Outline. Limits as x

Size: px
Start display at page:

Download "Outline. Limits as x"

Transcription

1 MS: IT Mathematics Limits & Continuity Limits at Infinity John Carroll School of Mathematical Sciences Dublin City University Introduction So far, we have only considered its as c where c is some finite value. We now eamine what happens to functions as becomes infinitely large, i.e. as. Limits (3/4) MS: IT Mathematics John Carroll 3 / 33 Limits (3/4) MS: IT Mathematics John Carroll 4 / 33

2 Simple Illustration One eample to consider first is f () =. -value f ()-value As becomes infinitely large, then becomes smaller and smaller, and we write: Limits (3/4) MS: IT Mathematics John Carroll 5 / 33 Limits (3/4) MS: IT Mathematics John Carroll 6 / 33 A Second (Comparative) Illustration the evaluation of. As becomes large, then becomes small but is even larger than and so is even smaller than. Hence, we conclude that Limits (3/4) MS: IT Mathematics John Carroll 7 / 33 Limits (3/4) MS: IT Mathematics John Carroll 8 / 33

3 More Generally The more general result holds for any n > 0. n Making Comparisons If, instead, we require, we can reason as follows: If is infinitely large, then is also infinitely large, and dividing by an infinitely large number produces an infinitely small number, and so that the it must be zero. We could also proceed as follows: divide above and below by : Note that n can be less than, for eample n = when we may write Now, take the it as : = = 0 Limits (3/4) MS: IT Mathematics John Carroll 9 / 33 Limits (3/4) MS: IT Mathematics John Carroll 0 / 33 Rules for Limits Rules for Limits The General Case Finite Limits as ± The function f has a real it L as tends to if, however small a distance we choose, f () gets closer than this distance to L and stays closer, no matter how large becomes and we write f () = L or f () L, as The function f has a real it L as tends to if, however small a distance we choose, f () gets closer than this distance to L and stays closer, no matter how large and negative becomes and we write f () = L or f () L, as Limits (3/4) MS: IT Mathematics John Carroll / 33 Limits (3/4) MS: IT Mathematics John Carroll / 33

4 Rules for Limits The General Case Rules for Limits The General Case f () = L Rules for Limits as ± If L, M and k are real numbers and f () = L, ± g() = M ± then Limits (3/4) MS: IT Mathematics John Carroll 3 / 33 (i) Sum Rule: (ii) Difference Rule: (iii) Product Rule: f () + g() = L + M. ± ± ± (iv) Constant Multiple Rule: f () g() = L M. f ()g() = LM. kf () = kl. ± f () (v) Quotient Rule: If M 0, then ± g() = L M. (vi) Power Rule: If r and s are integers with no common factors and s 0, then (f ± ())r/s = L r/s, provided that L r/s is a real number. Limits (3/4) MS: IT Mathematics John Carroll 4 / 33 : Illustration : Illustration Illustrations :Limits as ± Simple Rational Function Let f () = and g() = +. Therefore, f () = = g() Set What is h() = f () g() = + h()? Limits (3/4) MS: IT Mathematics John Carroll 5 / 33 Limits (3/4) MS: IT Mathematics John Carroll 6 / 33

5 Plot of + : Illustration Illustrations + : Illustration Illustrations As we are assuming is large (and hence non-zero), we can divide through by (the highest power of occurring in the denominator) to get: h() = + = + As, Therefore 0 and. h() = + = = Limits (3/4) MS: IT Mathematics John Carroll 7 / 33 Limits (3/4) MS: IT Mathematics John Carroll 8 / 33 Limits at Infinity: Worked Eamples Limits at Infinity: Worked Eamples Problem Solving General Approach We will evaluate some its at infinity in the following eamples by dividing above and below by the highest power of in the original epression. Limits (3/4) MS: IT Mathematics John Carroll 9 / 33 Limits (3/4) MS: IT Mathematics John Carroll 0 / 33

