PARAMETER UNCERTAINTY QUANTIFICATION USING SURROGATE MODELS APPLIED TO A SPATIAL MODEL OF YEAST MATING POLARIZATION

Size: px
Start display at page:

Download "PARAMETER UNCERTAINTY QUANTIFICATION USING SURROGATE MODELS APPLIED TO A SPATIAL MODEL OF YEAST MATING POLARIZATION"

Transcription

1 Ching-Shan Chou Department of Mathematics Ohio State University PARAMETER UNCERTAINTY QUANTIFICATION USING SURROGATE MODELS APPLIED TO A SPATIAL MODEL OF YEAST MATING POLARIZATION

2 In systems biology, we would like to Develop a comprehensive model that captures the key features in the modeled system Identify the key processes in the system Estimate the parameters in the model so that the model has a predictive power

3 The challenges are With a (relatively) comprehensive model, there are a lot of unknown parameters Experimental data are generated in order to estimate the parameters, but Is the system identifiable? Do we have enough data? Are the data useful? How to deal with spatial data?

4 Budding yeast (Saccharomyces cerevisiae) as a model system Genome fully sequenced (1996) Simple geometry Pathway understood extensively Cdc42 GTPase, the central polarization protein, is highly conserved (human Cdc42 (Cdc42hs) is 8% identical to yeast Cdc42 ) Image credit: Masur - Own work. Licensed under Public domain via Wikimedia Commons

5 Cell cycles of budding yeast

6 Yeast cell polarization Yeast reproduces by budding or mating. During mating, cell forms a projection in response to a pheromone signal. Polarization occurs via a signaling pathway with positive and negative feedback. Mogilner et al, Science 212

7 Cell polarization is everywhere Cell polarization is the asymmetric organization of cellular components. Anda et al, Journal of Cell Science 28 Fundamental to cell differentiation, division, migration, specialized functions, Etienne-Manneville, Journal of Cell Science 24

8 Yeast mating projection Shmoo

9 Accurate mating

10 α-factor induced yeast cell projection α-factor receptor (Ste2) a α α-factor

11 α-factor induced yeast cell projection α-factor GTP α Cell Cycle Arrest Cell Polarization P Transcription GTP GDP β α γ β γ

12 All-or-none polarization of proteins α-factor gradient Travis Moore, Ching-Shan Chou, Qing Nie, Noo Li Jeon and Tau-Mu Yi, Robust Spatial Sensing of Mating Pheromone Gradients by Yeast Cells, PLoS ONE, 28.

13 Signal transduction pathway

14 Signaling transduction pathway L L L Cdc24m Cdc42 Cdc42a Bem1m Cla4 L Gα Gβγ Bem1 G L L Cdc24 membrane cytoplasm

15 Signaling pathway Cdc42 Cdc24m Cdc42 is activated by Cdc24m Cdc42a can deactivate to reform Cdc42 Proteins diffuse along the membrane Cdc42a [C42a] t = D./1 [C42a] + k /1 C24m C42 k /7 C42a diffusion activation by Cdc24m deactivation

16 Computational domain z α z

17 Full polarization model Large nonlinear PDE expensive to solve! 35 unknown parameters

18 Full polarization model Quantity of Interest: Extent of polarization of Cdc42a at steady state (how concentrated is active Cdc42?) How much Cdc42 is activated? PF =.745 PF =.5

19 Introduction How do parameters affect model output? Model f(x, θ) + Parameters θ How do we minimize computational cost? Data Can data inform choice of parameters?

