Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then

Size: px
Start display at page:

Download "Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then"

Transcription

1

2 Limits

3 From last time... Let y = f (t) be a function that gives the position at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0 h f(a+h) f(a) h a We need to be able to take its! a+h

4 From last time... Let y = f (t) be a function that gives the position at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0 h f(a) f(a+h) h a We need to be able to take its! a+h

5 From last time... Let y = f (t) be a function that gives the position at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0 h f(a) f(a+h) h a a+h We need to be able to take its!

6 Limit of a Function Definition We say that a function f approaches the it L as approaches a, written f () =L,!a if we can make f () as close to L as we want by taking su ciently close to a. f() L Δy Δ i.e. If you need y to be smaller, you only need to make smaller ( means change ) a

7 One-sided its f(a) L r L l Right-handed it: L r =!a + f () if f () gets closer to L r as gets closer to a from the right a Left-handed it: L` =!a f () if f () gets closer to L` as gets closer to a from the left Theorem The it of f as! a eists if and only if both the right-hand and left-hand its eist and have the same value, i.e. f () =L if and only if!a!a f () =Land f () =L.!a +

8 Eamples 2!2 +3 =0 2! =2!0 is undefined

9 Theorem If!a f () =Aand!a g() =B both eist, then.!a (f ()+g()) =!a f ()+!a g() =A + B 2.!a (f () g()) =!a f ()!a g() =A B 3.!a (f ()g()) =!a f ()!a g() =A B 4.!a (f ()/g()) =!a f ()/!a g() =A/B (B 6= 0). In short: to take a it Step : Can you just plug in? If so, do it. Step 2: If not, is there some sort of algebraic manipulation (like cancellation) that can be done to fi the problem? If so, do it. Then plug in. Step 3: Learn some special it to fi common problems. (Later) If in doubt, graph it!

10 Eamples 2.! ! 2 = 0 because if f () = +3,thenf(2) = 0.!0!0 If f () = 2,thenf() isundefinedat =. However, so long as 6=, So 3.!0 f () = 2! p +2 p 2 = ( + )( ) = +. 2 = +=+= 2.!!0, so again, f () isundefinedata.

11 Eamples 3.!0 p +2 p 2!0, so again, f () isundefinedata. Multiply top and bottom by the conjugate:!0 p +2 p 2 =!0 p +2 p =!0 ( p +2+ p 2) =!0 ( p +2+ p 2) =p p =! p 2! p p! p p since (a b)(a + b) =a 2 b 2

12 Eamples.! = ! 2 = !0 is undefined !0 (3 + ) = 6

13 Infinite its If f () gets arbitrarily large as! a, thenitdoesn thaveait. Sometimes, though, it s more useful to give more information. Eample: For both f () = and f () =, 2!0 f () does not eist. However, they re both better behaved than that might imply: =,!0 +!0!0 =!0 + does not eist!0 Why? A vertical asymptote occurs where f () =± and!a +!a =, 2!0 2 = f () =± 2 =

14 Infinite its Badly behaved eample: f () =csc(/) Zoom way in: (denser and denser vertical asymptotes) csc(/) does not eist, and!0 +!0 csc(/) does not eist

15 Limits at Infinity We say that a function f approaches the it L as gets bigger and bigger (in the positive or negative direction), written f () =L or f () =L!! if we can make f () as close to L as we want by taking su ciently large. (By large, we mean large in magnitude) Eample :! =0 and! =0.

16 Limits at Infinity: functions and their inverses Theorem If!a ± f () =, then! f () =a. If!a ± f () =, then! f () =a. Eample: Let arctan() be the inverse function to tan(): y =tan(): -3π/2 -π/2 π/2 3π/2

17 Limits at Infinity: functions and their inverses Theorem If!a ± f () =, then! f () =a. If!a ± f () =, then! f () =a. Eample: Let arctan() be the inverse function to tan(): y =tan(): -π/2 π/2 (restrict the domain to ( 2, 2 )sothatwecaninvert) y =arctan(): π/2 -π/2

18 Limits at Infinity: functions and their inverses Theorem If!a ± f () =, then! f () =a. If!a ± f () =, then! f () =a. Eample: Let arctan() be the inverse function to tan(): y =tan(): -π/2 (restrict the domain to ( π/2 2, 2 )sothatwecaninvert) Since! /2 = and! /2 + = y =arctan(): π/2 -π/2 we have! = /2 and! = /2

