Applications of First-Principles Method in Studying Fusion Materials

Size: px
Start display at page:

Download "Applications of First-Principles Method in Studying Fusion Materials"

Transcription

1 Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Applications of First-Principles Method in Studying Fusion Materials by Guang-Hong LU ( 吕广宏 ) Beihang University

2 First-principles method - Electronic scale

3 first principles According to the interaction between nucleus and electrons based on quantum mechanics principles, first principles method finds the solution to the Schrodinger equation through series of approximations and simplifications. 1D Schrodinger equation Wave function 2D Schrodinger equation Eigen value, Eigen function Stationary Schrodinger equation Energy, electron density

4 Difficulties in solving the Schrödinger equation Dirac (1929): The difficulty is only that the exact application of quantum theory leads to equations much too complicated to be soluble. Large number of strongly interacting atoms in a solid Schrödinger equation: Simple to write, yet hard to solve equation Calculation in the past 100 years: Physical models and theories to simplify of the equations

5 Outline Introduction (first principles) Introduction (history of first principles) Basic principles calculation of total energy electron-electron interaction (DFT) Bloch s theorem periodic system electron-ion interaction (pseudopotential) Supercell technique Computational procedure Future 5

6 Let us start to learn how to do a simulation of fusion materials from an important issue

7 Bottleneck issues for future fusion reactor Two isotopes of H atomic nucleus: Deuterium (D), Tritium (T) He atomic nucleus with two protons D T He n free neutron Physical problem Plasma stability: long pulse, high power Tritium self-sustainment Materials problem Structure & properties under extreme future conditions (irradiation). 7

8 钨 : 最有前途的面对等离子体材料 Tungsten: Most promising PFM so far Advantages Disadvantages Role High melting point, high thermal conductivity low sputtering High DBTT; recrystallization brittleness; high Z Withstand H/He/Heat flux 等离子体研制的穿管型钨铜偏滤器部件小模块 (W-Cu monoblock by CAS-IPP) Full-W Divertor

9 钨基材料面临的极端条件 : 三重辐照 Extreme conditions: 3-fold irradiations 中子辐照 Neutron SOL region 高热辐照 Heat 等离子体辐照 Plasma 壁材料 Wall Material

10 Hydrogen/helium Plasma Irradiation in metals Migration Solubility W surface Low solubility He, H Fast interstitial migration vacancy He, H Deep trapping in vacancy & grain boundaries, dislocations (defects) He & H agglomeration bubbles & blisters fuzz structure Precipitation of He in bubbles He & H trapping, clustering bubbles 11.3eV-He + 3.5x10 27 He + /m 2 TEM 38 ev-d D/m 2 Alimov et al., Phys.Scr S. Kajita et al., Nucl. Fusion 47(2007) 1358.

11 Sputtering Yield 溅射侵蚀 : 等离子体中钨杂质问题 Sputtering & Erosion: tungsten impurity W impurities Limit for W impurity in plasma < 20ppm Bubble-bursting & Sputtering Bursting PFM 等离子体 Plasma (W < 2 mg) ( 钨杂质 <2mg) PFM Energy (Sputtering threshold ) Sputtering data, Report IPP 9/82 (1993) crack/exfoliation Blistering on W Yamanishi, Yamanishi, Nucl Fusion Nucl Fusion (2007) (2007) Cross-section of ITER Fusion Engineering and Design 82(2007)

12 钨的溅射 Sputtering of tungsten Particle H/D/T 3 He/ 4 He C N O Ne Ar W E sput.th (ev) 458/229/ / W. Eckstein, Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies Incident energy > E sput.th long-duration exposure 100 ev~1kev Sputtering & damage Incident energy < E sput.th Interactions between H isotopes/he and surface W sputtering resistance decrease

13 Question: What is the physical mechanism for the H bubble formation in W? H molecule (H 2 ) Preliminary stage of H bubble formation

14 Mechanism for hydrogen bubble formation H bubble Process of H bubble formation Bubble control

15 Stability of H in the intrinsic W J. Nucl. Mater. 390, 1032 (2009) Tetrahedral interstitial site (TIS) Octahedral interstitial site (OIS) Substitutional site Single H atom prefers to occupy the tetrahedral interstitial site in W in comparison with the octahedral interstitial and substitutional case.