20 Parameter sensitivity Question: Can we quantify the effects of parameters on the behavior of the system? Let z be a scalar quantity of interest, Local sensitivity: S j = z θ j at some point z = f(θ 1, θ 2, θ N ) Can be computed analytically or approximated by finite difference Only gives information at one point what if we don t know the parameter values? θ

21 Global sensitivity Parameter sensitivity Correlations Pearson correlation coefficient Rank/Spearman correlation coefficient PRCC (accounts for effects of other parameters) Variance-based sensitivity measures Variance decomposition N Var(z) = V i + V ij V 1,2,...,N i=1 i< j Main effect index V j Var(z), Total-effect index Derivative-based sensitivity measures E z θ j, E z θ j, E ( z θ j ) 2

22 Methods: Parameter estimation Question : Given experimental data, can we estimate the parameters? What are the most likely parameter values? How much uncertainty is there in our parameter estimates? 4 Bayesian inference allows us to recover a probability distribution of the parameters. Probability density High uncertainty Low uncertainty Parameter value

23 Methods: Parameter estimation Markov chain Monte Carlo (Metropolis-Hastings): 1. Choose initial parameter set θ G. 2. For n =, 1, 2, i. Sample a new parameter set θ close to θ K ii. Calculate the acceptance ratio α = L(M ) L(M N ). iii. Accept or reject Generate a uniform random number u on [,1] If u α, set θ KQR = θ (accept). If u > α, set θ KQR = θ K (reject). Florian Hartig, theoreticalecology.wordpress.com/

24 How do we sample a high-dimensional parameter space when each sample requires an expensive model evaluation (e.g. a large PDE)? Short answer: We don t. Methods: Polynomial surrogate Solution We can fit a polynomial to z in terms of the parameters θ R, θ,, θ T. z P(θ R, θ,, θ T ) Polynomial basis depends on probability distribution of the parameters. The polynomial serves as a surrogate for the full model.

25 Generalized Polynomial Chaos (gpc) Suppose θ X ~ U[ 1,1] for all i = 1,, N. For i = 1,, N, let φ ] θ X R 7 ]^G be a set of orthogonal polynomials, i.e. 1 2 _ φ ] θ X φ K θ X dy X = h ] δ ]K dr For the uniform distribution, this gives the Legendre polynomials. These form a basis for univariate polynomials up to degree d.

26 Generalized Polynomial Chaos (gpc) The corresponding N-variate orthogonal polynomial space is defined to be W T f = d if (span φ ] θ X 7 n ]^G ) where d = (d R, d,, d T ) is a multi-index with d = T X^R d X. The Pth order gpc approximation of z can be obtained by projecting z onto the space W f T : s z T f θ = p z ]Φ ] (θ) ]^R Options: Orthogonal projection (Galerkin), polynomial fitting

27 Polynomial fitting s z T f θ = p z ]Φ ] (θ) ]^R Want to solve for polynomial coefficients, given samples θ (R),, θ (t). Let x = (z R,, z ŝ ) be the vector of coefficients. Ax = b A is a matrix where each row corresponds to one sample and each column corresponds to one basis polynomial. b is a vector of model output at the sample points.

28 Polynomial fitting Dimension of polynomial space is TQf T, where P is the degree. # of parameters Polynomial degree # of coefficients Polynomial fitting: Undersampling Exact fitting Oversampling Compressed sensing Interpolation Least squares approximation

29 Least squares approximation # of samples > # of coefficients A x = b Generally no exact solution Find polynomial that minimizes the squared error, K p P θ X b X X^R Equivalent to solving A x Ax = A x b

30 Compressed sensing (in a nutshell) # of samples < # of coefficients A x = b Infinitely many solutions Find solution with minimal l1-norm (the sparsest polynomial)

31 Methods: polynomial surrogate Now that we have a polynomial surrogate, S z = E } M ~ can be analytically computed no sampling required. Markov chain Monte Carlo (MCMC) samples require only a polynomial evaluation. The only model evaluations required are to fit the polynomial.

