality, g(x) x ln(x) is convex. ln (1) Since (F ) E F (). 0 1

2 (b) Let c be the income of everyone in the population. Then let be a constant random variable with the following probability distribution: 1 x c f(x) 0 x c Now we calculate θ(f ). θ(f ) E F (F ) ln (F ) c c (F ) ln f ( c) since we have f ( c) 0 (F ) [ c ( c c c)] ln (F ) E F () c ln (1) 0 (c) We have the following probability distribution for (the income of a member of the population): ɛ x > a f(x) 1 ɛ x 0 We first calculate (F ). (F ) E F () 0 a 0 a a xf(x) dx xf(x) dx + a xf(x) dx xf(x) dx Since x [0, a] x 0. xɛ dx So, (F ) 0 as ɛ 0. 2

3 We now look at how θ(f ) behaves as ɛ 0. θ(f ) E F (F ) ln (F ) 1 (F ) E F ln (F ) 1 (F ) E F [ ln () ln ((F ))] as ɛ 0 As ɛ 0, 1, and ln((f )). (F ) (d) Let the new distribution (once everyone in the population has had their income multiplied by k) be G kf. θ(g) E G [ Y E F (Y ) ln ( Y )] E F (Y ) [ ( )] k k E F E F (k) ln E F (k) [ ( )] k k E F ke F () ln ke F () E F E F () ln E F () θ(f ) (e) Let (F ) (G). (1 ɛ)θ(f ) + ɛθ(g) (1 ɛ)e F ln ( (1 ɛ) ln ( (1 ɛ) ln )] + ɛe G ln ( )] f(x) dx + ɛ ln ( )] f(x) + ɛ ln ln ((1 ɛ)f(x) + ɛg(x)) dx E (1 ɛ)f +ɛg ln ( )] ( )] g(x) dx ( )] ) g(x) dx θ ((1 ɛ)f + ɛg) 3

4 3. (a) Approximately n data points are expected to be outliers when n data points are drawn from a standard normal distribution. > iqr qnorm(.75) - qnorm(.25) > pnorm(qnorm(.25) * iqr) pnorm(qnorm(.75) * iqr) [1] (b) We solve analytically. 0 x < 0 (1+x) x 0 F (x) 1 (1+x) < x > x We have F 1 (1/4) 1/ , F 1 (3/4) 1 1/ , and IQR 2( 1/2 1) And so the probability of an outlier is F ( ) + 1 F ( ) F ( ) + 1 F (1.1715) We expect no outliers for a triangular distribution. (c) Approximately n, n, and n data points are expected to be outliers when n data points are drawn from t distributions with 2, 5 and 10 degrees of freedom, respectively. > v c(2,5,10) > iqr qt(.75,v) - qt(.25,v) > pt(qt(.25,v) - 1.5*iqr, v) pt(qt(.75,v) + 1.5*iqr, v) [1] (d) As the tails of the distributions in (a) (c) become heavier, the proportion of outliers increases, which should match our intuition. 4. (a) Figure 1 shows a histogram of our data. The data appears to be bimodal. The data does not appear to come from a single normal distribution, although it seems it could potentially come from a mixture of two normal distributions. 4

5 Figure 1: A histogram of 272 eruptions of the Old Faithful geyser in Yellowstone National Park. (b) As bandwidth increases, the density plot becomes increasingly smoother (see Figure 2). In particular, the curves with bandwidths 0.1 and 1.7 are undersmoothed and oversmoothed, respectively. (c) We now assume the data comes from a mixture of two normal distributions. Although not a very sophisticated method, we can look at the density plots from before (in part (b)), and use them to make good guesses as to the parameters of the mixture distribution. In particular, we observe that the two mounds of the distribution are centred at approximately 2 and 4.5, and both have a width of about 2, corresponding to a standard deviation of 0.5. It also appears the data is about twice as likely to lie somewhere in the rightmost mound, corresponding to a θ value of This initial guess corresponds to values 1 2, 2 4.5, σ 1 0.5, σ 2 0.5, θ 0.67; the resulting density for this set of parameter estimates is shown in Figure 3a. After adjusting these parameters further, we have the density in Figure 3b, which more correctly matches the kernel density estimates obtained before. 5