16 Two H atoms in the intrinsic W J. Nucl. Mater. 390, 1032 (2009) Distance between two H atoms: 2.2 augstrom H-H bond length in H 2 : 0.75 augstrom H 2 cannot be formed in intrinsic W

17 H occupation and accumulation at vacancy: optimal charge density W 2H 4H 6H Optimal charge density for single H embedded at a vacancy. 8H The isosurface of optimal charge for H for different number of H atoms at the monovacancy. W Such H segregation can saturate the internal vacancy surface, leading to the formation of the H 2 molecule and the preliminary nucleation of the H bubble. H Å 10H Y-L Liu & G-H Lu, Phys. Rev. B 79, (2009)

18 Trapping of H in monovacancy Monovacancy traps up to 10 H. Average H embedding energy inside a vacancy is lower than that at TIS far away from the vacancy Y-L Liu and G-H Lu, Phys Rev B (2009)

19 Diffusion of H in intrinsic W Site 1, 2 and 4: tetrahedral interstitial sites. Site 3: octahedral interstitial site. The arrows show the corresponding diffusion paths. The energy barrier is 0.20 ev via the optimal diffusion path: t t path Yue-Lin Liu, Ying Zhang, G.-N. Luo, and Guang-Hong Lu, J. Nucl. Mater. (2009).

20 Hydrogen diffusion into vacancy Diffusion energy profile and the corresponding diffusion paths for H in W when the vacancy is present.

21 Optimal charge density for H in grain boundary H-B Zhou & G-H Lu, Nucl. Fusion (2010) The H-H binding energy ev (repulsion), equilibrium distance 2.15 Å. Second H atom addition makes isosurface of optimal charge density almost disappear.

22 Vacancy-trapping mechanism of H in metals Metal Vacancy or vacancy-like defects(gb, dislocation ) Phys. Rev. B 79, (2009); Nucl. Fusion 50, (2010); J. Nucl. Mater. 434, 395 (2013) Enough space to provide an optimal charge density

23 Hydrogen bubble growth: strain effect plasma irradiation H pressure(gpa) strain Process of H bubble formation retention nucleation growth blistering Bubble control

24 Dissolution of H in W under the isotropic strain Tetrahedron interstitial site (TIS) Octahedron interstitial site (OIS) First-principle calculation Linear elasticity theory The H solution energy is a linear monotonic function of the triaxial strain. Phys. Rev. Lett. 109, (2012); NIMB 269, 1731 (2011)

25 H in W/Mo/Fe/Cr under the triaxial strain 25

26 Dissolution of H in W under the biaxial strain H-B Zhou & G-H Lu. Phys. Rev. Lett. (2012) The solution energy of H effectively decreases with the increasing of both signs of anisotropic strain, due to the movement of H forced by strain. 26

27 H in W/Mo/Fe/Cr under biaxial strain 27

28 Strain-triggered cascading effect on H bubble growth H bubble region Enhancing effect of anisotropic strain on H dissolution is also applicable to other bcc metals. H accumulation Bubble formation Anisotropic strain in W Bubble growth Enhancing H solubility Phys. Rev. Lett. 109, (2012)

29 Hydrogen bubble control based on mechanism Metal Vacancy or vacancy-like defects(gb, dislocation ) Phys. Rev. B 79, (2009); Nucl. Fusion 50, (2010); J. Nucl. Mater. 434, 395 (2013) Methods Remove all existing vacancies Dope elements to occupy vacancy center: H 2 not formed

30 Synergistic behaviors of H & He in intrinsic W H. B. Zhou & G-H Lu, Nucl. Fusion (2010) Solution energy of H: 0.76 ev, 0.23eV lower than that of TIS in W without He. H-He binding energy in intrinsic W: 0.23 ev; attractive interaction 30

31 Suppressing H bubble via inert gas elements Inert gas element(he/ne/ar): closed shell electronic structure Optimal charge isosurface for a single H embedded at He-vacancy complex. Atomic configuration of H at Hevacancy complex. Inert gas elements cause a redistribution of charge density inside the vacancy to make it not optimal for the formation of H 2 molecule, which can be treated as a preliminary nucleation of the H bubbles. H-B Zhou & G-H Lu, Nucl. Fusion 50, (2010)

32 Reduced retention of D by He in experiments without doped-he Reduced by an order of magnitude with doped-he M.J. Baldwin, Nucl Fusion 51, (2011) O.V. Ogorodnikova, J Appl Phys 109, (2011) Effect of He on D retention Helium is the product of fusion reaction, and thus the H bubble may be able to be suppressed by controlling the content of He in fusion process.

33 D bubble suppression with D-He/Ne plasma exposure noble gas(he/ne/ar):close shell structure Experiment:He M.J. Baldwin, Nucl Fusion 51, (2011) Helium is the product of fusion, it is thus possible to control the He concentration in the fusion product to realize the H isotope bubble control. Experiment:Ne J Nucl Mater 463, 1025 (2015)

34 You can manage systems at any scales using the first-principles method with sufficiently high computer capability & advanced algorithms.