32 Methods: summary Determine quantity of interest Fit polynomial* Evaluate polynomial error Additional samples Satisfactory? No Yes Perform sensitivity analysis Can parameter count be reduced? No Yes Fix non-sensitive parameters Parameter estimation

33 Results: Toy model Toy model: ODE model of heterotrimeric G-protein cycle R + L ODE easy to solve. 8 parameters: 6 have been measured in experiments, 2 have been estimated via optimization *. * Yi TM, Kitano H, Simon MI. A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc Natl Acad Sci USA. 23;1(19):

34 Toy model Data Data output: Fraction of free Gβγ at various time and α-factor

35 Toy model Fitting with 2 parameters

36 Toy model Results Mean sensitivity k Ga k Gd Estimated MSE = 4.1 x 1-4 Free Gbg Time-course ODE solution data polynomial Free Gbg Dose-response Time (s) Alpha factor (nm) Optimal 1 MSE = 1.3 x 1-4 Free Gbg Time (s) Free Gbg Alpha factor (nm) * Yi TM, Kitano H, Simon MI. A quantitative characterization of the yeast heterotrimeric G protein cycle. Proc Natl Acad Sci USA. 23;1(19):

37 Toy model Approximating all 8 parameters Approximating all 8 parameters: 5 th degree polynomial with 15 samples Error: Mean.221, Std Data: Fraction of free Gβγ at various time points, α-factor levels

38 Toy model 8 parameter MCMC results k RL k Rs k RLm k Rd Estimated MSE = 6.4 x 1-4 Free Gbg Time-course ODE solution data polynomial Time (s) Free Gbg Dose-response Alpha factor (nm) k Ga k Rd k G k Gd Optimal MSE = 1.3 x 1-4 Free Gbg Time (s) Free Gbg Alpha factor (nm)

39 Findings System is most sensitive to activation and deactivation of Gα Polynomial surrogates produce similar results to optimization method Sensitive parameters have lower uncertainty in estimation High uncertainty occurs in parameters that have been experimentally measured

40 Full polarization model Large nonlinear PDE expensive to solve! 35 unknown parameters

41 Full polarization model Polynomial fitting 5 th order polynomial 658,8 coefficients Undersample and use l1-minimization With 5 samples, mean absolute error was Frequency Error.2.4

42 Full polarization model Sensitivity Most parameters have small sensitivity. Reduce parameter count!

43 Full polarization model 15 parameters k 24cm 1.5 Fit new polynomial in reduced 1.5 space with 6 samples. 4x1-3 4x1-1 k 42a k B1mc C24 t x 1 3 h k 24cm x x1-2 k 42d x1-2 2 k Cla4a x1-4 6x1-2 B1 t x1 3 5x1 3 D c x1-3 2x1-2 k 24d k B1cm k Cla4d q D c42a x1-3 2x1-2

44 Full polarization model Estimated parameters Polynomial surrogates can also be applied to optimization methods, e.g. simulated annealing (SA). 5 4 data MCMC SA SA produces better fit. MCMC shows that we must be careful with interpretation. optimal parameter sets are not unique. C42a π -π/2 π/2 π Angle from front of cell

45 What we ve done: Summary 1. Fit polynomial surrogate using 5 samples 2. Parameter sensitivity analysis to reduce parameter count 3. Fit new polynomial in reduced space with 6 samples 4. Parameter estimation via MCMC (chain length 2,,) Cost of estimation: 11, model evaluations vs. 2,, 18-fold reduction in cost Parallelizable

46 Conclusions System is most sensitive to parameters associated with Cdc42 cycle and feedback loops. Current data is not enough to estimate parameters, but indicates difference between active and inactive Cdc42. Can use time series data, other protein species. Problems: time delay, correlation between species. Addition of other protein species Model selection.

47 Acknowledgement Marissa Renardy (OSU) Tau-Mu Yi (UCSB) Dongbin Xiu (OSU) CAREER DMS

Modeling Yeast Cell Polarization Induced by Pheromone Gradients

Modeling Yeast Cell Polarization Induced by Pheromone Gradients Journal of Statistical Physics ( C 27 ) DOI: 1.17/s1955-7-9285-1 Modeling Yeast Cell Polarization Induced by Pheromone Gradients Tau-Mu Yi, 1 Shanqin Chen, 2 Ching-Shan Chou 2 and Qing Nie 2 Received March

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

HHS Public Access Author manuscript IET Syst Biol. Author manuscript; available in PMC 2015 May 28.