6 N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth N 272 Bandwidth 1.7 Figure 2: Estimates of the distribution of the geyser data using the R density function with varying bandwidths. 6

7 density.default(x dat) N 272 Bandwidth (a) 1 2, 2 4.5, σ 1 0.5, σ 2 0.5, θ 0.67 density.default(x dat) N 272 Bandwidth (b) 1 1.9, 2 4.4, σ 1 0.4, σ 2 0.5, θ 0.64 Figure 3: Estimating parameters for a mixture of two normal distributions. The kernel density estimation (with the default bandwidth in R) is the dotted line. 7

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 2: PROBABILITY DISTRIBUTIONS Parametric Distributions Basic building blocks: Need to determine given Representation: or? Recall Curve Fitting Binary Variables

More information

1 Measures of the Center of a Distribution

1 Measures of the Center of a Distribution 1 Measures of the Center of a Distribution Qualitative descriptions of the shape of a distribution are important and useful. But we will often desire the precision of numerical summaries as well. Two aspects

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

Estimating Gaussian Mixture Densities with EM A Tutorial

Estimating Gaussian Mixture Densities with EM A Tutorial Estimating Gaussian Mixture Densities with EM A Tutorial Carlo Tomasi Due University Expectation Maximization (EM) [4, 3, 6] is a numerical algorithm for the maximization of functions of several variables

More information

The standard deviation as a descriptive statistic

The standard deviation as a descriptive statistic The standard deviation as a descriptive statistic by Von Bing Yap* Department of Statistics and Applied Probability, National University of Singapore Introduction - ':f The bulk of statistks essentially

More information

arxiv: v1 [stat.me] 25 Mar 2019

arxiv: v1 [stat.me] 25 Mar 2019 -Divergence loss for the kernel density estimation with bias reduced Hamza Dhaker a,, El Hadji Deme b, and Youssou Ciss b a Département de mathématiques et statistique,université de Moncton, NB, Canada

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Michael R. Roberts Department of Finance The Wharton School University of Pennsylvania July 28, 2009 Michael R. Roberts Nonparametric Methods 1/42 Overview Great for data analysis

More information

Convergence Tests. Theorem. (the divergence test)., then the series u k diverges. k k. (b) If lim u = 0, then the series u may either converge

Convergence Tests. Theorem. (the divergence test)., then the series u k diverges. k k. (b) If lim u = 0, then the series u may either converge Convergence Tests We are now interested in developing tests to tell whether or not a series converges, without having to guess at its sum. The first such test is entirely a negative result. Theorem. (the

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

Coordinate Algebra Practice EOCT Answers Unit 4

Coordinate Algebra Practice EOCT Answers Unit 4 Coordinate Algebra Practice EOCT Answers #1 This table shows the average low temperature, in ºF, recorded in Macon, GA, and Charlotte, NC, over a six-day period. Which conclusion can be drawn from the

More information

CS 590D Lecture Notes

CS 590D Lecture Notes CS 590D Lecture Notes David Wemhoener December 017 1 Introduction Figure 1: Various Separators We previously looked at the perceptron learning algorithm, which gives us a separator for linearly separable

More information

How Monte Carlo Sampling Contributes to Data Analysis. Outline

How Monte Carlo Sampling Contributes to Data Analysis. Outline http://www.math.umd.edu/~evs/mmistat09.pdf How Monte Carlo Sampling Contributes to Data Analysis Eric Slud, Mathematics Department, UMCP Objective: to explain an experimental approach to Probability &

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Chapter 5. Understanding and Comparing. Distributions

Chapter 5. Understanding and Comparing. Distributions STAT 141 Introduction to Statistics Chapter 5 Understanding and Comparing Distributions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 27 Boxplots How to create a boxplot? Assume

More information

Exam C Solutions Spring 2005

Exam C Solutions Spring 2005 Exam C Solutions Spring 005 Question # The CDF is F( x) = 4 ( + x) Observation (x) F(x) compare to: Maximum difference 0. 0.58 0, 0. 0.58 0.7 0.880 0., 0.4 0.680 0.9 0.93 0.4, 0.6 0.53. 0.949 0.6, 0.8

