PH575 Spring Lecture #28 Nanoscience: the case study of graphene and carbon nanotubes.

Size: px
Start display at page:

Download "PH575 Spring Lecture #28 Nanoscience: the case study of graphene and carbon nanotubes."

Transcription

1 PH575 Spring 2014 Lecture #28 Nanoscience: the case study of graphene and carbon nanotubes.

2 Nanoscience scale nm "Artificial atoms" Small size => discrete states Large surface to volume ratio Bottom-up vs. top-down construction ~pcii/nanocrystals.htm

3 A close look on single quantum dots A. Zrenner Walter Schottky Institut, Technische Universität München, D Garching, Germany The Journal of Chemical Physics, Vol. 112, No. 18, pp , 8 May 2000 Fig. 1. AFM images of self assembled In 0.4 Ga 0.6 As QDs grown by MBE on a GaAs substrate at a temperature of 530 C. Nominally 7.5 monolayers of In 0.4 Ga 0.6 As, slightly above the critical thickness for Stranski Krastanow growth have been deposited under the condition of nonrotated substrate. The resulting gradient in In 0.4 Ga 0.6 As coverage leads to a variation of the QD surface density across the wafer (upper part: ~100 µm 2, lower part: ~20 µm 2 ). Fig. 2. Power dependent PL spectra from a single QD isolated by near field spectroscopy through a nano-aperture. At low excitation power PL only the single exciton decay from the s-shell is observed (1X). At elevated PL occupancies with two and more excitons are realized. The sequential biexciton decay leads to the appearance of the biexciton line (21) in the p-shell (2X). The decay of higher occupancies (for example 32, 43) leads to new emission lines in the spectral region of the p-shell and additional, further renormalized lines in the region of the s-shell

4 Carbon nanotube Gold electrode

5 The measured vibration amplitude revealed an exceptionally high elastic Young's modulus of about N/m 2 (or one TPa) - about five times the value for steel. This results in talk of a "space elevator", to tether an orbiter to earth asp?articleid=1137

6 graphene GRAPHENE Si Graphene nanofabric. SEM micrograph of a strongly crumpled graphene sheet on a Si wafer. Note that it looks just like silk thrown over a surface. Lateral size of the image is 20 microns. Si wafer is at the bottom-right corner. Image "graphene molecule.jpg" is copyright of Chris Ewels ( Fig. 1. Phonon dispersion of graphene calculated within a valence force field (VFF) model (Aizawa). ~vpopov/phdsgraphene.htm

7 A CNT is made by cutting a strip of graphene so that the wrapping vector, shown in red at left, wraps around the circumference of the tube. There are two special cases: the armchair and the zig-zag CNT. The general case is called the chiral nanotube.

8

9 CNT towers 500 µm 30 µm 1 µm

10 Approximate 1-D band structure and density of states of (a) metallic CNT and (b) semiconducting CNT. The band gap of a semiconducting tube is inversely proportional to its diameter E g = 4hv F /3d

11 Differential conductance of a CNT. Note how the conductance jumps every time the peak in the DoS lines up with the electron supply reservoir

12 E( k x,k ) y = ±γ cos 1 2 k x a 0 ( 3 )cos 2 k y a 0 ( ) + 4 cos 2 ( k x a 0 ) 2

13 The program Identify unit cell and reciprocal lattice Set up LCAO wavefunction Set up Hamiltonian and Schrödinger s equation Project onto basis states Set up coefficient matrix and solve eigenvalue determinant Plot dispersion relation Find Fermi energy For nanotubes Set up boundary constraints

14 The graphene lattice has 2 inequivalent C atoms per unit cell. Each one is bonded to 3 other C atoms in the plane via sp 2 hybrid orbitals, and each has one electron in a p z orbital perpendicular to the plane. The C-C bond distance is Å.