HHS Public Access Author manuscript IET Syst Biol. Author manuscript; available in PMC 2015 May 28. Alternative cell polarity behaviours arise from changes in G- protein spatial dynamics Ching-Shan Chou 1, Travis I. Moore 2, Qing Nie 3, and Tau-Mu Yi 4 Tau-Mu Yi: taumu.yi@lifesci.ucsb.edu 1 Department

More information

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications

Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Stochastic Collocation Methods for Polynomial Chaos: Analysis and Applications Dongbin Xiu Department of Mathematics, Purdue University Support: AFOSR FA955-8-1-353 (Computational Math) SF CAREER DMS-64535

More information

A NOVEL ROLE FOR THE RGS PROTEIN SST2 IN YEAST SIGNALING REVEALED BY MATHEMATICAL MODELING AND LIVE CELL IMAGING. Sai Phanindra Venkatapurapu

A NOVEL ROLE FOR THE RGS PROTEIN SST2 IN YEAST SIGNALING REVEALED BY MATHEMATICAL MODELING AND LIVE CELL IMAGING. Sai Phanindra Venkatapurapu A NOVEL ROLE FOR THE RGS PROTEIN SST2 IN YEAST SIGNALING REVEALED BY MATHEMATICAL MODELING AND LIVE CELL IMAGING Sai Phanindra Venkatapurapu A dissertation submitted to the faculty of the University of

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Markov Chains and MCMC

Markov Chains and MCMC Markov Chains and MCMC CompSci 590.02 Instructor: AshwinMachanavajjhala Lecture 4 : 590.02 Spring 13 1 Recap: Monte Carlo Method If U is a universe of items, and G is a subset satisfying some property,

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Bayesian parameter estimation in predictive engineering

Bayesian parameter estimation in predictive engineering Bayesian parameter estimation in predictive engineering Damon McDougall Institute for Computational Engineering and Sciences, UT Austin 14th August 2014 1/27 Motivation Understand physical phenomena Observations

More information

A Bayesian Approach to Phylogenetics

A Bayesian Approach to Phylogenetics A Bayesian Approach to Phylogenetics Niklas Wahlberg Based largely on slides by Paul Lewis (www.eeb.uconn.edu) An Introduction to Bayesian Phylogenetics Bayesian inference in general Markov chain Monte

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems John Bardsley, University of Montana Collaborators: H. Haario, J. Kaipio, M. Laine, Y. Marzouk, A. Seppänen, A. Solonen, Z.

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Performance Evaluation of Generalized Polynomial Chaos

Performance Evaluation of Generalized Polynomial Chaos Performance Evaluation of Generalized Polynomial Chaos Dongbin Xiu, Didier Lucor, C.-H. Su, and George Em Karniadakis 1 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA, gk@dam.brown.edu

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics

Bayesian phylogenetics. the one true tree? Bayesian phylogenetics Bayesian phylogenetics the one true tree? the methods we ve learned so far try to get a single tree that best describes the data however, they admit that they don t search everywhere, and that it is difficult

More information

Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015

Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015 Concepts in Global Sensitivity Analysis IMA UQ Short Course, June 23, 2015 A good reference is Global Sensitivity Analysis: The Primer. Saltelli, et al. (2008) Paul Constantine Colorado School of Mines

More information

Bayesian Calibration of Simulators with Structured Discretization Uncertainty

Bayesian Calibration of Simulators with Structured Discretization Uncertainty Bayesian Calibration of Simulators with Structured Discretization Uncertainty Oksana A. Chkrebtii Department of Statistics, The Ohio State University Joint work with Matthew T. Pratola (Statistics, The