35 First-principles method - Manage system with any scale (theoretically)

36 A connection between atomic and macroscopic levels (sequential multiscale) First-principles method Elastic constants Binding energy Energy barrier mechanics thermodynamics kinetics 36

37 Critical H concentration for formation and rapid growth of H bubble Metal First principles (absolute zero) Thermodynamics parameters (Formation energy/traping energy/diffusion barrier) input thermodynamics model (finite temperature ) Critical concentration H-vacancy complex concentration Effective diffusion coefficient sequential multi-scale method L. Sun, S. Jiin, and G.-H. Lu, to be published

38 Thermodynamic model Two kinds of H dissolved in W Interstitial H atom mh-vacancy complexes Gibbs free energy changes with H f m f G n E n E m TS+ pv HI HI HV HV m Interstitial H 3H 6H 1H mh-v complex In equilibrium with H 2 gas The energy reaches a minimal value with respect to H concentration when the system reaches equilibrium.

39 Thermodynamic model The equilibrium process of the interstitial H and mh-v complexes can be treated as independent Interstitial H concentration Formation energy c HI f nhi NI EHI exp( ) N N k T M M B H-V complex concentration c HV mmax m mmax f mn m HV m EHV m exp( ) N k T m M m Key parameters: Formation energy, maximal number B E E E f HI H TIS BULK H f 1 m m EHV EHV EBULK EBULK m H N H chemical potential ( T 0 K) ( T, p) H H H M c c c H HI HV

40 H Concentration vs. pressure at different temperatures c c c H HI HV c c HI HV f nhi NI EHI exp( ) NM NM kbt mmax f m m EHV m exp( ) kt m B Critical pressure The accumulation of H into vacancy Sharp increase of H concentration beyond certain H pressure Originate from the increase of H in H-vacancy complexes

41 Definition of critical H concentration/pressure Exist a critical concentration associated with critical P at certain T Definition c m HV c HI Different mh-v complex has different grow rate 300K m c min [ c ( m) c ( m)] H HV HI c p H c min m p H Critical H concentration: minimal value of H concentration at the H-V complex which is equal to that at the interstitial

42 Critical H concentration for H bubble formation Considerable H-V complexes form and rapidly grow The formed H-V complexes will combine to form larger cluster, leading to H bubble formation

43 Critical H concentration for H bubble formation: Comparison with experiments Red:H bubble formation Black:No H bubble formation Experimental value Experiments: Peng, Lee and Ueda, J Nucl Mater 438 (2013) S1063 The methodology may contribute to evaluation of the H-induced bubble formation of metallic PFMs in further fusion reactor.

44 44

45 First-principles method - Manage system with any scale (theoretically)

46 Thanks for your attention!

Multiscale modelling of D trapping in W

Multiscale modelling of D trapping in W CMS Multiscale modelling of D trapping in W Kalle Heinola, Tommy Ahlgren and Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki, Finland Contents Background Plasma-wall

More information

Comparison of deuterium retention for ion-irradiated and neutronirradiated

Comparison of deuterium retention for ion-irradiated and neutronirradiated 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications / 1st International Conference on Fusion Energy Materials Science Comparison of deuterium retention for ion-irradiated

More information

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten Yasuhisa Oya 1) *, Makoto Kobayashi 1), Naoaki Yoshida 2),

More information

SCIENCE CHINA Physics, Mechanics & Astronomy

SCIENCE CHINA Physics, Mechanics & Astronomy SCIENCE CHINA Physics, Mechanics & Astronomy Article April 2012 Vol.55 No.4: 614 618 doi: 10.1007/s11433-012-4679-8 Stability and diffusion properties of self-interstitial atoms in tungsten: a first-principles

More information

Helium effects on Tungsten surface morphology and Deuterium retention

Helium effects on Tungsten surface morphology and Deuterium retention 1 Helium effects on Tungsten surface morphology and Deuterium retention Y. Ueda, H.Y. Peng, H. T. Lee (Osaka University) N. Ohno, S. Kajita (Nagoya University) N. Yoshida (Kyushu University) R. Doerner

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy Kyushu University Kazuhito Ohsawa Technical Meeting of the International

More information

Molecular dynamics simulations of the clustering and dislocation loop punching behaviors of noble gas atoms in tungsten

Molecular dynamics simulations of the clustering and dislocation loop punching behaviors of noble gas atoms in tungsten Molecular dynamics simulations of the clustering and dislocation loop punching behaviors of noble gas atoms in tungsten J.Z.Fang, F.Zhou, H.Q.Deng, X.L.Gan, S.F.Xiao, W.Y.Hu Hunan University Contents I,

More information

Multiple hydrogen trapping by vacancies: Its impact on defect dynamics and hydrogen retention in tungsten

Multiple hydrogen trapping by vacancies: Its impact on defect dynamics and hydrogen retention in tungsten 2014 Joint ICTP-IAEA Conference on Models and Data for Plasma-Material Interaction in Fusion Devices, 3 7 November 2014, International Centre for Theoretical Physics (ICTP), Trieste, Italy. Multiple hydrogen

More information

Fundamental science and synergy of multi-species surface interactions in high-plasma--flux environments

Fundamental science and synergy of multi-species surface interactions in high-plasma--flux environments Fundamental science and synergy of multi-species surface interactions in high-plasma--flux environments Our thanks to John Hogan Managed by UT-Battelle for the Department of Energy ReNew PMI, UCLA, March

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices!