More information

Functional Gradient Descent

Functional Gradient Descent Statistical Techniques in Robotics (16-831, F12) Lecture #21 (Nov 14, 2012) Functional Gradient Descent Lecturer: Drew Bagnell Scribe: Daniel Carlton Smith 1 1 Goal of Functional Gradient Descent We have

More information

Outline. 1. Histograms 2. Stem-and-leaf plots 3. Dot charts and dot plots 4. Boxplots 5. Kernel density estimates 6. QQ-plots

Outline. 1. Histograms 2. Stem-and-leaf plots 3. Dot charts and dot plots 4. Boxplots 5. Kernel density estimates 6. QQ-plots Outline 1. Histograms 2. Stem-and-leaf plots 3. Dot charts and dot plots 4. Boxplots 5. Kernel density estimates 6. QQ-plots Histograms Histograms display a sample estimate of the density or mass function

More information

ON SOME TWO-STEP DENSITY ESTIMATION METHOD

ON SOME TWO-STEP DENSITY ESTIMATION METHOD UNIVESITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON SOME TWO-STEP DENSITY ESTIMATION METHOD by Jolanta Jarnicka Abstract. We introduce a new two-step kernel density estimation method,

More information

Expectation Maximization (EM) Algorithm. Each has it s own probability of seeing H on any one flip. Let. p 1 = P ( H on Coin 1 )

Expectation Maximization (EM) Algorithm. Each has it s own probability of seeing H on any one flip. Let. p 1 = P ( H on Coin 1 ) Expectation Maximization (EM Algorithm Motivating Example: Have two coins: Coin 1 and Coin 2 Each has it s own probability of seeing H on any one flip. Let p 1 = P ( H on Coin 1 p 2 = P ( H on Coin 2 Select

More information

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved.

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved. 1-1 Chapter 1 Sampling and Descriptive Statistics 1-2 Why Statistics? Deal with uncertainty in repeated scientific measurements Draw conclusions from data Design valid experiments and draw reliable conclusions

More information

Kernel Density Estimation

Kernel Density Estimation Kernel Density Estimation Univariate Density Estimation Suppose tat we ave a random sample of data X 1,..., X n from an unknown continuous distribution wit probability density function (pdf) f(x) and cumulative

More information

COMS 4771 Introduction to Machine Learning. James McInerney Adapted from slides by Nakul Verma

COMS 4771 Introduction to Machine Learning. James McInerney Adapted from slides by Nakul Verma COMS 4771 Introduction to Machine Learning James McInerney Adapted from slides by Nakul Verma Announcements HW1: Please submit as a group Watch out for zero variance features (Q5) HW2 will be released

More information

The Expectation Maximization Algorithm

The Expectation Maximization Algorithm The Expectation Maximization Algorithm Frank Dellaert College of Computing, Georgia Institute of Technology Technical Report number GIT-GVU-- February Abstract This note represents my attempt at explaining

More information

COMS 4771 Regression. Nakul Verma

COMS 4771 Regression. Nakul Verma COMS 4771 Regression Nakul Verma Last time Support Vector Machines Maximum Margin formulation Constrained Optimization Lagrange Duality Theory Convex Optimization SVM dual and Interpretation How get the

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by:

1 Newton s Method. Suppose we want to solve: x R. At x = x, f (x) can be approximated by: Newton s Method Suppose we want to solve: (P:) min f (x) At x = x, f (x) can be approximated by: n x R. f (x) h(x) := f ( x)+ f ( x) T (x x)+ (x x) t H ( x)(x x), 2 which is the quadratic Taylor expansion

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

Math 362, Problem set 1

Math 362, Problem set 1 Math 6, roblem set Due //. (4..8) Determine the mean variance of the mean X of a rom sample of size 9 from a distribution having pdf f(x) = 4x, < x

More information

Watch TV 4 7 Read 5 2 Exercise 2 4 Talk to friends 7 3 Go to a movie 6 5 Go to dinner 1 6 Go to the mall 3 1

