AMTH140 Trimester Question 1. [8 marks] Answer

Size: px
Start display at page:

Download "AMTH140 Trimester Question 1. [8 marks] Answer"

Transcription

1 Question 1 Let A B = {(1, 1), (2, 2), (3, 1), (3, 2), (1, 2), (1, 4), (2, 1), (2, 4), (3, 4)}. Find the power set of B, P(B). The set B = {1, 2, 4}. Then P(B) = {, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}} Question 2 Let f (x) = x 2 + 3x + 2. Evaluate f (2) and f ( 2) by Horner s method. f (x) = x 2 + 3x + 2 = x(x + 3) + 2. Then f (2) = 2 (2 + 3) + 2 = = 12 f ( 2) = ( 2) ( 2 + 3) + 2 = ( 2) = = 0 Question 3 Use mathematical induction to show that [10 marks] n! 2 n 1 for n = 1, 2,... Basic step. Let S n be the proposition n! 2 n 1, then we must show that S 1 is true. This is easily accomplished since 1! = 1 1 = Inductive step. We must show that if S 1, S 2,..., S n are true (i! 2 i 1 for i = 1, 2,..., n) then S n+1, that is (n + 1)! 2 n is true. Assume that S 1, S 2,..., S n are true, that is i! 2 i 1 for i = 1, 2,..., n are true. Then, in particular, for i = n we have n! 2 n 1. Now, (n + 1)! = (n + 1)n! (n + 1)2 n n 1 = 2 n since n Therefore S n+1 is true and hence P.M.I. tells us that n! 2 n 1 is true for every postive integer n. Question 4 [10 marks] If f, g : N R, f 1 (n) = O(g 1 (n)) and f 2 (n) = O(g 2 (n)) then f 1 (n)+ f 2 (n) = O(max(g 1 (n), g 2 (n))) By definition of big O, there are two integers, say M 1 and M 2 and two constants C 1 and C 2 such that f 1 (n) C 1 g 1 (n) for n M 1 and f 2 (n) C 2 g 2 (n) for n M 2 Let M 0 = max(m 1, M 2 ) and let C 0 = 2 max(c 1, C 2 ) and consider the sum f 1 (n)+ f 2 (n) for n M 0 : f 1 (n)+ f 2 (n) f 1 (n) + f 2 (n) C 1 g 1 (n) +C 2 g 2 (n) C 0 (g 1 (n)+g 2 (n))/2 C 0 max(g 1 (n), g 2 (n)) Therefore f 1 (n) + f 2 (n) = O(max(g 1 (n), g 2 (n))). Question 5 2

2 In MERGE SORT algorithm, if we are given two sorted lists, LIST1 with n elements and LIST2 with m elements, what is the maximum number of comparisons required to merge these two lists into a single sorted list? Each time we compare two elements, one is removed and put in the combined list. If we have only one element left, no further comparisons are possible. So the number of comparisons is certainly no bigger than one less than the total number of elements, that is m + n 1. Question 6 Use a truth table to prove that Modus Ponens is a valid argument. Use a truth table to prove that p q, p, q. p q p q p q T T T T T T F F T F F T T F T F F T F F Question 7 Let us suppose that G is a graph with seven vertices, such that two vertices have the degree one, three vertices have the degree two and two vertices have the degree three. Can this graph be a tree? If your answer is yes, draw a tree with these properties. If your answer is no, prove that it couldn t be a tree. For any graph G, we denote by N the sum of the degrees of all vertices of G, denote by E the number of edges in G, and denote by V the total number of vertices of G. Then obviously N = 2E (*) because each edge will contribute exactly 2 degrees (by its 2 ends) to the total degrees N. Moreover a connected graph G is a tree if and only if V = E + 1 (**) N = 14 so E = 7 (edges). From (**), a connected graph with 7 vertices is a tree iff it has 6 edges. So this graph could not be a tree. Question 8 Convert to bases four, octal and hexadecimal. Since the number is of base 2 and that 4 = 2 2, we need to convert 2-digit blocks into the corresponding base 4 representation: = 0. }{{} 11 }{{} 00 }{{} 01 = Since the number is of base 2 and that 8 = 2 3, we need to convert 3-digit blocks into the corresponding base 8 representation: = 0. }{{} }{{} = Since the number is of base 2 and that 16 = 2 4, we need to convert 4-digit blocks into the corresponding base 16 representation: 3