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices! Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H :

Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H : Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H : Elaboration from DFT Yuexia Wang Institute of Modern Physics Fudan University Hefei-2016 Materials Issues Neutron flux (14MeV, 0.5-0.8

More information

Sputtering Yield of Noble Gas Irradiation onto Tungsten Surface

Sputtering Yield of Noble Gas Irradiation onto Tungsten Surface J. Adv. Simulat. Sci. Eng. Vol. 3, No. 2, 165 172. c 2016 Japan Society for Simulation Technology Sputtering Yield of Noble Gas Irradiation onto Tungsten Surface Hiroaki Nakamura 1,2,*, Seiki Saito 3,

More information

PISCES W fuzz experiments: A summary of work up to now.

PISCES W fuzz experiments: A summary of work up to now. FNST/PFC/MASCO meeting, UCLA Aug. 2-6, 2010 W fuzz experiments: A summary of work up to now. M.J. Baldwin, R.P. Doerner, D. Nishijima University of California, San Diego, USA Why do we care about fuzz?

More information

The role of PMI in MFE/IFE common research

The role of PMI in MFE/IFE common research The role of PMI in MFE/IFE common research Presented by Doerner for the Team and TITAN 1-1 Participants In 2006, Jupiter II recognized that PMI was a bridge issue between MFE and IFE R&D Both MFE and IFE

More information

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions CMS Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki,

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-3 Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Qunatum Methods for Plasma-Facing Materials Alain ALLOUCHE Univ.de Provence, Lab.de la Phys.

More information

Molecular Dynamics Study of Plasma Surface Interactions for Mixed Materials

Molecular Dynamics Study of Plasma Surface Interactions for Mixed Materials J. Plasma Fusion Res. SERIES, Vol. 9 () Molecular Dynamics Study of Plasma Surface Interactions for Mixed Materials Kaoru OHYA, Naohide MOHARA, Kensuke INAI, Atsushi ITO, Hiroaki NAKAMURA, Yoshio UEDA

More information

EROSION AND DEPOSITION MECHANISMS IN FUSION PLASMAS. A. Kirschner

EROSION AND DEPOSITION MECHANISMS IN FUSION PLASMAS. A. Kirschner EROSION AND DEPOSITION MECHANISMS IN FUSION PLASMAS A. Kirschner Institut für Energieforschung (Plasmaphysik), Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425

More information

Experience with Moving from Dpa to Changes in Materials Properties

Experience with Moving from Dpa to Changes in Materials Properties Experience with Moving from Dpa to Changes in Materials Properties Meimei Li, Argonne National Laboratory N. V. Mokhov, Fermilab 46 th ICFA Advanced Beam Dynamics Workshop Sept. 27 Oct. 1, 2010 Morschach,

More information

Hydrogen isotope accumulation in helium implantation zone in tungsten

Hydrogen isotope accumulation in helium implantation zone in tungsten Home Search Collections Journals About Contact us My IOPscience Hydrogen isotope accumulation in helium implantation zone in tungsten This content has been downloaded from IOPscience. Please scroll down

More information

Ab initio Berechungen für Datenbanken

Ab initio Berechungen für Datenbanken J Ab initio Berechungen für Datenbanken Jörg Neugebauer University of Paderborn Lehrstuhl Computational Materials Science Computational Materials Science Group CMS Group Scaling Problem in Modeling length

More information

Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection

Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection PSFC/JA-12-82 Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection K.B. Woller, D.G. Whyte, G.M. Wright, R.P. Doerner*, G. de Temmerman** * Center

More information

Available online at ScienceDirect. Physics Procedia 71 (2015 ) 30 34

Available online at  ScienceDirect. Physics Procedia 71 (2015 ) 30 34 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 71 (2015 ) 30 34 18th Conference on Plasma-Surface Interactions, PSI 2015, 5-6 February 2015, Moscow, Russian Federation and the

More information

Thomas Schwarz-Selinger Max-Planck-Institut für Plasmaphysik, Garching, Germany

Thomas Schwarz-Selinger Max-Planck-Institut für Plasmaphysik, Garching, Germany Deuterium retention and isotope exchange studies in self-ion damaged tungsten exposed to neutral atoms Project: Hydrogen retention in self-damaged and Heirradiated tungsten and alloys for PFC Sabina Markelj,

More information

Interaction of ion beams with matter

Interaction of ion beams with matter Interaction of ion beams with matter Introduction Nuclear and electronic energy loss Radiation damage process Displacements by nuclear stopping Defects by electronic energy loss Defect-free irradiation