6 Limits at Infinity: Worked Eamples Limits at Infinity: Worked Eamples Eample To evaluate 4 we divide above and below by and take its as follows: 4 = 4 0 Eample To evaluate 4 we again divide above and below by and take its as follows: 4 = 4 0 Note Although the numerator becomes infinitely large, the denominator 4 was still infinitely larger than the numerator and so the overall ratio was zero in the it. Limits (3/4) MS: IT Mathematics John Carroll / 33 Limits (3/4) MS: IT Mathematics John Carroll / 33 Limits at Infinity: Worked Eamples Limits at Infinity: Worked Eamples Eample We divide above and below by the highest power which, in this case, is 4 : = Eample We divide above and below by the highest power which, in this case, is 3, to obtain: = = = Limits (3/4) MS: IT Mathematics John Carroll 3 / 33 Limits (3/4) MS: IT Mathematics John Carroll 4 / 33

7 Limits at Infinity: Worked Eamples Limits at Infinity: Worked Eamples Eample 5 To evaluate note that the highest power is 5 and so we obtain: = = 0 = Eample 6 + We divide above and below by the highest power, namely, to obtain: Note that + = + = = + 0 Limits (3/4) MS: IT Mathematics John Carroll 5 / 33 Limits (3/4) MS: IT Mathematics John Carroll 6 / 33 Limits at Infinity: Worked Eamples Limits at Infinity: Worked Eamples Eample We divide above and below by the highest power, 5, to obtain: = = = Eample 8 As +, then certainly > 0 and, when > 0, we have = Hence, the it which we require must be the it of the constant value, i.e. = = Limits (3/4) MS: IT Mathematics John Carroll 7 / 33 Limits (3/4) MS: IT Mathematics John Carroll 8 / 33

8 Limits at Infinity: Worked Eamples = = Limits at Infinity: Worked Eamples 3 Limits (3/4) MS: IT Mathematics John Carroll 9 / 33 Limits (3/4) MS: IT Mathematics John Carroll 30 / 33 Limits at Infinity: A Special Case ( + ) Limits at Infinity: A Special Case Rationalize the Numerator Limits (3/4) MS: IT Mathematics John Carroll 3 / 33 Limits (3/4) MS: IT Mathematics John Carroll 3 / 33

9 Limits at Infinity: A Special Case ( ) Show that + Rationalize the Numerator Rationalize the Numerator ( + ) [ ] ( = + ) ( + ) = + + = + + Limits (3/4) MS: IT Mathematics John Carroll 33 / 33

4. (6 points) Express the domain of the following function in interval notation:

4. (6 points) Express the domain of the following function in interval notation: Eam 1-A L. Ballou Name Math 131 Calculus I September 1, 016 NO Calculator Allowed BOX YOUR ANSWER! Show all work for full credit! 1. (4 points) Write an equation of a line with y-intercept 4 and -intercept

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

UNIT 3. Recall From Unit 2 Rational Functions

UNIT 3. Recall From Unit 2 Rational Functions UNIT 3 Recall From Unit Rational Functions f() is a rational function if where p() and q() are and. Rational functions often approach for values of. Rational Functions are not graphs There various types

More information

Pre-Calculus Notes Section 12.2 Evaluating Limits DAY ONE: Lets look at finding the following limits using the calculator and algebraically.

Pre-Calculus Notes Section 12.2 Evaluating Limits DAY ONE: Lets look at finding the following limits using the calculator and algebraically. Pre-Calculus Notes Name Section. Evaluating Limits DAY ONE: Lets look at finding the following its using the calculator and algebraicall. 4 E. ) 4 QUESTION: As the values get closer to 4, what are the

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)

Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as Approaches Infinity At times you ll need to know the behavior of a function or an epression as the inputs get increasingly

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23

3.5 Continuity of a Function One Sided Continuity Intermediate Value Theorem... 23 Chapter 3 Limit and Continuity Contents 3. Definition of Limit 3 3.2 Basic Limit Theorems 8 3.3 One sided Limit 4 3.4 Infinite Limit, Limit at infinity and Asymptotes 5 3.4. Infinite Limit and Vertical

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

8.3 Zero, Negative, and Fractional Exponents

8.3 Zero, Negative, and Fractional Exponents www.ck2.org Chapter 8. Eponents and Polynomials 8.3 Zero, Negative, and Fractional Eponents Learning Objectives Simplify epressions with zero eponents. Simplify epressions with negative eponents. Simplify

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

Functions of Several Variables: Limits and Continuity

Functions of Several Variables: Limits and Continuity Functions of Several Variables: Limits and Continuity Philippe B. Laval KSU Today Philippe B. Laval (KSU) Limits and Continuity Today 1 / 24 Introduction We extend the notion of its studied in Calculus