15 Reciprocal lattice a i b j = 2πδ ij ( ) = 2π ( ) = 0 a 1 b 1 = 3a x 2 1y a 2 b 1 = 3a 0 1 b x 2 1y b 1x = 2π / 3a 0 b 1y = 2π / 3a 0 b 1 = b 2 = 2π 1, 3a 0 1 2π 1, 3a 0 3 ; b ; b 2 = 4π 3a 0 = 4π 3a 0 The reciprocal lattice is triangular. The Wigner-Seitz cell (1st Brillouin zone) is shaded. There are 6 equivalent K points (What are they?).

16 The program ü Identify unit cell and reciprocal lattice Set up LCAO wavefunction Set up Hamiltonian and Schrödinger s equation Project onto basis states Set up coefficient matrix and solve eigenvalue determinant Plot dispersion relation Find Fermi energy For nanotubes Set up boundary constraints

17 Set up LCAO wave function 2 atoms per unit cell Ĥ Ψ k = E( k ) Ψ k R ( ) Ψ k = e i k R φ x R φ( x ) = b 1 φ ( 1 x) + b2 φ ( 2 x) Hamiltonian Ĥ = ˆp 2 2m + V at R Ĥ = ˆp 2 2m + V at x x2 V at x x 1 R ( ) + V at x x2 R ( ) ( x x ) 1 + ( ) + V at x x1 R R 0 ( ) + V ( at x x2 R )

18 Ĥ Ĥ φ 2 x ( ) = ˆp 2 2m + V at + V at x x2 = ε 1 x = ε 1 x x x 1 ( ) x ( ) ( ) + V at x x1 R R 0 ( ) + Vat x x2 ( ) + ΔU1 ( x) ( x) = ε2 φ 2 ( x) + ΔU2 φ 2 ( x) ( ) + V ( at x x2 R ) ( ) + V at x x1 R R 0 x ( ) ( ) + V ( at x x2 R ) x ( ) Onsite matrix element ε 1 = ε 2 Set to zero by choice Ĥ φ j = ΔU j φ j ΔU 1(2) Can be considered the perturbing potential for 1 (2)

19 The program ü Identify unit cell and reciprocal lattice ü Set up LCAO wavefunction ü Set up Hamiltonian and Schrödinger's equation Project onto basis states Set up coefficient matrix and solve eigenvalue determinant Plot dispersion relation Find Fermi energy For nanotubes Set up boundary constraints

20 Ĥ Ψ k = E( k ) Ψ k Now project onto basis states φ j Ĥ Ψ k = φ j E( k ) Ψ k φ j ΔU j Ψ k = E( k ) φ j Ψ k This will be step 2 This will be step 1

21 Step 1 φ j Ψ k Step 2. Ψ k = e i k R φ x R Ψ k R = b 1 + b 2 γ 0 α ( k ) ( ). ( ) ΔU 1 Ψ k = ΔU 1 e i k R φ x R ΔU 1 Ψ k φ j ΔU j Ψ k R = b 2 γ 1 α ( k )

22 Step 1 φ j Ψ k... R ( ) Ψ k = e i k R φ x R Ψ k = b 1 + b 2 γ 0 α ( k )

23 Step 1 φ j Ψ k R ( ) Ψ k = e i k R φ x R R { ( ) + b 2 φ ( 2 x R ) } = e i k R b 1 x R ( ) φ1 ( x) + b2 φ ( 1 x) φ2 ( x) = b 1 x R=0 ( ) + b 2 e i k a 1 x ( ) φ1 x + a1 ( ) ( ) φ2 x + a1 +b 1 e i k a 1 x ( ) φ1 x + a2 R= a 1 ( ) + b 2 e i k a 2 x ( ) ( ) φ2 x + a2 +b 1 e i k a 2 x R= a 2