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Forward Problems and their Inverse Solutions

Forward Problems and their Inverse Solutions Forward Problems and their Inverse Solutions Sarah Zedler 1,2 1 King Abdullah University of Science and Technology 2 University of Texas at Austin February, 2013 Outline 1 Forward Problem Example Weather

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Lecture 9: Sensitivity Analysis ST 2018 Tobias Neckel Scientific Computing in Computer Science TUM Repetition of Previous Lecture Sparse grids in Uncertainty Quantification

More information

An introduction to Bayesian statistics and model calibration and a host of related topics

An introduction to Bayesian statistics and model calibration and a host of related topics An introduction to Bayesian statistics and model calibration and a host of related topics Derek Bingham Statistics and Actuarial Science Simon Fraser University Cast of thousands have participated in the

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Signaling regulated endocytosis and exocytosis lead to mating pheromone concentration dependent morphologies in yeast

Signaling regulated endocytosis and exocytosis lead to mating pheromone concentration dependent morphologies in yeast FES Letters 586 (22) 428 424 journal homepage: www.fesletters.org Signaling regulated endocytosis and exocytosis lead to mating pheromone concentration dependent morphologies in yeast Ching-Shan Chou a,,,

More information

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Konstantin Zuev Institute for Risk and Uncertainty University of Liverpool http://www.liv.ac.uk/risk-and-uncertainty/staff/k-zuev/

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Learning the hyper-parameters. Luca Martino

Learning the hyper-parameters. Luca Martino Learning the hyper-parameters Luca Martino 2017 2017 1 / 28 Parameters and hyper-parameters 1. All the described methods depend on some choice of hyper-parameters... 2. For instance, do you recall λ (bandwidth

More information

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C.

Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Condensed Table of Contents for Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control by J. C. Spall John Wiley and Sons, Inc., 2003 Preface... xiii 1. Stochastic Search

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Supporting Text - Cubic Ternary Complex Activation Model (ctcam)

Supporting Text - Cubic Ternary Complex Activation Model (ctcam) Both Ligand- and Cell-Specific Parameters Control Ligand Agonism in a Kinetic Model of G protein Coupled Receptor Signaling by Tamara L. Kinzer-Ursem and Jennifer J. Linderman Supporting Text - Cubic Ternary

More information

Alliance for Cellular Signaling

Alliance for Cellular Signaling Alliance for Cellular Signaling 40 laboratories investigating basic questions in cell signaling How complex is signal processing in cells? What is the structure and dynamics of the network? Can functional

More information

Uncertainty Quantification in MEMS

Uncertainty Quantification in MEMS Uncertainty Quantification in MEMS N. Agarwal and N. R. Aluru Department of Mechanical Science and Engineering for Advanced Science and Technology Introduction Capacitive RF MEMS switch Comb drive Various

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 2: Monte Carlo Methods Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/ and via the MSc weblearn pages.

More information

Multifidelity Approaches to Approximate Bayesian Computation

Multifidelity Approaches to Approximate Bayesian Computation Multifidelity Approaches to Approximate Bayesian Computation Thomas P. Prescott Wolfson Centre for Mathematical Biology University of Oxford Banff International Research Station 11th 16th November 2018

More information

Signal Transduction. Dr. Chaidir, Apt

Signal Transduction. Dr. Chaidir, Apt Signal Transduction Dr. Chaidir, Apt Background Complex unicellular organisms existed on Earth for approximately 2.5 billion years before the first multicellular organisms appeared.this long period for

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

arxiv: v1 [stat.co] 23 Apr 2018

arxiv: v1 [stat.co] 23 Apr 2018 Bayesian Updating and Uncertainty Quantification using Sequential Tempered MCMC with the Rank-One Modified Metropolis Algorithm Thomas A. Catanach and James L. Beck arxiv:1804.08738v1 [stat.co] 23 Apr