Watch TV 4 7 Read 5 2 Exercise 2 4 Talk to friends 7 3 Go to a movie 6 5 Go to dinner 1 6 Go to the mall 3 1 Unit 3 Lesson 1 Investigation 2 Check Your Understanding Name: A couple decides to measure their compatibility by ranking their favorite leisure activities. The rankings are given below in the table. Mallisa

More information

Robustness. James H. Steiger. Department of Psychology and Human Development Vanderbilt University. James H. Steiger (Vanderbilt University) 1 / 37

Robustness. James H. Steiger. Department of Psychology and Human Development Vanderbilt University. James H. Steiger (Vanderbilt University) 1 / 37 Robustness James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 37 Robustness 1 Introduction 2 Robust Parameters and Robust

More information

Data-Based Choice of Histogram Bin Width. M. P. Wand. Australian Graduate School of Management. University of New South Wales.

Data-Based Choice of Histogram Bin Width. M. P. Wand. Australian Graduate School of Management. University of New South Wales. Data-Based Choice of Histogram Bin Width M. P. Wand Australian Graduate School of Management University of New South Wales 13th May, 199 Abstract The most important parameter of a histogram is the bin

More information

1 Exponents CHAPTER. 1. Simplify each expression. Write your answer in exponential notation.

1 Exponents CHAPTER. 1. Simplify each expression. Write your answer in exponential notation. CHAPTER 1 Exponents 1. Simplify each expression. Write your answer in exponential notation. a) ( 5 ) 3 5 2 4 10 2 2 0 15 3 b) ( 7 7 ) 7 5 3 4 2 7 20 7 7 c) 4 4 ( 0.2) ( 0.5) 5 5 ( 0.5) ( 0.2) d) 6 7 10

More information

Chapter 4. Displaying and Summarizing. Quantitative Data

Chapter 4. Displaying and Summarizing. Quantitative Data STAT 141 Introduction to Statistics Chapter 4 Displaying and Summarizing Quantitative Data Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 31 4.1 Histograms 1 We divide the range

More information

MTAEA Continuity and Limits of Functions

MTAEA Continuity and Limits of Functions School of Economics, Australian National University February 1, 2010 Continuous Functions. A continuous function is one we can draw without taking our pen off the paper Definition. Let f be a real-valued

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

Example: Data from the Child Health and Development Study

Example: Data from the Child Health and Development Study Example: Data from the Child Health and Development Study Can we use linear regression to examine how well length of gesta:onal period predicts birth weight? First look at the sca@erplot: Does a linear

More information

Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures

Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures Maximum Smoothed Likelihood for Multivariate Nonparametric Mixtures David Hunter Pennsylvania State University, USA Joint work with: Tom Hettmansperger, Hoben Thomas, Didier Chauveau, Pierre Vandekerkhove,

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

2011 Form B Solution. Jim Rahn

2011 Form B Solution. Jim Rahn Form B Solution By Jim Rahn Form B AB 6 6 S'( t) dt 7.8 mm 6 S '( t) dt.86 mm or.864 mm c) S '(7).96998 dv d( r h) dh dh r r dt dt dt dt dr since r is constant, dt dv dh r.96998 6.8 mm dt dt day d) D()=M

More information

Solutions to Math 41 First Exam October 15, 2013

Solutions to Math 41 First Exam October 15, 2013 Solutions to Math 41 First Exam October 15, 2013 1. (16 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether

More information

14 Lecture 14 Local Extrema of Function

14 Lecture 14 Local Extrema of Function 14 Lecture 14 Local Extrema of Function 14.1 Taylor s Formula with Lagrangian Remainder Term Theorem 14.1. Let n N {0} and f : (a,b) R. We assume that there exists f (n+1) (x) for all x (a,b). Then for

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries EC 521 MATHEMATICAL METHODS FOR ECONOMICS Lecture 1: Preliminaries Murat YILMAZ Boğaziçi University In this lecture we provide some basic facts from both Linear Algebra and Real Analysis, which are going

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

Midterm Exam, Thursday, October 27

Midterm Exam, Thursday, October 27 MATH 18.152 - MIDTERM EXAM 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Midterm Exam, Thursday, October 27 Answer questions I - V below. Each question is worth 20 points, for a total of