24 Ψ k = b 1 +b 2 φ ( 1 x ) φ ( 2 x ) +b 2 e i k a 1 φ ( 1 x ) φ ( 2 x + a1 ) +b 2 e i k a 2 φ ( 1 x ) φ ( 2 x + a2 ) Ψ k = b 1 + b 2 γ 0 1+ e i k a 1 + e i k a 2 Ψ k ( ) = b 1 + b 2 γ 0 α k φ 2 Ψ k = b 2 + b 1 γ 0 α * ( k ) End step 1

25 Step 2 φ j ΔU j Ψ k... R ( ) ΔU 1 Ψ k = ΔU 1 e i k R φ x R ΔU 1 Ψ k = b 2 γ 1 α ( k )

26 Step 2 φ j ΔU j Ψ k R ( ) ΔU 1 Ψ k = ΔU 1 e i k R φ x R R = ΔU 1 e i k R b 1 x R { ( ) + b 2 φ ( 2 x R ) } ( ) ΔU1 φ ( 1 x) + b2 φ ( 1 x) ΔU1 φ ( 2 x) = b 1 x R=0 ( ) ΔU1 x + a1 ( ) + b 2 e i k a 1 x ( ) ( ) ΔU1 φ 2 x + a1 +b 1 e i k a 1 x ( ) ΔU1 x + a2 R= a 1 ( ) + b 2 e i k a 2 x ( ) ( ) ΔU1 φ 2 x + a2 +b 1 e i k a 2 x R= a 2

27 Define hopping (offsite) matrix element ΔU 1 Ψ k = b 2 γ 1 1+ e i k a 1 + e i k a 2 φ 2 ΔU 2 Ψ k = b 1 γ 1 1+ e +i k a 1 + e +i k a 2 γ 1 = ΔU 1 φ 2 = φ 2 ΔU 2 ( ) = b 2γ 1 α k = b 1γ 1 α * k ( ) End step 2 Now remember these were the equations we began with: φ j ΔU j Ψ k = E( k ) φ j Ψ k

28 The program ü Identify unit cell and reciprocal lattice ü Set up LCAO wavefunction ü Set up Hamiltonian and Schrödinger s equation ü Project onto basis states Set up coefficient matrix and solve eigenvalue determinant Plot dispersion relation Find Fermi energy For nanotubes Set up boundary constraints

29 Now remember these were the equations we began with: φ j ΔU j Ψ k = E( k ) φ j Ψ k And we found in step 2 and step 1 that: ΔU 1 Ψ k = b 2 γ 1 α ( k ) Ψ k = b 1 + b 2 γ 0 α ( k ) φ 2 ΔU 2 Ψ k = b 1 γ 1 α * ( k ) φ 2 Ψ k = b 2 + b 1 γ 0 α * ( k ) It s easy to put these together to get the eigenvalue equation: ( ) α γ 0 E( k ) γ 1 E k ( ) α *( γ 0 E( k ) γ ) 1 E( k ) = 0

30 The solution, in the limit of small γ 0 is ( ) 2 = γ 2 1 α ( k ) 2 E( k ) = ±γ 1 α ( k ) E k Recall the definition of α(k): ( ) = 1+ e i k a 1 + e i k a 2 α k You find α(k) and show that E ( k ) = ±γ cos( k a ) 1 + 2cos( k a ) 2 + 2cos( k [ a 2 a ]) 1 And explicitly in terms of x and y coordinates E( k x,k ) y = ±γ cos 1 2 k x a 0 ( 3 )cos 2 k y a 0 ( ) + 4 cos 2 ( k x a 0 ) 2

31 The program ü Identify unit cell and reciprocal lattice ü Set up LCAO wavefunction ü Set up Hamiltonian and Schrödinger s equation ü Project onto basis states ü Set up coefficient matrix and solve eigenvalue determinant Plot dispersion relation Find Fermi energy For nanotubes Set up boundary constraints

32 The dispersion relation for graphene! Where is the Fermi energy? Notice the K points. What is E(K x,k y )? E( k x,k ) y = ±γ cos 1 2 k x a 0 ( 3 )cos 2 k y a 0 ( ) + 4 cos 2 ( k x a 0 ) 2