More information

A NEW EMBEDDED-ATOM METHOD INTERATOMIC POTENTIAL FOR TUNGSTEN-HYDROGEN SYSTEM

A NEW EMBEDDED-ATOM METHOD INTERATOMIC POTENTIAL FOR TUNGSTEN-HYDROGEN SYSTEM A NEW EMBEDDED-ATOM METHOD INTERATOMIC POTENTIAL FOR TUNGSTEN-HYDROGEN SYSTEM Li-Fang Wang 1, Fei Gao 2, Xiao-Lin Shu 1, Guang-Hong Lu 1* 1 School of Physics and Nuclear Energy Engineering, Beihang University,

More information

Modelling diffusion processes of deuterium in tungsten

Modelling diffusion processes of deuterium in tungsten Modelling diffusion processes of deuterium in tungsten H. Wierenga June 17, 2013 Supervisors: Dr. P.A. Zeijlmans van Emmichoven M.H.J. t Hoen MSc Utrecht University Physics Princetonplein 5 3584 CC Utrecht

More information

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber,

More information

Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite

Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite 1 TH/7-1 Molecular Dynamics Simulation of Chemical Sputtering of Hydrogen Atom on Layer Structured Graphite A. Ito 1,2), Y. Wang 1), S. Irle 1), K. Morokuma 3), and H. Nakamura 2) 1) Nagoya University,

More information

EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE

EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE EFFECTS OF STOICHIOMETRY ON POINT DEFECTS AND IMPURITIES IN GALLIUM NITRIDE C. G. VAN DE WALLE AND J. E. NORTHRUP Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 930, USA E-mail: vandewalle@parc.com

More information

J. Boisse 1,2, A. De Backer 1,3, C. Domain 4,5, C.S. Becquart 1,4

J. Boisse 1,2, A. De Backer 1,3, C. Domain 4,5, C.S. Becquart 1,4 MODELLING SELF TRAPPING AND TRAP MUTATION IN TUNGSTEN USING DFT AND MOLECULAR DYNAMICS WITH AN EMPIRICAL POTENTIAL BASED ON DFT J. Boisse 1,2, A. De Backer 1,3, C. Domain 4,5, C.S. Becquart 1,4 1 Unité

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen W. Jacob, C. Hopf, and M. Schlüter Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr.

More information

Multiscale study on hydrogen mobility in metallic fusion divertor material

Multiscale study on hydrogen mobility in metallic fusion divertor material UNIVERSITY OF HELSINKI REPORT SERIES IN PHYSICS HU-P-D172 Multiscale study on hydrogen mobility in metallic fusion divertor material Kalle Heinola Division of Materials Physics Department of Physics Faculty

More information

Chapter 10 Section 4 Notes

Chapter 10 Section 4 Notes Chapter 10 Section 4 Notes This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor IAEA-CRP Plasma-Wall Interaction with Reduced Activation Steel Surfaces in Fusion Devices

More information

DIFFUSION IN SOLIDS. IE-114 Materials Science and General Chemistry Lecture-5

DIFFUSION IN SOLIDS. IE-114 Materials Science and General Chemistry Lecture-5 DIFFUSION IN SOLIDS IE-114 Materials Science and General Chemistry Lecture-5 Diffusion The mechanism by which matter is transported through matter. It is related to internal atomic movement. Atomic movement;

More information

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust FT/P1-19 In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust T. Hino 1), H. Yoshida 1), M. Akiba 2), S. Suzuki 2), Y. Hirohata 1) and Y. Yamauchi 1) 1) Laboratory of Plasma

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Computer simulation of multi-elemental fusion reactor materials

Computer simulation of multi-elemental fusion reactor materials UNIVERSITY OF HELSINKI REPORT SERIES IN PHYSICS HU-P-D186 Computer simulation of multi-elemental fusion reactor materials Katharina Vörtler Division of Materials Physics Department of Physics Faculty of

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-3 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 Electrically active defects in semiconductors induced by radiation

More information

Chemical Erosion and Critical Issues for ITER

Chemical Erosion and Critical Issues for ITER Chemical Erosion and Critical Issues for ITER J. Roth Max-Planck-Institut für Plasmaphysik, Garching Chemical Erosion Studies Erosion yields: Dependence on temperature, energy and flux Emitted hydrocarbons

More information

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device 1 EX/P4-8 Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device T. Hino 1,2), T. Hirata 1), N. Ashikawa 2), S. Masuzaki 2), Y. Yamauchi

More information

Hydrogenic retention of high-z refractory metals exposed to ITER divertor relevant plasma conditions

Hydrogenic retention of high-z refractory metals exposed to ITER divertor relevant plasma conditions 1 Hydrogenic retention of high-z refractory metals exposed to ITER divertor relevant plasma conditions G.M. Wright 1), E. Alves 2), L.C. Alves 2), N.P. Barradas 2), M. Mayer 3), G.J. van Rooij 1), R.S.