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

Class 8: Numbers Exercise 3B

Class 8: Numbers Exercise 3B Class : Numbers Exercise B 1. Compare the following pairs of rational numbers: 1 1 i First take the LCM of. LCM = 96 Therefore: 1 = 96 Hence we see that < 6 96 96 1 1 1 1 = 6 96 1 or we can say that

More information

Math 1314 Lesson 4 Limits

Math 1314 Lesson 4 Limits Math 1314 Lesson 4 Limits What is calculus? Calculus is the study of change, particularly, how things change over time. It gives us a framework for measuring change using some fairly simple models. In

More information

2.2. Limits Involving Infinity. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

2.2. Limits Involving Infinity. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 2.2 Limits Involving Infinity Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall Finite Limits as x ± What you ll learn about Sandwich Theorem Revisited Infinite Limits as x a End

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

10.7 Polynomial and Rational Inequalities

10.7 Polynomial and Rational Inequalities 10.7 Polynomial and Rational Inequalities In this section we want to turn our attention to solving polynomial and rational inequalities. That is, we want to solve inequalities like 5 4 0. In order to do

More information

Outline. 1 The Role of Functions. 2 Polynomial Functions. 3 Power Functions. 4 Rational Functions. 5 Exponential & Logarithmic Functions

Outline. 1 The Role of Functions. 2 Polynomial Functions. 3 Power Functions. 4 Rational Functions. 5 Exponential & Logarithmic Functions Outline MS11: IT Mathematics Functions Catalogue of Essential Functions John Carroll School of Mathematical Sciences Dublin City University 1 The Role of Functions 3 Power Functions 4 Rational Functions

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

4.5 Rational functions.

4.5 Rational functions. 4.5 Rational functions. We have studied graphs of polynomials and we understand the graphical significance of the zeros of the polynomial and their multiplicities. Now we are ready to etend these eplorations

More information

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

x f x

x f x MATC 00 Class Notes - Sec.. Limits Idea: Look at the behavior of f as gets closer and closer to a specific number. Let f. We want to know the behavior of f when is close to a specific number, sa. Look

More information

Limits and Continuity

Limits and Continuity Limits and Continuity Philippe B. Laval Kennesaw State University January 2, 2005 Contents Abstract Notes and practice problems on its and continuity. Limits 2. Introduction... 2.2 Theory:... 2.2. GraphicalMethod...

More information

Summation Formulas. Math Review. Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S1: factor out constant

Summation Formulas. Math Review. Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S1: factor out constant Computer Science Dept Va Tech August 005 005 McQuain WD Summation Formulas Let > 0, let A, B, and C e constants, and let f and g e any functions. Then: f C Cf ) ) S: factor out constant g f g f ) ) ))

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

Logarithms. For example:

Logarithms. For example: Math Review Summation Formulas Let >, let A, B, and C e constants, and let f and g e any functions. Then: f C Cf ) ) S: factor out constant ± ± g f g f ) ) )) ) S: separate summed terms C C ) 6 ) ) Computer

More information

Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S2: separate summed terms. S7: sum of k2^(k-1)

Let N > 0, let A, B, and C be constants, and let f and g be any functions. Then: S2: separate summed terms. S7: sum of k2^(k-1) Summation Formulas Let > 0, let A, B, and C e constants, and let f and g e any functions. Then: k Cf ( k) C k S: factor out constant f ( k) k ( f ( k) ± g( k)) k S: separate summed terms f ( k) ± k g(

More information

Chapter 9 Prerequisite Skills

Chapter 9 Prerequisite Skills Name: Date: Chapter 9 Prerequisite Skills BLM 9. Consider the function f() 3. a) Show that 3 is a factor of f(). If f() ( 3)g(), what is g()?. Factor each epression fully. a) 30g 4g 6fg 8g c) 6 5 d) 5

More information

of multiplicity two. The sign of the polynomial is shown in the table below

of multiplicity two. The sign of the polynomial is shown in the table below 161 Precalculus 1 Review 5 Problem 1 Graph the polynomial function P( ) ( ) ( 1). Solution The polynomial is of degree 4 and therefore it is positive to the left of its smallest real root and to the right

More information

Define a rational expression: a quotient of two polynomials. ..( 3 10) (3 2) Rational expressions have the same properties as rational numbers:

Define a rational expression: a quotient of two polynomials. ..( 3 10) (3 2) Rational expressions have the same properties as rational numbers: 1 UNIT 7 RATIONAL EXPRESSIONS & EQUATIONS Simplifying Rational Epressions Define a rational epression: a quotient of two polynomials. A rational epression always indicates division EX: 10 means..( 10)

More information

Problem 1 Oh Snap... Look at the Denominator on that Rational

Problem 1 Oh Snap... Look at the Denominator on that Rational Problem Oh Snap... Look at the Denominator on that Rational Previously, you learned that dividing polynomials was just like dividing integers. Well, performing operations on rational epressions involving

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

Lecture Notes for Math 1000

Lecture Notes for Math 1000 Lecture Notes for Math 1000 Dr. Xiang-Sheng Wang Memorial University of Newfoundland Office: HH-2016, Phone: 864-4321 Office hours: 13:00-15:00 Wednesday, 12:00-13:00 Friday Email: swang@mun.ca Course

More information

A dash of derivatives

A dash of derivatives Università Ca Foscari di Venezia - Dipartimento di Economia - A.A.2016-2017 Mathematics (Curriculum Economics, Markets and Finance) A dash of derivatives Luciano Battaia October 6, 2016 1 Tangents to curves

More information

2.2. Calculating Limits Using the Limit Laws. 84 Chapter 2: Limits and Continuity. The Limit Laws. THEOREM 1 Limit Laws

2.2. Calculating Limits Using the Limit Laws. 84 Chapter 2: Limits and Continuity. The Limit Laws. THEOREM 1 Limit Laws 84 Chapter : Limits and Continuit. HISTORICAL ESSAY* Limits Calculating Limits Using the Limit Laws In Section. we used graphs and calculators to guess the values of its. This section presents theorems

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Chapter 3.5: Rational Functions

Chapter 3.5: Rational Functions Chapter.5: Rational Functions A rational number is a ratio of two integers. A rational function is a quotient of two polynomials. All rational numbers are, therefore, rational functions as well. Let s

More information

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity Math 0 - Calculus f. Business and Management - Worksheet 1 Solutions for Worksheet 1 - Limits as approaches infinity Simple Limits Eercise 1: Compute the following its: 1a : + 4 1b : 5 + 8 1c : 5 + 8 Solution

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then

Let y = f (t) be a function that gives the position at time t of an object moving along the y-axis. Then Limits From last time... Let y = f (t) be a function that gives the position at time t of an object moving along the y-ais. Then Ave vel[t, t 2 ] = f (t 2) f (t ) t 2 t f (t + h) f (t) Velocity(t) =. h!0

More information

4.3 Division of Polynomials

4.3 Division of Polynomials 4.3 Division of Polynomials Learning Objectives Divide a polynomials by a monomial. Divide a polynomial by a binomial. Rewrite and graph rational functions. Introduction A rational epression is formed

More information

Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits

Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits Calculus Lia Vas Continuous functions. Limits of non-rational functions. Squeeze Theorem. Calculator issues. Applications of limits Continuous Functions. Recall that we referred to a function f() as a

More information

MAC1105-College Algebra

MAC1105-College Algebra MAC1105-College Algebra Chapter -Polynomial Division & Rational Functions. Polynomial Division;The Remainder and Factor Theorems I. Long Division of Polynomials A. For f ( ) 6 19 16, a zero of f ( ) occurs

More information

4.2 Reducing Rational Functions

4.2 Reducing Rational Functions Section. Reducing Rational Functions 1. Reducing Rational Functions The goal of this section is to review how to reduce a rational epression to lowest terms. Let s begin with a most important piece of

More information

Day 3: Section P-6 Rational Expressions; Section P-7 Equations. Rational Expressions

Day 3: Section P-6 Rational Expressions; Section P-7 Equations. Rational Expressions 1 Day : Section P-6 Rational Epressions; Section P-7 Equations Rational Epressions A rational epression (Fractions) is the quotient of two polynomials. The set of real numbers for which an algebraic epression

More information

Horizontal asymptotes

Horizontal asymptotes Roberto s Notes on Differential Calculus Chapter : Limits and continuity Section 5 Limits at infinity and Horizontal asymptotes What you need to know already: The concept, notation and terminology of its.

More information

Bell Quiz 2-3. Determine the end behavior of the graph using limit notation. Find a function with the given zeros , 2. 5 pts possible.