33 New feature for nanotubes is that boundary constraints are important. The wave vector parallel to the axis of the tube in unconstrained (for practical purposes) The wave vector perpendicular to the axis must result in a wavelength that fits into the circumference. Armchair: w = N ( a 1 + a ) 2 3Na = mλ m k y,m = m 2π 3Na

34 3Na = mλ m k y,m = m 2π 3Na

35 E( k x,k ) y = ±γ cos 1 2 k x a ( 3 )cos 2 k y a ( ) + 4 cos 2 ( k x a ) 2 cos 2πm N E F Armchair CNTs are metallic

36 Zig-zag CNTs are metallic or semiconducting

37 General wrapping vector (but limited to vicinity of the Fermi energy): E( k ) = ± 2v F d m n 3 + p 2 + k d 2 2 w = n a 1 + m a 2 Metallic; m-n is a multiple of 3 Semiconducting; m-n is NOT a multiple of 3

Refering to Fig. 1 the lattice vectors can be written as: ~a 2 = a 0. We start with the following Ansatz for the wavefunction:

Refering to Fig. 1 the lattice vectors can be written as: ~a 2 = a 0. We start with the following Ansatz for the wavefunction: 1 INTRODUCTION 1 Bandstructure of Graphene and Carbon Nanotubes: An Exercise in Condensed Matter Physics developed by Christian Schönenberger, April 1 Introduction This is an example for the application

More information

structure of graphene and carbon nanotubes which forms the basis for many of their proposed applications in electronics.

structure of graphene and carbon nanotubes which forms the basis for many of their proposed applications in electronics. Chapter Basics of graphene and carbon nanotubes This chapter reviews the theoretical understanding of the geometrical and electronic structure of graphene and carbon nanotubes which forms the basis for

More information

Carbon nanotubes and Graphene

Carbon nanotubes and Graphene 16 October, 2008 Solid State Physics Seminar Main points 1 History and discovery of Graphene and Carbon nanotubes 2 Tight-binding approximation Dynamics of electrons near the Dirac-points 3 Properties

More information

Nanoscience quantum transport

Nanoscience quantum transport Nanoscience quantum transport Janine Splettstößer Applied Quantum Physics, MC2, Chalmers University of Technology Chalmers, November 2 10 Plan/Outline 4 Lectures (1) Introduction to quantum transport (2)

More information

From Graphene to Nanotubes

From Graphene to Nanotubes From Graphene to Nanotubes Zone Folding and Quantum Confinement at the Example of the Electronic Band Structure Christian Krumnow christian.krumnow@fu-berlin.de Freie Universität Berlin June 6, Zone folding

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

2 Symmetry. 2.1 Structure of carbon nanotubes

2 Symmetry. 2.1 Structure of carbon nanotubes 2 Symmetry Carbon nanotubes are hollow cylinders of graphite sheets. They can be viewed as single molecules, regarding their small size ( nm in diameter and µm length), or as quasi-one dimensional crystals

More information

Carbon nanotubes: Models, correlations and the local density of states

Carbon nanotubes: Models, correlations and the local density of states Carbon nanotubes: Models, correlations and the local density of states Alexander Struck in collaboration with Sebastián A. Reyes Sebastian Eggert 15. 03. 2010 Outline Carbon structures Modelling of a carbon

More information

Lectures Graphene and

Lectures Graphene and Lectures 15-16 Graphene and carbon nanotubes Graphene is atomically thin crystal of carbon which is stronger than steel but flexible, is transparent for light, and conducts electricity (gapless semiconductor).