More information

Multiscale modelling of H and He in W or: 18 years of atomistic simulations of W

Multiscale modelling of H and He in W or: 18 years of atomistic simulations of W Multiscale modelling of H and He in W or: 18 years of atomistic simulations of W K. Nordlund, J. Polvi, K. O. E. Henriksson, K. Heinola, T. Ahlgren, A. E. Sand, A. Lasa, C. Björkas, E. Safi, F. Djurabekova

More information

Report A+M/PSI Data Centre NRC Kurchatov Institute

Report A+M/PSI Data Centre NRC Kurchatov Institute Report A+M/PSI Data Centre NRC Kurchatov Institute Yu.V.Martynenko 21st Meeting of the Atomic and Molecular Data Centers and ALADDIN Network Vienna, 07-09 September 2011 The main activities on A+M/PSI

More information

High temperature superconductors for fusion magnets - influence of neutron irradiation

High temperature superconductors for fusion magnets - influence of neutron irradiation High temperature superconductors for fusion magnets - influence of neutron irradiation Michal Chudý M.Eisterer, H.W.Weber Outline 1. Superconductors in thermonuclear fusion 2. High temperature superconductors

More information

Time accelerated Atomic Kinetic Monte Carlo for radiation damage modelling

Time accelerated Atomic Kinetic Monte Carlo for radiation damage modelling PERFORM 60 FP7 Project Time accelerated Atomic Kinetic Monte Carlo for radiation damage modelling C. Domain, C.S. Becquart, R. Ngayam-Happy EDF R&D Dpt Matériaux & Mécanique des Composants Les Renardieres,

More information

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions

Atomic and Nuclear Physics. Topic 7.3 Nuclear Reactions Atomic and Nuclear Physics Topic 7.3 Nuclear Reactions Nuclear Reactions Rutherford conducted experiments bombarding nitrogen gas with alpha particles from bismuth-214. He discovered that fast-moving particles

More information

Modelling of radiation damage in tungsten including He production

Modelling of radiation damage in tungsten including He production Modelling of radiation damage in tungsten including He production C.S. Becquart 1, C. Domain 2 A. De Backer 1 M.F. Barthe 3 M. Hou 4, C. Ortiz 5 1 Unité Matériaux Et Techniques, UMET, UMR 8207, Villeneuve

More information

*Corresponding author: tel.: , (Matej Mayer)

*Corresponding author: tel.: ,   (Matej Mayer) Influence of MeV helium implantation on deuterium retention in radiation damaged tungsten E. Markina, M. Mayer *, S. Elgeti (Lindig) and T. Schwarz-Selinger Max-Planck-Institut für Plasmaphysik, EURATOM

More information

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide Supporting information for Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum disulfide Jinhua Hong,, Yuhao Pan,, Zhixin Hu, Danhui Lv, Chuanhong Jin, *, Wei Ji, *, Jun Yuan,,*,

More information

Atomistic simulations of plasma-material interactions in fusion reactors

Atomistic simulations of plasma-material interactions in fusion reactors UNIVERSITY OF HELSINKI REPORT SERIES IN PHYSICS HU-P-D257 Atomistic simulations of plasma-material interactions in fusion reactors Elnaz Safi Division of Materials Physics Department of Physics Faculty

More information

Radiation damage I. Steve Fitzgerald.

Radiation damage I. Steve Fitzgerald. Radiation damage I Steve Fitzgerald http://defects.materials.ox.ac.uk/ Firstly an apology Radiation damage is a vast area of research I cannot hope to cover much in any detail I will try and introduce

More information

Estimation of the contribution of gaps to tritium retention in the divertor of ITER

Estimation of the contribution of gaps to tritium retention in the divertor of ITER Estimation of contribution of gaps to tritium retention in the divertor of ITER 1 Estimation of the contribution of gaps to tritium retention in the divertor of ITER 1. Introduction D. Matveev 1,2, A.

More information

Simulation of cascades in tungsten-helium N. Juslin a ; V. Jansson a ; K. Nordlund a a

Simulation of cascades in tungsten-helium N. Juslin a ; V. Jansson a ; K. Nordlund a a This article was downloaded by: [Nordlund, K.] On: 15 July 2010 Access details: Access Details: [subscription number 924307958] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University 微纳光电子材料与器件工艺原理 Doping 掺杂 Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Semiconductor PN Junctions Xing Sheng, EE@Tsinghua LEDs lasers detectors solar

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 24 Apr 2006

arxiv:cond-mat/ v1 [cond-mat.soft] 24 Apr 2006 J. Plasma Physics (2005), vol. *, part *, pp. 1 4. c 2005 Cambridge University Press DOI: 10.1017/S0000000000000000 Printed in the United Kingdom 1 arxiv:cond-mat/0604543v1 [cond-mat.soft] 24 Apr 2006