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Applications of Differentiation

Applications of Differentiation MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Module9 7 Introduction Applications of to Matrices Differentiation y = x(x 1)(x 2) d 2

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB:

Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: Computer projects for Mathematical Statistics, MA 486. Some practical hints for doing computer projects with MATLAB: You can save your project to a text file (on a floppy disk or CD or on your web page),

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

= (, ) V λ (1) λ λ ( + + ) P = [ ( ), (1)] ( ) ( ) = ( ) ( ) ( 0 ) ( 0 ) = ( 0 ) ( 0 ) 0 ( 0 ) ( ( 0 )) ( ( 0 )) = ( ( 0 )) ( ( 0 )) ( + ( 0 )) ( + ( 0 )) = ( + ( 0 )) ( ( 0 )) P V V V V V P V P V V V

More information

ISyE 6739 Test 1 Solutions Summer 2015

ISyE 6739 Test 1 Solutions Summer 2015 1 NAME ISyE 6739 Test 1 Solutions Summer 2015 This test is 100 minutes long. You are allowed one cheat sheet. 1. (50 points) Short-Answer Questions (a) What is any subset of the sample space called? Solution:

More information

Science One Math. January

Science One Math. January Science One Math January 10 2018 (last time) The Fundamental Theorem of Calculus (FTC) Let f be continuous on an interval I containing a. 1. Define F(x) = f t dt with F (x) = f(x). on I. Then F is differentiable

More information

Additive Isotonic Regression

Additive Isotonic Regression Additive Isotonic Regression Enno Mammen and Kyusang Yu 11. July 2006 INTRODUCTION: We have i.i.d. random vectors (Y 1, X 1 ),..., (Y n, X n ) with X i = (X1 i,..., X d i ) and we consider the additive

More information

LECTURE NOTE #3 PROF. ALAN YUILLE

LECTURE NOTE #3 PROF. ALAN YUILLE LECTURE NOTE #3 PROF. ALAN YUILLE 1. Three Topics (1) Precision and Recall Curves. Receiver Operating Characteristic Curves (ROC). What to do if we do not fix the loss function? (2) The Curse of Dimensionality.

More information

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it

Statistics 300B Winter 2018 Final Exam Due 24 Hours after receiving it Statistics 300B Winter 08 Final Exam Due 4 Hours after receiving it Directions: This test is open book and open internet, but must be done without consulting other students. Any consultation of other students

More information

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 Math 201-203-RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 What is the Antiderivative? In a derivative problem, a function f(x) is given and you find the derivative f (x) using

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

Lecture 10: Singular Perturbations and Averaging 1

Lecture 10: Singular Perturbations and Averaging 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 10: Singular Perturbations and

More information

MATHEMATICS SYLLABUS SECONDARY 4th YEAR

MATHEMATICS SYLLABUS SECONDARY 4th YEAR European Schools Office of the Secretary-General Pedagogical Development Unit Ref.:010-D-591-en- Orig.: EN MATHEMATICS SYLLABUS SECONDARY 4th YEAR 6 period/week course APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Kernel density estimation

Kernel density estimation Kernel density estimation Patrick Breheny October 18 Patrick Breheny STA 621: Nonparametric Statistics 1/34 Introduction Kernel Density Estimation We ve looked at one method for estimating density: histograms

More information

This test has 30 questions. ANSWER ALL QUESTIONS. All questions carry equal (4) marks.

This test has 30 questions. ANSWER ALL QUESTIONS. All questions carry equal (4) marks. 207 Booklet No. TEST CODE: PEA Forenoon Questions: 30 Time: 2 hours On the answer booklet write your Name, Registration number, Test Centre, Test Code and the Number of this Booklet in the appropriate

More information

Efficient and Robust Scale Estimation

Efficient and Robust Scale Estimation Efficient and Robust Scale Estimation Garth Tarr, Samuel Müller and Neville Weber School of Mathematics and Statistics THE UNIVERSITY OF SYDNEY Outline Introduction and motivation The robust scale estimator