Bell Quiz 2-3. Determine the end behavior of the graph using limit notation. Find a function with the given zeros , 2. 5 pts possible. Bell Quiz 2-3 2 pts Determine the end behavior of the graph using limit notation. 5 2 1. g( ) = 8 + 13 7 3 pts Find a function with the given zeros. 4. -1, 2 5 pts possible Ch 2A Big Ideas 1 Questions

More information

Mini Lecture 9.1 Finding Roots

Mini Lecture 9.1 Finding Roots Mini Lecture 9. Finding Roots. Find square roots.. Evaluate models containing square roots.. Use a calculator to find decimal approimations for irrational square roots. 4. Find higher roots. Evaluat. a.

More information

Lesson Objectives. Lesson 32 - Limits. Fast Five. Fast Five - Limits and Graphs 1/19/17. Calculus - Mr Santowski

Lesson Objectives. Lesson 32 - Limits. Fast Five. Fast Five - Limits and Graphs 1/19/17. Calculus - Mr Santowski Lesson 32 - Limits Calculus - Mr Santowski 1/19/17 Mr. Santowski - Calculus & IBHL 1 Lesson Objectives! 1. Define limits! 2. Use algebraic, graphic and numeric (AGN) methods to determine if a limit exists!

More information

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division.

Partial Fractions. Prerequisites: Solving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division. Prerequisites: olving simple equations; comparing coefficients; factorising simple quadratics and cubics; polynomial division. Maths Applications: Integration; graph sketching. Real-World Applications:

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.2 The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

Pre-Algebra 8 Notes Exponents and Scientific Notation

Pre-Algebra 8 Notes Exponents and Scientific Notation Pre-Algebra 8 Notes Eponents and Scientific Notation Rules of Eponents CCSS 8.EE.A.: Know and apply the properties of integer eponents to generate equivalent numerical epressions. Review with students

More information

Math 1314 Lesson 4 Limits

Math 1314 Lesson 4 Limits Math 1314 Lesson 4 Limits Finding a it amounts to answering the following question: What is happening to the y-value of a function as the x-value approaches a specific target number? If the y-value is

More information

Complex fraction: - a fraction which has rational expressions in the numerator and/or denominator

Complex fraction: - a fraction which has rational expressions in the numerator and/or denominator Comple fraction: - a fraction which has rational epressions in the numerator and/or denominator o 2 2 4 y 2 + y 2 y 2 2 Steps for Simplifying Comple Fractions. simplify the numerator and/or the denominator

More information

A number that can be written as, where p and q are integers and q Number.

A number that can be written as, where p and q are integers and q Number. RATIONAL NUMBERS 1.1 Definition of Rational Numbers: What are rational numbers? A number that can be written as, where p and q are integers and q Number. 0, is known as Rational Example:, 12, -18 etc.

More information

Algebra Final Exam Review Packet

Algebra Final Exam Review Packet Algebra 1 00 Final Eam Review Packet UNIT 1 EXPONENTS / RADICALS Eponents Degree of a monomial: Add the degrees of all the in the monomial together. o Eample - Find the degree of 5 7 yz Degree of a polynomial:

More information

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages MTH4100 Calculus I Lecture notes for Week 4 Thomas Calculus, Sections 2.4 to 2.6 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 One-sided its and its at infinity

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

Last week we looked at limits generally, and at finding limits using substitution.

Last week we looked at limits generally, and at finding limits using substitution. Math 1314 ONLINE Week 4 Notes Lesson 4 Limits (continued) Last week we looked at limits generally, and at finding limits using substitution. Indeterminate Forms What do you do when substitution gives you

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions In this section, we: use implicit differentiation to find the derivatives of the logarithmic functions and, in particular,

More information

MATH 116, LECTURES 10 & 11: Limits

MATH 116, LECTURES 10 & 11: Limits MATH 6, LECTURES 0 & : Limits Limits In application, we often deal with quantities which are close to other quantities but which cannot be defined eactly. Consider the problem of how a car s speedometer

More information

4.8 Partial Fraction Decomposition

4.8 Partial Fraction Decomposition 8 CHAPTER 4. INTEGRALS 4.8 Partial Fraction Decomposition 4.8. Need to Know The following material is assumed to be known for this section. If this is not the case, you will need to review it.. When are

More information

(Infinite) Series Series a n = a 1 + a 2 + a a n +...