More information

Molecular dynamics simulations of plasma interaction with berylliumbased fusion reactor materials

Molecular dynamics simulations of plasma interaction with berylliumbased fusion reactor materials Molecular dynamics simulations of plasma interaction with berylliumbased fusion reactor materials Carolina Björkas Ane Lasa Andrea Meinander and Kai Nordlund Department of Physics University of Helsinki,

More information

Introduction to First-Principles Method

Introduction to First-Principles Method Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Introduction to First-Principles Method by Guang-Hong LU ( 吕广宏 ) Beihang University Computer

More information

Plasma-Wall Interaction: A Multi-Scale Problem

Plasma-Wall Interaction: A Multi-Scale Problem Plasma-Wall Interaction: A Multi-Scale Problem R. Schneider 1 Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr.1, D-17491 Greifswald, Germany Abstract

More information

Li ion migration in Li 3 PO 4 electrolytes: Effects of O vacancies and N substitutions. Winston-Salem, North Carolina 27106, USA

Li ion migration in Li 3 PO 4 electrolytes: Effects of O vacancies and N substitutions. Winston-Salem, North Carolina 27106, USA 75 Downloaded 22 Dec 28 to 52.7.52.46. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp ECS Transactions, 3 (26) 75-82 (28).49/.35379 The Electrochemical Society

More information

Atomistic Simulation of Nuclear Materials

Atomistic Simulation of Nuclear Materials BEAR Launch 2013 24 th June 2013 Atomistic Simulation of Nuclear Materials Dr Mark S D Read School of Chemistry Nuclear Education and Research Centre www.chem.bham.ac.uk Birmingham Centre for Nuclear Education

More information

Revision Guide for Chapter 14

Revision Guide for Chapter 14 Revision Guide for Chapter 14 Contents Revision Checklist Revision Notes Values of the energy kt...4 The Boltzmann factor...4 Thermal activation processes...5 Summary Diagrams Climbing a ladder by chance...7

More information

Positron theoretical prediction

Positron theoretical prediction Positron theoretical prediction Schrödinger equation: ˆ 2 p x, t Vx, t x, t i 22 m tt non-relativistic equation of motion for electron Erwin Schrödinger 1933 Nobel prize Positron theoretical prediction

More information

Trapping of He Clusters by Inert Gas Impurities in Tungsten: First-Principles Predictions and Experimental Validation

Trapping of He Clusters by Inert Gas Impurities in Tungsten: First-Principles Predictions and Experimental Validation CCFE-PR(14)07 Duc Nguyen-Manh, S.L. Dudarev Trapping of He Clusters by Inert Gas Impurities in Tungsten: First-Principles Predictions and Experimental Validation Enquiries about copyright and reproduction

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University,

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University, Supplementary Information to Solubility of Boron, Carbon and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations Xiaohui Hu, 1,2 Torbjörn Björkman 2,3, Harri Lipsanen

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

Chapter II: Interactions of ions with matter

Chapter II: Interactions of ions with matter Chapter II: Interactions of ions with matter 1 Trajectories of α particles of 5.5 MeV Source: SRIM www.srim.org 2 Incident proton on Al: Bohr model v=v 0 E p =0.025 MeV relativistic effect E p =938 MeV

More information

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE Scott T. Dunham,, Jakyoung Song, and Chihak Ahn Dept. of Electrical Engineering, Dept. of Physics University of Washington, Box 35500,

More information

Kinetic Monte Carlo: from transition probabilities to transition rates

Kinetic Monte Carlo: from transition probabilities to transition rates Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot

More information

Electronic-structure calculations at macroscopic scales

Electronic-structure calculations at macroscopic scales Electronic-structure calculations at macroscopic scales M. Ortiz California Institute of Technology In collaboration with: K. Bhattacharya, V. Gavini (Caltech), J. Knap (LLNL) BAMC, Bristol, March, 2007

More information

31704 Dynamic Monte Carlo modeling of hydrogen isotope. reactive-diffusive transport in porous graphite

31704 Dynamic Monte Carlo modeling of hydrogen isotope. reactive-diffusive transport in porous graphite 31704 Dynamic Monte Carlo modeling of hydrogen isotope reactive-diffusive transport in porous graphite * R. Schneider a, A. Rai a, A. Mutzke a, M. Warrier b,e. Salonen c, K. Nordlund d a Max-Planck-Institut

More information

Computer-Simulation Studies of Plasma- Surface Interactions

Computer-Simulation Studies of Plasma- Surface Interactions Computer-Simulation Studies of Plasma- Surface Interactions T. Ono ) Collabrators: T. Kawamura 2), T. Muramoto ), S.T. Nakagawa ), T. Kenmotsu 3) ) Okayama Univ. of Science, - Ridai-cho, Okayama 700-0005,