19 Rational functions Limits that look like they re going to can actually be doing lots of di erent things. To fi this, divide the top and bottom by the highest power in the denominator! E E 2 E 3!! 3 +2! Fi: multiply the epression by /3 : / 3! 3 +2 =! 3 +2 / 3 / !! 4 2! Fi: multiply the epression by /2 / !! 3 +3! Fi: multiply the epression by /3 / 3 =! = = 0 3

20 Rational functions: quick trick! 3 +2 = ! 4 2 = ! 3 = +3 Suppose P() =a n n + +a +a 0 and Q() =b m m + +b +b 0 are polynomials of degree n and m respectively. Then in general, 8 P()! Q() = a n n! b m m = a >< 0 n < m n n m = a n! b b m >: m n = m ± n < m

21 Eamples: Other ratios with powers. Eample: p! [hint: multiply by / / and remember ap b = p a 2 b.]! p =! =! =! =! = p p q ( ) 2 q p = p / /

Limits. Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then

Limits. Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then Limits From last time... Let y = f (t) be a function that gives the osition at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0

More information

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

Modeling Rates of Change: Introduction to the Issues

Modeling Rates of Change: Introduction to the Issues Modeling Rates of Change: Introduction to the Issues The Legacy of Galileo, Newton, and Leibniz Galileo Galilei (1564-1642) was interested in falling bodies. He forged a new scientific methodology: observe

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information

4.3 Division of Polynomials

4.3 Division of Polynomials 4.3 Division of Polynomials Learning Objectives Divide a polynomials by a monomial. Divide a polynomial by a binomial. Rewrite and graph rational functions. Introduction A rational epression is formed

More information

Limits: How to approach them?

Limits: How to approach them? Limits: How to approach them? The purpose of this guide is to show you the many ways to solve it problems. These depend on many factors. The best way to do this is by working out a few eamples. In particular,

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as Approaches Infinity At times you ll need to know the behavior of a function or an epression as the inputs get increasingly

More information

Limits and Continuity

Limits and Continuity Limits and Continuity Philippe B. Laval Kennesaw State University January 2, 2005 Contents Abstract Notes and practice problems on its and continuity. Limits 2. Introduction... 2.2 Theory:... 2.2. GraphicalMethod...

More information

October 27, 2018 MAT186 Week 3 Justin Ko. We use the following notation to describe the limiting behavior of functions.

October 27, 2018 MAT186 Week 3 Justin Ko. We use the following notation to describe the limiting behavior of functions. October 27, 208 MAT86 Week 3 Justin Ko Limits. Intuitive Definitions of Limits We use the following notation to describe the iting behavior of functions.. (Limit of a Function A it is written as f( = L

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

1 DL3. Infinite Limits and Limits at Infinity

1 DL3. Infinite Limits and Limits at Infinity Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 78 Mark Sparks 01 Infinite Limits and Limits at Infinity In our graphical analysis of its, we have already seen both an infinite

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Fundamental Theorem of Algebra (NEW): A polynomial function of degree n > 0 has n complex zeros. Some of these zeros may be repeated.

Fundamental Theorem of Algebra (NEW): A polynomial function of degree n > 0 has n complex zeros. Some of these zeros may be repeated. .5 and.6 Comple Numbers, Comple Zeros and the Fundamental Theorem of Algebra Pre Calculus.5 COMPLEX NUMBERS 1. Understand that - 1 is an imaginary number denoted by the letter i.. Evaluate the square root

More information

Pre-Calculus Notes Section 12.2 Evaluating Limits DAY ONE: Lets look at finding the following limits using the calculator and algebraically.

Pre-Calculus Notes Section 12.2 Evaluating Limits DAY ONE: Lets look at finding the following limits using the calculator and algebraically. Pre-Calculus Notes Name Section. Evaluating Limits DAY ONE: Lets look at finding the following its using the calculator and algebraicall. 4 E. ) 4 QUESTION: As the values get closer to 4, what are the

More information

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g.

Rational Functions. A rational function is a function that is a ratio of 2 polynomials (in reduced form), e.g. Rational Functions A rational function is a function that is a ratio of polynomials (in reduced form), e.g. f() = p( ) q( ) where p() and q() are polynomials The function is defined when the denominator

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND

SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND (Section 2.5: The Indeterminate Forms 0/0 and / ) 2.5. SECTION 2.5: THE INDETERMINATE FORMS 0 0 AND LEARNING OBJECTIVES Understand what it means for a Limit Form to be indeterminate. Recognize indeterminate

More information

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0.