3 = 0. }{{} 1100 }{{} 0100 C 4 Question 9 Given the adjacency matrix = 0.C4 16 A = [4 marks] draw its corresponding graph. v1 v2 v3 Question 10 Use a binary tree to sort the following list of numbers 65, 75, 6, 57, 99, 27, 0, 96 The binary tree constructed during the course of sorting reads Figure 1: Binary tree Question 11 Let A be the set of all integers greater than or equal to 2, and relation R be defined by m, n A : (m, n) R iff m n Show that 4

4 (a) 7 is a minimal element of A. (b) 6 is not a minimal element of A. (c) A does not have any maximal elements. (d) 2 is not a least element of A. (a) Because 7 is prime, no numbers in A can divide 7, i.e., x R 7 does not hold far any x A (no x precedes 7), we conclude 7 is a minimal element of A. (b) Since 2 6, we see immediately that 6 is not a minimal element of A. (c) For any x A, since 2x A and x 2x, we have x R 2x, i.e., x precedes 2x under relation R. Hence x cannot be a maximal element. Since x is an arbitrary element in A, we conclude that A does not have any maximal elements. (d) The fact that 2, 3 A and 2 is not comparable with 3 means 2 is not a least element of A. Question 12 Given S = {0, 1}, the table below specifies a Boolean function f : S S S S x y z f (x, y, z) (a) Using a Karnaugh map, simplify the Boolean expression corresponding to this function. (b) Draw a gate implementation for the simplified Boolean expression. The Boolean expression corresponding to this function is x y z + x y z + x yz + xyz. We may simplify the expression with the Karnaugh map below 5

5 z z xy xy x y x y The minimal expression is thus xyz + x y + x z. Question 13 Given that (a 1 + a a k ) n = n 1,n 2,...,n k 0 n 1 +n 2 + +n k =n n! n 1! n 2! n k! an 1 1 an 2 2 an k k [5 marks] write down (a 1 + a 2 + a 3 ) 3 =? (a 1 + a 2 + a 3 ) 3 = a a2 1 a 2 + 3a 2 1 a 3+ a a2 2 a 1 + 3a 2 2 a 3+ a a2 3 a 1 + 3a 2 3 a 2+ 6a 1 a 2 a 3 Question 14 Let a sequence (x i ) i N be determined by the recurrence relation [5 marks] x n+2 = 1 + x n+1 x n and the initial conditions x 0 = a and x 1 = b with a, b 0x. Find x 10. x 2 = 1 + x 1 x 0 1+x 1 x 0 x 3 = 1 + x 2 = 1 + = 1 + x 0 + x 1 x 1 x 1 x 0 x 1 x 4 = 1 + x 3 x 2 =... = 1 + x 0 x 1 x 5 = 1 + x 4 x 3 =... = x 0 x 6 = 1 + x 5 = 1 + x 0 x 1+x 0 = x 1 4 x 1 The recurrence relation has period 5. Hence x 10 = x 5 = x 0. 6

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points

1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : 5 points Introduction to Discrete Mathematics 3450:208 Test 1 1. Consider the conditional E = p q r. Use de Morgan s laws to write simplified versions of the following : The negation of E : The inverse of E : The

More information

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes

Midterm Examination # 1 Wednesday, February 25, Duration of examination: 75 minutes Page 1 of 10 School of Computer Science 60-265-01 Computer Architecture and Digital Design Winter 2009 Semester Midterm Examination # 1 Wednesday, February 25, 2009 Student Name: First Name Family Name