(Infinite) Series Series a n = a 1 + a 2 + a a n +... (Infinite) Series Series a n = a 1 + a 2 + a 3 +... + a n +... What does it mean to add infinitely many terms? The sequence of partial sums S 1, S 2, S 3, S 4,...,S n,...,where nx S n = a i = a 1 + a 2

More information

JUST THE MATHS UNIT NUMBER 7.2. DETERMINANTS 2 (Consistency and third order determinants) A.J.Hobson

JUST THE MATHS UNIT NUMBER 7.2. DETERMINANTS 2 (Consistency and third order determinants) A.J.Hobson JUST THE MATHS UNIT NUMBER 7.2 DETERMINANTS 2 (Consistency and third order determinants) by A.J.Hobson 7.2.1 Consistency for three simultaneous linear equations in two unknowns 7.2.2 The definition of

More information

1. Revision Description Reflect and Review Teasers Answers Recall of Rational Numbers:

1. Revision Description Reflect and Review Teasers Answers Recall of Rational Numbers: 1. Revision Description Reflect Review Teasers Answers Recall of Rational Numbers: A rational number is of the form, where p q are integers q 0. Addition or subtraction of rational numbers is possible

More information

Pre-Calculus Module 4

Pre-Calculus Module 4 Pre-Calculus Module 4 4 th Nine Weeks Table of Contents Precalculus Module 4 Unit 9 Rational Functions Rational Functions with Removable Discontinuities (1 5) End Behavior of Rational Functions (6) Rational

More information

Chapter 1. Functions, Graphs, and Limits

Chapter 1. Functions, Graphs, and Limits Chapter 1 Functions, Graphs, and Limits MA1103 Business Mathematics I Semester I Year 016/017 SBM International Class Lecturer: Dr. Rinovia Simanjuntak 1.1 Functions Function A function is a rule that

More information

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x

One Solution Two Solutions Three Solutions Four Solutions. Since both equations equal y we can set them equal Combine like terms Factor Solve for x Algebra Notes Quadratic Systems Name: Block: Date: Last class we discussed linear systems. The only possibilities we had we 1 solution, no solution or infinite solutions. With quadratic systems we have

More information

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n Algebra B: Chapter 6 Notes 1 EXPONENT REVIEW!!! Concept Byte (Review): Properties of Eponents Recall from Algebra 1, the Properties (Rules) of Eponents. Property of Eponents: Product of Powers m n = m

More information

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 10

Math 1105: Calculus II (Math/Sci majors) MWF 11am / 12pm, Campion 235 Written homework 10 Math 05: Calculus II Math/Sci majors) MWF am / pm, Campion 35 Written homewor 0 8556,6,68,73,80,8,84), 86,58), Chapter 8 Review60,7) Problem 56, 85 Use a test of your choice to determine whether = ) Solution

More information

Lesson A Limits. Lesson Objectives. Fast Five 9/2/08. Calculus - Mr Santowski

Lesson A Limits. Lesson Objectives. Fast Five 9/2/08. Calculus - Mr Santowski Lesson A.1.3 - Limits Calculus - Mr Santowski 9/2/08 Mr. Santowski - Calculus 1 Lesson Objectives 1. Define its 2. Use algebraic, graphic and numeric (AGN) methods to determine if a it exists 3. Use algebraic,

More information

Algebra I Notes Concept 00b: Review Properties of Integer Exponents

Algebra I Notes Concept 00b: Review Properties of Integer Exponents Algera I Notes Concept 00: Review Properties of Integer Eponents In Algera I, a review of properties of integer eponents may e required. Students egin their eploration of power under the Common Core in

More information

Radical Expressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots exist?

Radical Expressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots exist? Topic 4 1 Radical Epressions and Functions What is a square root of 25? How many square roots does 25 have? Do the following square roots eist? 4 4 Definition: X is a square root of a if X² = a. 0 Symbolically,

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 9: OPTIONAL Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 9: OPTIONAL Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 9: OPTIONAL Please write neatly, and in complete sentences when possible. Do the following problems from the book: 5.2., 5.2.2, 5.2.3, 5.2.5, 5.2.8,

More information

Use the slope-intercept form to graph the equation. 8) 6x + y = 0

Use the slope-intercept form to graph the equation. 8) 6x + y = 0 03 Review Solve the inequalit. Graph the solution set and write it in interval notation. 1) -2(4-9) < - + 2 Use the slope-intercept form to graph the equation. 8) 6 + = 0 Objective: (2.8) Solve Linear