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Quantum Condensed Matter Physics

Quantum Condensed Matter Physics QCMP-2017/18 Problem sheet 2: Quantum Condensed Matter Physics Band structure 1. Optical absorption of simple metals Sketch the typical energy-wavevector dependence, or dispersion relation, of electrons

More information

Heterostructures and sub-bands

Heterostructures and sub-bands Heterostructures and sub-bands (Read Datta 6.1, 6.2; Davies 4.1-4.5) Quantum Wells In a quantum well, electrons are confined in one of three dimensions to exist within a region of length L z. If the barriers

More information

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation

Summary lecture VII. Boltzmann scattering equation reads in second-order Born-Markov approximation Summary lecture VII Boltzmann scattering equation reads in second-order Born-Markov approximation and describes time- and momentum-resolved electron scattering dynamics in non-equilibrium Markov approximation

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus Quantum Transport and Dynamics in Nanostructures The 4 th Windsor Summer School on Condensed Matter Theory 6-18 August 2007, Great Park Windsor (UK) Physics of Nanotubes, Graphite and Graphene Mildred

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n zigzag armchair Three major categories of nanotube structures can be identified based on the values of m and n m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Nature 391, 59, (1998) chiral J. Tersoff,

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics Final Exam Monday, December 17, 2012 / 14:00 17:00 / CCIS 4-285 Student s Name: Instructions There are 24 questions. You should attempt all of them. Mark your response

More information

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review Lecture contents A few concepts from Quantum Mechanics Particle in a well Two wells: QM perturbation theory Many wells (atoms) BAND formation Tight-binding model Solid state physics review Approximations

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Band Structure of Isolated and Bundled Nanotubes

Band Structure of Isolated and Bundled Nanotubes Chapter 5 Band Structure of Isolated and Bundled Nanotubes The electronic structure of carbon nanotubes is characterized by a series of bands (sub- or minibands) arising from the confinement around the

More information

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes 65 C.Ü. Fen Fakültesi Fen Bilimleri Dergisi, Cilt 33, No. 1 (2012) Calculation of Cutting Lines of Single-Walled Carbon Nanotubes Erdem UZUN 1* 1 Karamanoğlu Mehmetbey Üniversitesi, Fen Fakültesi, Fizik

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application Electron Microscopy for Introduction to Electron Microscopy Carbon Nanomaterials (nanotubes) Dr. Hua

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics In-class Midterm Exam Wednesday, October 26, 2011 / 14:00 15:20 / CCIS 4-285 Student s Name: Instructions There are 23 questions. You should attempt all of them. Mark

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

5 Problems Chapter 5: Electrons Subject to a Periodic Potential Band Theory of Solids

5 Problems Chapter 5: Electrons Subject to a Periodic Potential Band Theory of Solids E n = :75, so E cont = E E n = :75 = :479. Using E =!, :479 = m e k z =! j e j m e k z! k z = r :479 je j m e = :55 9 (44) (v g ) z = @! @k z = m e k z = m e :55 9 = :95 5 m/s. 4.. A ev electron is to

More information

Graphene and Planar Dirac Equation

Graphene and Planar Dirac Equation Graphene and Planar Dirac Equation Marina de la Torre Mayado 2016 Marina de la Torre Mayado Graphene and Planar Dirac Equation June 2016 1 / 48 Outline 1 Introduction 2 The Dirac Model Tight-binding model

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

ECE 535 Theory of Semiconductors and Semiconductor Devices Fall 2015 Homework # 5 Due Date: 11/17/2015

ECE 535 Theory of Semiconductors and Semiconductor Devices Fall 2015 Homework # 5 Due Date: 11/17/2015 ECE 535 Theory of Semiconductors and Semiconductor Devices Fall 2015 Homework # 5 Due Date: 11/17/2015 Problem # 1 Two carbon atoms and four hydrogen atoms form and ethane molecule with the chemical formula

More information

Graphene A One-Atom-Thick Material for Microwave Devices

Graphene A One-Atom-Thick Material for Microwave Devices ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 11, Number 1, 2008, 29 35 Graphene A One-Atom-Thick Material for Microwave Devices D. DRAGOMAN 1, M. DRAGOMAN 2, A. A. MÜLLER3 1 University