More information

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION MATH 7 R MIDTERM EXAM SOLUTION FALL 6 - MOON Name: Write your answer neatly and show steps. Except calculators, any electronic devices including laptops and cell phones are not allowed. () (5 pts) Find

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

Nonparametric estimation under Shape Restrictions

Nonparametric estimation under Shape Restrictions Nonparametric estimation under Shape Restrictions Jon A. Wellner University of Washington, Seattle Statistical Seminar, Frejus, France August 30 - September 3, 2010 Outline: Five Lectures on Shape Restrictions

More information

Eruptions of the Old Faithful geyser

Eruptions of the Old Faithful geyser Eruptions of the Old Faithful geyser geyser2.ps Topics covered: Bimodal distribution. Data summary. Examination of univariate data. Identifying subgroups. Prediction. Key words: Boxplot. Histogram. Mean.

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Estimation of multivariate critical layers: Applications to rainfall data

Estimation of multivariate critical layers: Applications to rainfall data Elena Di Bernardino, ICRA 6 / RISK 2015 () Estimation of Multivariate critical layers Barcelona, May 26-29, 2015 Estimation of multivariate critical layers: Applications to rainfall data Elena Di Bernardino,

More information

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer.

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer. . Correct The Mistake Determine whether these equations are false, and if so write the correct answer. ( x ( x (a ln + ln = ln(x (b e x e y = e xy (c (d d dx cos(4x = sin(4x 0 dx xe x = (a This is an incorrect

More information

STUDY GUIDE First Semester Exam Algebra 2 and Pre AICE Math 3 Answer Section

STUDY GUIDE First Semester Exam Algebra 2 and Pre AICE Math 3 Answer Section STUDY GUIDE First Semester Exam Algebra 2 and Pre AICE Math 3 Answer Section 1. ANS: B STA: MACC.912.F-BF.2.3 TOP: 1-2 Introduction to Parent Functions 2. ANS: C STA: MACC.912.F-BF.2.3 TOP: 1-3 Transforming

More information

Introduction to Statistics

Introduction to Statistics Introduction to Statistics Data and Statistics Data consists of information coming from observations, counts, measurements, or responses. Statistics is the science of collecting, organizing, analyzing,

More information

Computation of an efficient and robust estimator in a semiparametric mixture model

Computation of an efficient and robust estimator in a semiparametric mixture model Journal of Statistical Computation and Simulation ISSN: 0094-9655 (Print) 1563-5163 (Online) Journal homepage: http://www.tandfonline.com/loi/gscs20 Computation of an efficient and robust estimator in

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Chapter I, Introduction from Online Statistics Education: An Interactive Multimedia Course of Study comprises public domain material by David M.

Chapter I, Introduction from Online Statistics Education: An Interactive Multimedia Course of Study comprises public domain material by David M. Chapter I, Introduction from Online Statistics Education: An Interactive Multimedia Course of Study comprises public domain material by David M. Lane, project leader, Rice University. Distributions by

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Non parametric estimation of Archimedean copulas and tail dependence. Paris, february 19, 2015.

Non parametric estimation of Archimedean copulas and tail dependence. Paris, february 19, 2015. Non parametric estimation of Archimedean copulas and tail dependence Elena Di Bernardino a and Didier Rullière b Paris, february 19, 2015. a CNAM, Paris, Département IMATH, b ISFA, Université Lyon 1, Laboratoire

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

10-725/ Optimization Midterm Exam

10-725/ Optimization Midterm Exam 10-725/36-725 Optimization Midterm Exam November 6, 2012 NAME: ANDREW ID: Instructions: This exam is 1hr 20mins long Except for a single two-sided sheet of notes, no other material or discussion is permitted

More information

Mathematical Preliminaries

Mathematical Preliminaries Mathematical Preliminaries Economics 3307 - Intermediate Macroeconomics Aaron Hedlund Baylor University Fall 2013 Econ 3307 (Baylor University) Mathematical Preliminaries Fall 2013 1 / 25 Outline I: Sequences

More information

MATH 1301, Solutions to practice problems

MATH 1301, Solutions to practice problems MATH 1301, Solutions to practice problems 1. (a) (C) and (D); x = 7. In 3 years, Ann is x + 3 years old and years ago, when was x years old. We get the equation x + 3 = (x ) which is (D); (C) is obtained