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

(c) Give a proof of or a counterexample to the following statement: (3n 2)= n(3n 1) 2

(c) Give a proof of or a counterexample to the following statement: (3n 2)= n(3n 1) 2 Question 1 (a) Suppose A is the set of distinct letters in the word elephant, B is the set of distinct letters in the word sycophant, C is the set of distinct letters in the word fantastic, and D is the

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Problem 1: Specify two different predicates P (x) and

More information

UNIVERSITI TENAGA NASIONAL. College of Information Technology

UNIVERSITI TENAGA NASIONAL. College of Information Technology UNIVERSITI TENAGA NASIONAL College of Information Technology BACHELOR OF COMPUTER SCIENCE (HONS.) FINAL EXAMINATION SEMESTER 2 2012/2013 DIGITAL SYSTEMS DESIGN (CSNB163) January 2013 Time allowed: 3 hours

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Complete Induction and the Well- Ordering Principle

Complete Induction and the Well- Ordering Principle Complete Induction and the Well- Ordering Principle Complete Induction as a Rule of Inference In mathematical proofs, complete induction (PCI) is a rule of inference of the form P (a) P (a + 1) P (b) k

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

Binary logic consists of binary variables and logical operations. The variables are

Binary logic consists of binary variables and logical operations. The variables are 1) Define binary logic? Binary logic consists of binary variables and logical operations. The variables are designated by the alphabets such as A, B, C, x, y, z, etc., with each variable having only two

More information

Digital Logic (2) Boolean Algebra

Digital Logic (2) Boolean Algebra Digital Logic (2) Boolean Algebra Boolean algebra is the mathematics of digital systems. It was developed in 1850 s by George Boole. We will use Boolean algebra to minimize logic expressions. Karnaugh

More information

Chapter 4: Combinational Logic Solutions to Problems: [1, 5, 9, 12, 19, 23, 30, 33]

Chapter 4: Combinational Logic Solutions to Problems: [1, 5, 9, 12, 19, 23, 30, 33] Chapter 4: Combinational Logic Solutions to Problems: [, 5, 9, 2, 9, 23, 3, 33] Problem: 4- Consider the combinational circuit shown in Fig. P4-. (a) Derive the Boolean expressions for T through T 4. Evaluate

More information

CS1800 Discrete Structures Final Version A

CS1800 Discrete Structures Final Version A CS1800 Discrete Structures Fall 2017 Profs. Aslam, Gold, & Pavlu December 11, 2017 CS1800 Discrete Structures Final Version A Instructions: 1. The exam is closed book and closed notes. You may not use

More information

Packet #1: Logic & Proofs. Applied Discrete Mathematics

Packet #1: Logic & Proofs. Applied Discrete Mathematics Packet #1: Logic & Proofs Applied Discrete Mathematics Table of Contents Course Objectives Page 2 Propositional Calculus Information Pages 3-13 Course Objectives At the conclusion of this course, you should

More information

Digital Logic Design ENEE x. Lecture 12

Digital Logic Design ENEE x. Lecture 12 Digital Logic Design ENEE 244-010x Lecture 12 Announcements HW5 due today HW6 up on course webpage, due at the beginning of class on Wednesday, 10/28. Agenda Last time: Quine-McClusky (4.8) Petrick s Method

More information

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1

Logic Simplification. Boolean Simplification Example. Applying Boolean Identities F = A B C + A B C + A BC + ABC. Karnaugh Maps 2/10/2009 COMP370 1 Digital Logic COMP370 Introduction to Computer Architecture Logic Simplification It is frequently possible to simplify a logical expression. This makes it easier to understand and requires fewer gates

More information

Reexam in Discrete Mathematics

Reexam in Discrete Mathematics Reexam in Discrete Mathematics First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design August 15th, 2017, 9.00-13.00 This exam consists of 11 numbered pages with