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition Mar Girolami 1 Department of Computing Science University of Glasgow girolami@dcs.gla.ac.u 1 Introduction

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

MCMC for Cut Models or Chasing a Moving Target with MCMC

MCMC for Cut Models or Chasing a Moving Target with MCMC MCMC for Cut Models or Chasing a Moving Target with MCMC Martyn Plummer International Agency for Research on Cancer MCMSki Chamonix, 6 Jan 2014 Cut models What do we want to do? 1. Generate some random

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture February Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 13-28 February 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Limitations of Gibbs sampling. Metropolis-Hastings algorithm. Proof

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Stochastic Hybrid Systems: Modeling, analysis, and applications to networks and biology

Stochastic Hybrid Systems: Modeling, analysis, and applications to networks and biology research supported by NSF Stochastic Hybrid Systems: Modeling, analysis, and applications to networks and biology João P. Hespanha Center for Control Engineering and Computation University of California

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) Gibbs and Metropolis Hastings Slice sampling Practical details Iain Murray http://iainmurray.net/ Reminder Need to sample large, non-standard distributions:

More information

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics

STA414/2104. Lecture 11: Gaussian Processes. Department of Statistics STA414/2104 Lecture 11: Gaussian Processes Department of Statistics www.utstat.utoronto.ca Delivered by Mark Ebden with thanks to Russ Salakhutdinov Outline Gaussian Processes Exam review Course evaluations

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

Gaussian process regression for Sensitivity analysis

Gaussian process regression for Sensitivity analysis Gaussian process regression for Sensitivity analysis GPSS Workshop on UQ, Sheffield, September 2016 Nicolas Durrande, Mines St-Étienne, durrande@emse.fr GPSS workshop on UQ GPs for sensitivity analysis

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Lecture 2: Read about the yeast MAT locus in Molecular Biology of the Gene. Watson et al. Chapter 10. Plus section on yeast as a model system Read

Lecture 2: Read about the yeast MAT locus in Molecular Biology of the Gene. Watson et al. Chapter 10. Plus section on yeast as a model system Read Lecture 2: Read about the yeast MAT locus in Molecular Biology of the Gene. Watson et al. Chapter 10. Plus section on yeast as a model system Read chapter 22 and chapter 10 [section on MATing type gene

More information

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Assaf Weiner Tuesday, March 13, 2007 1 Introduction Today we will return to the motif finding problem, in lecture 10

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

The Ising model and Markov chain Monte Carlo

The Ising model and Markov chain Monte Carlo The Ising model and Markov chain Monte Carlo Ramesh Sridharan These notes give a short description of the Ising model for images and an introduction to Metropolis-Hastings and Gibbs Markov Chain Monte

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Supplementary Note on Bayesian analysis

Supplementary Note on Bayesian analysis Supplementary Note on Bayesian analysis Structured variability of muscle activations supports the minimal intervention principle of motor control Francisco J. Valero-Cuevas 1,2,3, Madhusudhan Venkadesan

More information

On Markov chain Monte Carlo methods for tall data

On Markov chain Monte Carlo methods for tall data On Markov chain Monte Carlo methods for tall data Remi Bardenet, Arnaud Doucet, Chris Holmes Paper review by: David Carlson October 29, 2016 Introduction Many data sets in machine learning and computational

More information

I. Bayesian econometrics

I. Bayesian econometrics I. Bayesian econometrics A. Introduction B. Bayesian inference in the univariate regression model C. Statistical decision theory D. Large sample results E. Diffuse priors F. Numerical Bayesian methods

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Markov Processes. Stochastic process. Markov process

Markov Processes. Stochastic process. Markov process Markov Processes Stochastic process movement through a series of well-defined states in a way that involves some element of randomness for our purposes, states are microstates in the governing ensemble

More information

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION P. DOSTERT, Y. EFENDIEV, AND T.Y. HOU Abstract. In this paper, we study multiscale