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Infinite Limits Return to Table of Contents Infinite Limits Infinite Limits Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Now we will consider rational functions

More information

of multiplicity two. The sign of the polynomial is shown in the table below

of multiplicity two. The sign of the polynomial is shown in the table below 161 Precalculus 1 Review 5 Problem 1 Graph the polynomial function P( ) ( ) ( 1). Solution The polynomial is of degree 4 and therefore it is positive to the left of its smallest real root and to the right

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

Troy High School AP Calculus Summer Packet

Troy High School AP Calculus Summer Packet Troy High School AP Calculus Summer Packet As instructors of AP Calculus, we have etremely high epectations of students taking our courses. We epect a certain level of independence to be demonstrated by

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

Midterm 1 Solutions. Monday, 10/24/2011

Midterm 1 Solutions. Monday, 10/24/2011 Midterm Solutions Monday, 0/24/20. (0 points) Consider the function y = f() = e + 2e. (a) (2 points) What is the domain of f? Epress your answer using interval notation. Solution: We must eclude the possibility

More information

2.2 The Limit of a Function

2.2 The Limit of a Function 2.2 The Limit of a Function Introductory Example: Consider the function f(x) = x is near 0. x f(x) x f(x) 1 3.7320508 1 4.236068 0.5 3.8708287 0.5 4.1213203 0.1 3.9748418 0.1 4.0248457 0.05 3.9874607 0.05

More information

AP Calculus I Summer Packet

AP Calculus I Summer Packet AP Calculus I Summer Packet This will be your first grade of AP Calculus and due on the first day of class. Please turn in ALL of your work and the attached completed answer sheet. I. Intercepts The -intercept

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW NAME CALCULUS BASIC SUMMER REVIEW Slope of a non vertical line: rise y y y m run Point Slope Equation: y y m( ) The slope is m and a point on your line is, ). ( y Slope-Intercept Equation: y m b slope=

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

A.P. Calculus Summer Assignment

A.P. Calculus Summer Assignment A.P. Calculus Summer Assignment This assignment is due the first day of class at the beginning of the class. It will be graded and counts as your first test grade. This packet contains eight sections and

More information

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal) TRIG REVIEW NOTES Convert from radians to degrees: multiply by 0 180 Convert from degrees to radians: multiply by 0. 180 Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2018, WEEK 3 JoungDong Kim Week 3 Section 2.5, 2.6, 2.7, Continuity, Limits at Infinity; Horizontal Asymptotes, Derivatives and Rates of Change. Section 2.5 Continuity

More information

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation?

Algebra Concepts Equation Solving Flow Chart Page 1 of 6. How Do I Solve This Equation? Algebra Concepts Equation Solving Flow Chart Page of 6 How Do I Solve This Equation? First, simplify both sides of the equation as much as possible by: combining like terms, removing parentheses using

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

ACCUPLACER MATH 0311 OR MATH 0120

ACCUPLACER MATH 0311 OR MATH 0120 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 0 OR MATH 00 http://www.academics.utep.edu/tlc MATH 0 OR MATH 00 Page Factoring Factoring Eercises 8 Factoring Answer to Eercises

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2018, WEEK 3 JoungDong Kim Week 3 Section 2.3, 2.5, 2.6, Calculating Limits Using the Limit Laws, Continuity, Limits at Infinity; Horizontal Asymptotes. Section

More information

Notes 3.2: Properties of Limits

Notes 3.2: Properties of Limits Calculus Maimus Notes 3.: Properties of Limits 3. Properties of Limits When working with its, you should become adroit and adept at using its of generic functions to find new its of new functions created

More information

Reteach Variation Functions

Reteach Variation Functions 8-1 Variation Functions The variable y varies directly as the variable if y k for some constant k. To solve direct variation problems: k is called the constant of variation. Use the known and y values

More information

Chapter 8: More on Limits

Chapter 8: More on Limits Chapter 8: More on Limits Lesson 8.. 8-. a. 000 lim a() = lim = 0 b. c. lim c() = lim 3 +7 = 3 +000 lim b( ) 3 lim( 0000 ) = # = " 8-. a. lim 0 = " b. lim (#0.5 ) = # lim c. lim 4 = lim 4(/ ) = " d. lim

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter : Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of its.