More information

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to

More information

Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice

Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice Supplementary Figure S1. STM image of monolayer graphene grown on Rh (111). The lattice mismatch between graphene (0.246 nm) and Rh (111) (0.269 nm) leads to hexagonal moiré superstructures with the expected

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria

Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Clar Sextet Theory for low-dimensional carbon nanostructures: an efficient approach based on chemical criteria Matteo Baldoni Fachbereich Chemie, Technische Universität Dresden, Germany Department of Chemistry

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy (EELS) Electron energy loss spectroscopy (EELS) Phil Hasnip Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~pjh503 Many slides courtesy of Jonathan

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Optical & Transport Properties of Carbon Nanotubes II

Optical & Transport Properties of Carbon Nanotubes II Optical & Transport Properties of Carbon Nanotubes II Duncan J. Mowbray Nano-Bio Spectroscopy Group European Theoretical Spectroscopy Facility (ETSF) Donostia International Physics Center (DIPC) Universidad

More information

Physical Properties of Mono-layer of

Physical Properties of Mono-layer of Chapter 3 Physical Properties of Mono-layer of Silicene The fascinating physical properties[ 6] associated with graphene have motivated many researchers to search for new graphene-like two-dimensional

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Quantum wells and Dots on surfaces

Quantum wells and Dots on surfaces Lecture in the course Surface Physics and Nano Physics 2008 Quantum wells and Dots on surfaces Bo Hellsing Department of Physics, Göteborg University, Göteborg, S Collaborators: QW Johan Carlsson, Göteborg

More information

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics Journal of Computational Electronics X: YYY-ZZZ,? 6 Springer Science Business Media, Inc. Manufactured in The Netherlands An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics HASSAN

More information

The Young s Modulus of Single-Walled Carbon Nanotubes

The Young s Modulus of Single-Walled Carbon Nanotubes The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Quantized Electrical Conductance of Carbon nanotubes(cnts)

Quantized Electrical Conductance of Carbon nanotubes(cnts) Quantized Electrical Conductance of Carbon nanotubes(cnts) By Boxiao Chen PH 464: Applied Optics Instructor: Andres L arosa Abstract One of the main factors that impacts the efficiency of solar cells is

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany Optical Spectroscopies of Thin Films and Interfaces Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany 1. Introduction 2. Vibrational Spectroscopies (Raman and Infrared)

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Electronic Structure of Surfaces

Electronic Structure of Surfaces Electronic Structure of Surfaces When solids made of an infinite number of atoms are formed, it is a common misconception to consider each atom individually. Rather, we must consider the structure of the

More information

The World of Carbon Nanotubes

The World of Carbon Nanotubes The World of Carbon Nanotubes Carbon Nanotubes Presentation by Jan Felix Eschermann at JASS05 from March 31st to April 9th, 2005 1 Outline Introduction Physical Properties Manufacturing Techniques Applications

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

1D quantum rings and persistent currents

1D quantum rings and persistent currents Lehrstuhl für Theoretische Festkörperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 9, 2007 Motivation In the last decades there was a growing interest for such microscopic

More information

GRAPHENE the first 2D crystal lattice

GRAPHENE the first 2D crystal lattice GRAPHENE the first 2D crystal lattice dimensionality of carbon diamond, graphite GRAPHENE realized in 2004 (Novoselov, Science 306, 2004) carbon nanotubes fullerenes, buckyballs what s so special about

More information

Manipulating and determining the electronic structure of carbon nanotubes

Manipulating and determining the electronic structure of carbon nanotubes Manipulating and determining the electronic structure of carbon nanotubes (06.12.2005 NTHU, Physics Department) Po-Wen Chiu Department of Electrical Engineering, Tsing Hua University, Hsinchu, Taiwan Max-Planck

More information

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells

Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Supporting Information for: Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells Botao Ji, Yossef E. Panfil and Uri Banin * The Institute of Chemistry and Center for Nanoscience and Nanotechnology, The