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

Math161 HW#2, DUE DATE:

Math161 HW#2, DUE DATE: Math161 HW#2, DUE DATE: 07.01.10 Question1) How many students in a class must there be to ensure that 6 students get the same grade (one of A, B, C, D, or F)? Question2) 6 computers on a network are connected

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

Combinational Logic Fundamentals

Combinational Logic Fundamentals Topic 3: Combinational Logic Fundamentals In this note we will study combinational logic, which is the part of digital logic that uses Boolean algebra. All the concepts presented in combinational logic

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

Unit 2 Boolean Algebra

Unit 2 Boolean Algebra Unit 2 Boolean Algebra 2.1 Introduction We will use variables like x or y to represent inputs and outputs (I/O) of a switching circuit. Since most switching circuits are 2 state devices (having only 2

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

Propositional Logic. What is discrete math? Tautology, equivalence, and inference. Applications

Propositional Logic. What is discrete math? Tautology, equivalence, and inference. Applications What is discrete math? Propositional Logic The real numbers are continuous in the senses that: between any two real numbers there is a real number The integers do not share this property. In this sense

More information

KP/Worksheets: Propositional Logic, Boolean Algebra and Computer Hardware Page 1 of 8

KP/Worksheets: Propositional Logic, Boolean Algebra and Computer Hardware Page 1 of 8 KP/Worksheets: Propositional Logic, Boolean Algebra and Computer Hardware Page 1 of 8 Q1. What is a Proposition? Q2. What are Simple and Compound Propositions? Q3. What is a Connective? Q4. What are Sentential

More information

Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary

Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary Complexity Analysis Complexity Theory Input Decidable Language -- Program Halts on all Input Encoding of Input -- Natural Numbers Encoded in Binary or Decimal, Not Unary Output TRUE or FALSE Time and Space

More information

CS1800 Discrete Structures Spring 2018 February CS1800 Discrete Structures Midterm Version A

CS1800 Discrete Structures Spring 2018 February CS1800 Discrete Structures Midterm Version A CS1800 Discrete Structures Spring 2018 February 2018 CS1800 Discrete Structures Midterm Version A Instructions: 1. The exam is closed book and closed notes. You may not use a calculator or any other electronic

More information

Boolean Algebra, Gates and Circuits

Boolean Algebra, Gates and Circuits Boolean Algebra, Gates and Circuits Kasper Brink November 21, 2017 (Images taken from Tanenbaum, Structured Computer Organization, Fifth Edition, (c) 2006 Pearson Education, Inc.) Outline Last week: Von

More information

9.1. Unit 9. Implementing Combinational Functions with Karnaugh Maps or Memories

9.1. Unit 9. Implementing Combinational Functions with Karnaugh Maps or Memories . Unit Implementing Combinational Functions with Karnaugh Maps or Memories . Outcomes I can use Karnaugh maps to synthesize combinational functions with several outputs I can determine the appropriate

More information

DISCRETE MATH: FINAL REVIEW

DISCRETE MATH: FINAL REVIEW DISCRETE MATH: FINAL REVIEW DR. DANIEL FREEMAN 1) a. Does 3 = {3}? b. Is 3 {3}? c. Is 3 {3}? c. Is {3} {3}? c. Is {3} {3}? d. Does {3} = {3, 3, 3, 3}? e. Is {x Z x > 0} {x R x > 0}? 1. Chapter 1 review

More information

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013

Mat Week 8. Week 8. gcd() Mat Bases. Integers & Computers. Linear Combos. Week 8. Induction Proofs. Fall 2013 Fall 2013 Student Responsibilities Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Proof Worksheets Attendance: Strongly Encouraged Overview 3.6 Integers and Algorithms 3.7

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd()