More information

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7 Calculus I Practice Test Problems for Chapter Page of 7 This is a set of practice test problems for Chapter This is in no way an inclusive set of problems there can be other types of problems on the actual

More information

With topics from Algebra and Pre-Calculus to

With topics from Algebra and Pre-Calculus to With topics from Algebra and Pre-Calculus to get you ready to the AP! (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the

More information

Infinite Limits. By Tuesday J. Johnson

Infinite Limits. By Tuesday J. Johnson Infinite Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Graphing functions Working with inequalities Working with absolute values Trigonometric

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions Chapter 3: Polynomial and Rational Functions 3.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 The numbers

More information

AS Maths for Maths Pack

AS Maths for Maths Pack Student Teacher AS Maths for Maths Pack September 0 City and Islington Sith Form College Mathematics Department www.candimaths.uk CONTENTS WS Numbers [Directed Numbers WS Numbers [Indices, powers WS Numbers

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A rational function is of the form R() = p() q() where p and q are polnomial functions. The zeros of a rational function are the values of for which p() = 0, as the function s value is zero where the value

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

1 DL3. Infinite Limits and Limits at Infinity

1 DL3. Infinite Limits and Limits at Infinity Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 78 Mark Sparks 01 Infinite Limits and Limits at Infinity In our graphical analysis of its, we have already seen both an infinite

More information

Increasing and Decreasing Functions

Increasing and Decreasing Functions Increasing and Decreasing Functions 1 Remarks On a given interval, if the graph of a function rises from left to right, it is said to be increasing on that interval If the graph drops from left to right,

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

1 x 2 and 1 y 2. 0 otherwise. c) Estimate by eye the value of x for which F(x) = x + y 0 x 1 and 0 y 1. 0 otherwise

1 x 2 and 1 y 2. 0 otherwise. c) Estimate by eye the value of x for which F(x) = x + y 0 x 1 and 0 y 1. 0 otherwise Eample 5 EX: Which of the following joint density functions have (correlation) ρ XY = 0? (Remember that ρ XY = 0 is possible with symmetry even if X and Y are not independent.) a) b) f (, y) = π ( ) 2

More information

Section 5.5 Complex Numbers

Section 5.5 Complex Numbers Name: Period: Section 5.5 Comple Numbers Objective(s): Perform operations with comple numbers. Essential Question: Tell whether the statement is true or false, and justify your answer. Every comple number

More information

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x).

[Limits at infinity examples] Example. The graph of a function y = f(x) is shown below. Compute lim f(x) and lim f(x). [Limits at infinity eamples] Eample. The graph of a function y = f() is shown below. Compute f() and f(). y -8 As you go to the far right, the graph approaches y =, so f() =. As you go to the far left,

More information

Probability & Statistics: Infinite Statistics. Robert Leishman Mark Colton ME 363 Spring 2011

Probability & Statistics: Infinite Statistics. Robert Leishman Mark Colton ME 363 Spring 2011 Probability & Statistics: Infinite Statistics Robert Leishman Mark Colton ME 363 Spring 0 Large Data Sets What happens to a histogram as N becomes large (N )? Number of bins becomes large (K ) Width of

More information

Eby, MATH 0310 Spring 2017 Page 53. Parentheses are IMPORTANT!! Exponents only change what they! So if a is not inside parentheses, then it

Eby, MATH 0310 Spring 2017 Page 53. Parentheses are IMPORTANT!! Exponents only change what they! So if a is not inside parentheses, then it Eby, MATH 010 Spring 017 Page 5 5.1 Eponents Parentheses are IMPORTANT!! Eponents only change what they! So if a is not inside parentheses, then it get raised to the power! Eample 1 4 b) 4 c) 4 ( ) d)

More information

Chapter 2: Rational. Functions. SHMth1: General Mathematics. Accountancy, Business and Management (ABM. Mr. Migo M. Mendoza

Chapter 2: Rational. Functions. SHMth1: General Mathematics. Accountancy, Business and Management (ABM. Mr. Migo M. Mendoza Chapter 2: Rational Functions SHMth1: General Mathematics Accountancy, Business and Management (ABM Mr. Migo M. Mendoza Chapter 2: Rational Functions Lecture 6: Basic Concepts Lecture 7: Solving Rational

More information