More information

Solution to Exercise 2

Solution to Exercise 2 Department of physics, NTNU TFY Mesoscopic Physics Spring Solution to xercise Question Apart from an adjustable constant, the nearest neighbour nn) tight binding TB) band structure for the D triangular

More information

Homework 2 - Solutions

Homework 2 - Solutions Homework 2 - Solutions Carbon Nanotubes Part 4) We can write the wavefunction of the grahene sheet within the tight-binding model in the usual way ( ~ R)= e i~ k ~R Then, to imose eriodic boundary condition

More information

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Electronic structure of solids

Electronic structure of solids Electronic structure of solids Eigenvalue equation: Áf(x) = af(x) KNOWN: Á is an operator. UNKNOWNS: f(x) is a function (and a vector), an eigenfunction of Á; a is a number (scalar), the eigenvalue. Ackowledgement:

More information

Exciton Photophysics of Carbon Nanotubes

Exciton Photophysics of Carbon Nanotubes Annu. Rev. Phys. Chem. 27.58:719-747. Downloaded from arjournals.annualreviews.org Annu. Rev. Phys. Chem. 27. 58:719 47 First published online as a Review in Advance on January 2, 27 The Annual Review

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

From Graphene to Nanotubes

From Graphene to Nanotubes From Graphene to Nanotubes Zone Folding and Quantum Confinement at the Example of the Electronic Band Structure Christian Krumnow Freie Universität Berlin May 6, 011 Christian Krumnow (FU Berlin) From

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Interaction between Single-walled Carbon Nanotubes and Water Molecules

Interaction between Single-walled Carbon Nanotubes and Water Molecules Workshop on Molecular Thermal Engineering Univ. of Tokyo 2013. 07. 05 Interaction between Single-walled Carbon Nanotubes and Water Molecules Shohei Chiashi Dept. of Mech. Eng., The Univ. of Tokyo, Japan

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Lecture 2: Background dconcepts

Lecture 2: Background dconcepts Optoelectronics I Lecture : Background dconcepts M. Soroosh Assistant Professor of Electronics Shahid Chamran University 1 Face Centered Crystal (FCC) Body Centered Crystal (BCC) Bragg s Law William Lawrence

More information

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model Yang Jie( ) a), Dong Quan-Li( ) a), Jiang Zhao-Tan( ) b), and Zhang Jie( ) a) a) Beijing

More information

Carbon nanotubes with ferromagnetic and semiconducting contacts

Carbon nanotubes with ferromagnetic and semiconducting contacts Carbon nanotubes with ferromagnetic and semiconducting contacts Ph.D. Thesis Jonas Rahlf Hauptmann May 2008 Niels Bohr Institute Nano-Science Center University of Copenhagen Denmark Carbon nanotubes with

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

TIGHT-BINDING CALCULATION OF ELECTRONIC PROPERTIES OF OLIGOPHENYL AND OLIGOACENE NANORIBBONS A THESIS SUBMITTED TO THE GRADUATE SCHOOL

TIGHT-BINDING CALCULATION OF ELECTRONIC PROPERTIES OF OLIGOPHENYL AND OLIGOACENE NANORIBBONS A THESIS SUBMITTED TO THE GRADUATE SCHOOL TIGHT-BINDING CALCULATION OF ELECTRONIC PROPERTIES OF OLIGOPHENYL AND OLIGOACENE NANORIBBONS A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Lecture 15 From molecules to solids

Lecture 15 From molecules to solids Lecture 15 From molecules to solids Background In the last two lectures, we explored quantum mechanics of multi-electron atoms the subject of atomic physics. In this lecture, we will explore how these

More information

Graphene - most two-dimensional system imaginable

Graphene - most two-dimensional system imaginable Graphene - most two-dimensional system imaginable A suspended sheet of pure graphene a plane layer of C atoms bonded together in a honeycomb lattice is the most two-dimensional system imaginable. A.J.

More information