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

MATH 116, LECTURES 10 & 11: Limits

MATH 116, LECTURES 10 & 11: Limits MATH 6, LECTURES 0 & : Limits Limits In application, we often deal with quantities which are close to other quantities but which cannot be defined eactly. Consider the problem of how a car s speedometer

More information

O.K. But what if the chicken didn t have access to a teleporter.

O.K. But what if the chicken didn t have access to a teleporter. The intermediate value theorem, and performing algebra on its. This is a dual topic lecture. : The Intermediate value theorem First we should remember what it means to be a continuous function: A function

More information

UNIT 3. Recall From Unit 2 Rational Functions

UNIT 3. Recall From Unit 2 Rational Functions UNIT 3 Recall From Unit Rational Functions f() is a rational function if where p() and q() are and. Rational functions often approach for values of. Rational Functions are not graphs There various types

More information

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ ON CHAPTERS AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 SPRING 207 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% ) For a), b), and c) below, bo in the correct answer. (6 points total;

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment Name: AP Calculus AB Summer Assignment Due Date: The beginning of class on the last class day of the first week of school. The purpose of this assignment is to have you practice the mathematical skills

More information

SANDY CREEK HIGH SCHOOL

SANDY CREEK HIGH SCHOOL SANDY CREEK HIGH SCHOOL SUMMER REVIEW PACKET For students entering A.P. CALCULUS BC I epect everyone to check the Google classroom site and your school emails at least once every two weeks. You will also

More information

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

4.4 Rational Expressions

4.4 Rational Expressions 4.4 Rational Epressions Learning Objectives Simplify rational epressions. Find ecluded values of rational epressions. Simplify rational models of real-world situations. Introduction A rational epression

More information

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get

Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth. If we try to simply substitute x = 1 into the expression, we get Lecture 7: Indeterminate forms; L Hôpitals rule; Relative rates of growth 1. Indeterminate Forms. Eample 1: Consider the it 1 1 1. If we try to simply substitute = 1 into the epression, we get. This is

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

Review of Rational Expressions and Equations

Review of Rational Expressions and Equations Page 1 of 14 Review of Rational Epressions and Equations A rational epression is an epression containing fractions where the numerator and/or denominator may contain algebraic terms 1 Simplify 6 14 Identification/Analysis

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

AP Calculus BC Prerequisite Knowledge

AP Calculus BC Prerequisite Knowledge AP Calculus BC Prerequisite Knowledge Please review these ideas over the summer as they come up during our class and we will not be reviewing them during class. Also, I feel free to quiz you at any time

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Infinite

More information

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Infinite

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim Math 50 Exam # Solutions. Evaluate the following its or explain why they don t exist. (a) + h. h 0 h Answer: Notice that both the numerator and the denominator are going to zero, so we need to think a

More information

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student

AP Calculus AB SUMMER ASSIGNMENT. Dear future Calculus AB student AP Calculus AB SUMMER ASSIGNMENT Dear future Calculus AB student We are ecited to work with you net year in Calculus AB. In order to help you be prepared for this class, please complete the summer assignment.

More information

3.8 Limits At Infinity

3.8 Limits At Infinity 3.8. LIMITS AT INFINITY 53 Figure 3.5: Partial graph of f = /. We see here that f 0 as and as. 3.8 Limits At Infinity The its we introduce here differ from previous its in that here we are interested in

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

8-5. A rational inequality is an inequality that contains one or more rational expressions. x x 6. 3 by using a graph and a table.

8-5. A rational inequality is an inequality that contains one or more rational expressions. x x 6. 3 by using a graph and a table. A rational inequality is an inequality that contains one or more rational expressions. x x 3 by using a graph and a table. Use a graph. On a graphing calculator, Y1 = x and Y = 3. x The graph of Y1 is

More information

SANDY CREEK HIGH SCHOOL

SANDY CREEK HIGH SCHOOL SANDY CREEK HIGH SCHOOL SUMMER REVIEW PACKET For students entering A.P. CALCULUS AB I epect everyone to check the Google classroom site and your school emails at least once every two weeks. You should

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Overview: 2.2 Polynomial Functions of Higher Degree 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra 2.6 Rational