More information

Chapter 4. Surface defects created by kev Xe ion irradiation on Ge

Chapter 4. Surface defects created by kev Xe ion irradiation on Ge 81 Chapter 4 Surface defects created by kev Xe ion irradiation on Ge 4.1. Introduction As high energy ions penetrate into a solid, those ions can deposit kinetic energy in two processes: electronic excitation

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

arxiv: v1 [cond-mat.mtrl-sci] 10 Jun 2017

arxiv: v1 [cond-mat.mtrl-sci] 10 Jun 2017 arxiv:1706.03252v1 [cond-mat.mtrl-sci] 10 Jun 2017 Effects of transmutation elements in tungsten as plasma-facing material Qiang Zhao a,, Zheng Zhang a, Yang Li a, Xiao-Ping Ouyang a,b,c a Beijing Key

More information

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys, Scott Dunham Department of Electrical Engineering Multiscale Modeling Hierarchy Configuration energies and transition

More information

Radiation Damage Modeling of Fused Silica in Fusion Systems

Radiation Damage Modeling of Fused Silica in Fusion Systems 1 Radiation Damage Modeling of Fused Silica in Fusion Systems F. Mota 1), M.J. Caturla 2), J.M. Perlado 1), A. Ibarra 3), M. León 3), J.Mollá 3) 1) Instituto de Fusion Nuclear (DENIM) / ETSII / Universidad

More information

Nuclear Reactions. Fission Fusion

Nuclear Reactions. Fission Fusion Nuclear Reactions Fission Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place when a nucleus is struck by another nucleus or particle. Compare with chemical reactions!

More information

Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure

Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure PSFC/JA-14-38 Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure Woller, K.B., Whyte, D.G., Wright, G.M. January,

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

10.4 Fission and Fusion

10.4 Fission and Fusion This painting of an alchemist s laboratory was made around 1570. For centuries, these early scientists, known as alchemists, tried to use chemical reactions to make gold. The alchemists failed in their

More information

Investigations of the effects of 7 TeV proton beams on LHC collimator materials and other materials to be used in the LHC

Investigations of the effects of 7 TeV proton beams on LHC collimator materials and other materials to be used in the LHC Russian Research Center Kurchatov Institute Investigations of the effects of 7 ev proton beams on LHC collimator materials and other materials to be used in the LHC A.I.Ryazanov Aims of Investigations:

More information

Why thermodynamics for materials?

Why thermodynamics for materials? Why thermodynamics for materials? Example p 2mkT T For = 300 K, = 1 atm ~ 10 8 site -1 s -1 p p Requires 10-12 atm to keep a clean surface clean; surface can also lose atoms Example Thermodynamic potentials

More information

Supplementary Information:

Supplementary Information: Supplementary Figures Supplementary Information: a b 1 2 3 0 ΔZ (pm) 66 Supplementary Figure 1. Xe adsorbed on a Cu(111) surface. (a) Scanning tunnelling microscopy (STM) topography of Xe layer adsorbed

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information

Atomistic simulations on the mobility of di- and tri-interstitials in Si

Atomistic simulations on the mobility of di- and tri-interstitials in Si Atomistic simulations on the mobility of di- and tri-interstitials in Si related publications (since 2001): Posselt, M., Gao, F., Zwicker, D., Atomistic study of the migration of di- and tri-interstitials

More information

CATHODE MATERIAL CHANGE AFTER DEUTERIUM GLOW DISCHARGE EXPERIMENTS

CATHODE MATERIAL CHANGE AFTER DEUTERIUM GLOW DISCHARGE EXPERIMENTS Savvatimova, I., Y. Kucherov, and A.B. Karabut. Cathode Material Change after Deuterium Glow Discharge Experiments. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power

More information

ITER A/M/PMI Data Requirements and Management Strategy

ITER A/M/PMI Data Requirements and Management Strategy ITER A/M/PMI Data Requirements and Management Strategy Steven Lisgo, R. Barnsley, D. Campbell, A. Kukushkin, M. Hosokawa, R. A. Pitts, M. Shimada, J. Snipes, A. Winter ITER Organisation with contributions

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Recitation: 12 12/04/03

Recitation: 12 12/04/03 Recitation: 12 12/4/3 Regular Solution Solution: In an ideal solution, the only contribution to the Gibbs free energy of ing is the configurational entropy due to a random ture: ΔG id G id = x + x µ µ

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Behavior of Hydrogen and Nitrogen in Tungsten, as Divertor Wall of a Fusion Reactor

Behavior of Hydrogen and Nitrogen in Tungsten, as Divertor Wall of a Fusion Reactor Journal of Energy and Power Engineering 12 (2018) 16-25 doi: 10.17265/1934-8975/2018.01.003 D DAVID PUBLISHING Behavior of Hydrogen and Nitrogen in Tungsten, as Divertor Wall of a Fusion Reactor Sergio

More information