More information

EXAM PRACTICE. 12 questions * 4 categories: Statistics Background Multivariate Statistics Interpret True / False

EXAM PRACTICE. 12 questions * 4 categories: Statistics Background Multivariate Statistics Interpret True / False EXAM PRACTICE 12 questions * 4 categories: Statistics Background Multivariate Statistics Interpret True / False Stats 1: What is a Hypothesis? A testable assertion about how the world works Hypothesis

More information

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Simulation of truncated normal variables Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Abstract arxiv:0907.4010v1 [stat.co] 23 Jul 2009 We provide in this paper simulation algorithms

More information

Monte Carlo Inference Methods

Monte Carlo Inference Methods Monte Carlo Inference Methods Iain Murray University of Edinburgh http://iainmurray.net Monte Carlo and Insomnia Enrico Fermi (1901 1954) took great delight in astonishing his colleagues with his remarkably

More information

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Mahdi Imani and Ulisses Braga-Neto Department of Electrical and Computer Engineering Texas A&M University College

More information

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works

CS168: The Modern Algorithmic Toolbox Lecture #8: How PCA Works CS68: The Modern Algorithmic Toolbox Lecture #8: How PCA Works Tim Roughgarden & Gregory Valiant April 20, 206 Introduction Last lecture introduced the idea of principal components analysis (PCA). The

More information

Sampling Algorithms for Probabilistic Graphical models

Sampling Algorithms for Probabilistic Graphical models Sampling Algorithms for Probabilistic Graphical models Vibhav Gogate University of Washington References: Chapter 12 of Probabilistic Graphical models: Principles and Techniques by Daphne Koller and Nir

More information

Approximate Bayesian Computation and Particle Filters

Approximate Bayesian Computation and Particle Filters Approximate Bayesian Computation and Particle Filters Dennis Prangle Reading University 5th February 2014 Introduction Talk is mostly a literature review A few comments on my own ongoing research See Jasra

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1.

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1. Introduction Dagmar Iber Jörg Stelling joerg.stelling@bsse.ethz.ch CSB Deterministic, SS 2015, 1 Origins of Systems Biology On this assumption of the passage of blood, made as a basis for argument, and

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians Kenneth Lange Numerical Analysis for Statisticians Springer Contents Preface v 1 Recurrence Relations 1 1.1 Introduction 1 1.2 Binomial CoefRcients 1 1.3 Number of Partitions of a Set 2 1.4 Horner's Method

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions.

Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions. BAYESIAN STATISTICS 7, pp. 000 000 J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West (Eds.) c Oxford University Press, 2003 Modelling Data over Time: Curve

More information

Example: Ground Motion Attenuation

Example: Ground Motion Attenuation Example: Ground Motion Attenuation Problem: Predict the probability distribution for Peak Ground Acceleration (PGA), the level of ground shaking caused by an earthquake Earthquake records are used to update

More information

Introduction to Smoothing spline ANOVA models (metamodelling)

Introduction to Smoothing spline ANOVA models (metamodelling) Introduction to Smoothing spline ANOVA models (metamodelling) M. Ratto DYNARE Summer School, Paris, June 215. Joint Research Centre www.jrc.ec.europa.eu Serving society Stimulating innovation Supporting

More information

Analyzing Microarray Time course Genome wide Data

Analyzing Microarray Time course Genome wide Data OR 779 Functional Data Analysis Course Project Analyzing Microarray Time course Genome wide Data Presented by Xin Zhao April 29, 2002 Cornell University Overview 1. Introduction Biological Background Biological

More information

Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers

Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints. Hadi Mohasel Afshar Scott Sanner Christfried Webers Closed-form Gibbs Sampling for Graphical Models with Algebraic constraints Hadi Mohasel Afshar Scott Sanner Christfried Webers Inference in Hybrid Graphical Models / Probabilistic Programs Limitations

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information