More information

CHAPTER 2 Limits and Their Properties

CHAPTER 2 Limits and Their Properties CHAPTER Limits and Their Properties Section. A Preview of Calculus...5 Section. Finding Limits Graphically and Numerically...5 Section. Section. Evaluating Limits Analytically...5 Continuity and One-Sided

More information

Outline. Limits as x

Outline. Limits as x MS: IT Mathematics Limits & Continuity Limits at Infinity John Carroll School of Mathematical Sciences Dublin City University Introduction So far, we have only considered its as c where c is some finite

More information

Math 1314 Lesson 4 Limits

Math 1314 Lesson 4 Limits Math 1314 Lesson 4 Limits What is calculus? Calculus is the study of change, particularly, how things change over time. It gives us a framework for measuring change using some fairly simple models. In

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

Lecture 5: Finding limits analytically Simple indeterminate forms

Lecture 5: Finding limits analytically Simple indeterminate forms Lecture 5: Finding its analytically Simple indeterminate forms Objectives: (5.) Use algebraic techniques to resolve 0/0 indeterminate forms. (5.) Use the squeeze theorem to evaluate its. (5.3) Use trigonometric

More information

2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit 2.4 The Precise Definition of a Limit Reminders/Remarks: x 4 < 3 means that the distance between x and 4 is less than 3. In other words, x lies strictly between 1 and 7. So, x a < δ means that the distance

More information

Fox Lane High School Department of Mathematics

Fox Lane High School Department of Mathematics Fo Lane High School Department of Mathematics June 08 Hello Future AP Calculus AB Student! This is the summer assignment for all students taking AP Calculus AB net school year. It contains a set of problems

More information

Rational Functions 4.5

Rational Functions 4.5 Math 4 Pre-Calculus Name Date Rational Function Rational Functions 4.5 g ( ) A function is a rational function if f ( ), where g ( ) and ( ) h ( ) h are polynomials. Vertical asymptotes occur at -values

More information

9.4 Power Series II: Geometric Series

9.4 Power Series II: Geometric Series 9.4 Power Series II: Geometric Series A particularly important skill to develop for the AP eam, other than checking that you re in RADIAN mode, is to represent certain types of rational functions as a

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 584 Mark Sparks 2012 The Second Fundamental Theorem of Calculus Functions Defined by Integrals Given the functions, f(t), below, use F( ) f ( t) dt to find F() and F () in terms of.. f(t) = 4t t. f(t) = cos t Given the functions,

More information

5.6 Asymptotes; Checking Behavior at Infinity

5.6 Asymptotes; Checking Behavior at Infinity 5.6 Asymptotes; Checking Behavior at Infinity checking behavior at infinity DEFINITION asymptote In this section, the notion of checking behavior at infinity is made precise, by discussing both asymptotes

More information

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018 Calculus (AP, Honors, Academic) Summer Assignment 08 The summer assignments for Calculus will reinforce some necessary Algebra and Precalculus skills. In order to be successful in Calculus, you must have

More information

AP CALCULUS AB SUMMER ASSIGNMENT

AP CALCULUS AB SUMMER ASSIGNMENT AP CALCULUS AB SUMMER ASSIGNMENT 06-07 Attached is your summer assignment for AP Calculus (AB). It will probably take you - hours to complete depending on how well you know your material. I would not do

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1),

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1), Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1), 4.-4.6 1. Find the polynomial function with zeros: -1 (multiplicity ) and 1 (multiplicity ) whose graph passes

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

Calculus - Chapter 2 Solutions

Calculus - Chapter 2 Solutions Calculus - Chapter Solutions. a. See graph at right. b. The velocity is decreasing over the entire interval. It is changing fastest at the beginning and slowest at the end. c. A = (95 + 85)(5) = 450 feet

More information

INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE:

INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE: INTRODUCTION TO RATIONAL EXPRESSIONS EXAMPLE: You decide to open a small business making gluten-free cakes. Your start-up costs were $, 000. In addition, it costs $ 0 to produce each cake. What is the

More information

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a "limit machine".

The main way we switch from pre-calc. to calc. is the use of a limit process. Calculus is a limit machine. A Preview of Calculus Limits and Their Properties Objectives: Understand what calculus is and how it compares with precalculus. Understand that the tangent line problem is basic to calculus. Understand

More information