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Log-Transform Kernel Density Estimation of Income Distribution

Log-Transform Kernel Density Estimation of Income Distribution Log-Transform Kernel Density Estimation of Income Distribution Arthur Charpentier, Emmanuel Flachaire To cite this version: Arthur Charpentier, Emmanuel Flachaire. Log-Transform Kernel Density Estimation

More information

The Moment Method; Convex Duality; and Large/Medium/Small Deviations

The Moment Method; Convex Duality; and Large/Medium/Small Deviations Stat 928: Statistical Learning Theory Lecture: 5 The Moment Method; Convex Duality; and Large/Medium/Small Deviations Instructor: Sham Kakade The Exponential Inequality and Convex Duality The exponential

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Lecture 2 January 27, 2005 Lecture #2-1/27/2005 Slide 1 of 46 Today s Lecture Simple linear regression. Partitioning the sum of squares. Tests of significance.. Regression diagnostics

More information

Student: Date: Instructor: kumnit nong Course: MATH 105 by Nong https://xlitemprodpearsoncmgcom/api/v1/print/math Assignment: CH test review 1 Find the transformation form of the quadratic function graphed

More information

Yichen Qin. A dissertation submitted to The Johns Hopkins University in conformity with the. requirements for the degree of Doctor of Philosophy.

Yichen Qin. A dissertation submitted to The Johns Hopkins University in conformity with the. requirements for the degree of Doctor of Philosophy. ROBUST INFERENCE VIA Lq-LIKELIHOOD by Yichen Qin A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland

More information

Statistical Computing Session 4: Random Simulation

Statistical Computing Session 4: Random Simulation Statistical Computing Session 4: Random Simulation Paul Eilers & Dimitris Rizopoulos Department of Biostatistics, Erasmus University Medical Center p.eilers@erasmusmc.nl Masters Track Statistical Sciences,

More information

CS 147: Computer Systems Performance Analysis

CS 147: Computer Systems Performance Analysis CS 147: Computer Systems Performance Analysis Summarizing Variability and Determining Distributions CS 147: Computer Systems Performance Analysis Summarizing Variability and Determining Distributions 1

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

Brief Review of Vector Algebra

Brief Review of Vector Algebra APPENDIX Brief Review of Vector Algebra A.0 Introduction Vector algebra is used extensively in computational mechanics. The student must thus understand the concepts associated with this subject. The current

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Support Vector Machine (SVM) Hamid R. Rabiee Hadi Asheri, Jafar Muhammadi, Nima Pourdamghani Spring 2013 http://ce.sharif.edu/courses/91-92/2/ce725-1/ Agenda Introduction

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information

MCV4U - Practice Mastery Test #9 & #10

MCV4U - Practice Mastery Test #9 & #10 Name: Class: Date: ID: A MCV4U - Practice Mastery Test #9 & #10 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. x + 2 is a factor of i) x 3 3x 2 + 6x 8

More information

MATH4427 Notebook 4 Fall Semester 2017/2018

MATH4427 Notebook 4 Fall Semester 2017/2018 MATH4427 Notebook 4 Fall Semester 2017/2018 prepared by Professor Jenny Baglivo c Copyright 2009-2018 by Jenny A. Baglivo. All Rights Reserved. 4 MATH4427 Notebook 4 3 4.1 K th Order Statistics and Their

More information

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILITY DISTRIBUTIONS. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception PROBABILITY DISTRIBUTIONS Credits 2 These slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Parametric Distributions 3 Basic building blocks: Need to determine given Representation:

More information

Which range of numbers includes the third quartile of coats collected for both classes? A. 4 to 14 B. 6 to 14 C. 8 to 15 D.

Which range of numbers includes the third quartile of coats collected for both classes? A. 4 to 14 B. 6 to 14 C. 8 to 15 D. EOCT Review: Units 4 6 Unit 4: Describing Data 1) This table shows the average low temperature, in ºF, recorded in Macon, GA, and Charlotte, NC, over a six-day period. Day 1 3 4 5 6 Temperature, in F,

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information