Student Responsibilities Week 8. Mat Section 3.6 Integers and Algorithms. Algorithm to Find gcd() Student Responsibilities Week 8 Mat 2345 Week 8 Reading: Textbook, Section 3.7, 4.1, & 5.2 Assignments: Sections 3.6, 3.7, 4.1 Induction Proof Worksheets Attendance: Strongly Encouraged Fall 2013 Week

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

CHAPTER 12 Boolean Algebra

CHAPTER 12 Boolean Algebra 318 Chapter 12 Boolean Algebra CHAPTER 12 Boolean Algebra SECTION 12.1 Boolean Functions 2. a) Since x 1 = x, the only solution is x = 0. b) Since 0 + 0 = 0 and 1 + 1 = 1, the only solution is x = 0. c)

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee Algorithm Analysis Recurrence Relation Chung-Ang University, Jaesung Lee Recursion 2 Recursion 3 Recursion in Real-world Fibonacci sequence = + Initial conditions: = 0 and = 1. = + = + = + 0, 1, 1, 2,

More information

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT):

II. COMBINATIONAL LOGIC DESIGN. - algebra defined on a set of 2 elements, {0, 1}, with binary operators multiply (AND), add (OR), and invert (NOT): ENGI 386 Digital Logic II. COMBINATIONAL LOGIC DESIGN Combinational Logic output of digital system is only dependent on current inputs (i.e., no memory) (a) Boolean Algebra - developed by George Boole

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

Why digital? Overview. Number Systems. Binary to Decimal conversion

Why digital? Overview. Number Systems. Binary to Decimal conversion Why digital? Overview It has the following advantages over analog. It can be processed and transmitted efficiently and reliably. It can be stored and retrieved with greater accuracy. Noise level does not

More information

Chapter 4, Logic using Propositional Calculus Handout

Chapter 4, Logic using Propositional Calculus Handout ECS 20 Chapter 4, Logic using Propositional Calculus Handout 0. Introduction to Discrete Mathematics. 0.1. Discrete = Individually separate and distinct as opposed to continuous and capable of infinitesimal

More information

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches Synthesis of 2-level Logic Exact and Heuristic Methods Lecture 7: Branch & Bound Exact Two Approaches Find all primes Find a complete sum Find a minimum cover (covering problem) Heuristic Take an initial

More information

Binary addition example worked out

Binary addition example worked out Binary addition example worked out Some terms are given here Exercise: what are these numbers equivalent to in decimal? The initial carry in is implicitly 0 1 1 1 0 (Carries) 1 0 1 1 (Augend) + 1 1 1 0

More information

Digital Logic Design. Combinational Logic

Digital Logic Design. Combinational Logic Digital Logic Design Combinational Logic Minterms A product term is a term where literals are ANDed. Example: x y, xz, xyz, A minterm is a product term in which all variables appear exactly once, in normal

More information

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

Proof. Theorems. Theorems. Example. Example. Example. Part 4. The Big Bang Theory

Proof. Theorems. Theorems. Example. Example. Example. Part 4. The Big Bang Theory Proof Theorems Part 4 The Big Bang Theory Theorems A theorem is a statement we intend to prove using existing known facts (called axioms or lemmas) Used extensively in all mathematical proofs which should

More information

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms First-Order Logic 1 Syntax Domain of Discourse The domain of discourse for first order logic is FO structures or models. A FO structure contains Relations Functions Constants (functions of arity 0) FO

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 12 Using the laws

More information

Chapter-2 BOOLEAN ALGEBRA

Chapter-2 BOOLEAN ALGEBRA Chapter-2 BOOLEAN ALGEBRA Introduction: An algebra that deals with binary number system is called Boolean Algebra. It is very power in designing logic circuits used by the processor of computer system.

More information

First-order Logic (Session 1) Anthony W. Lin Yale-nus College, Singapore

First-order Logic (Session 1) Anthony W. Lin Yale-nus College, Singapore First-order Logic (Session 1) Anthony W. Lin Yale-nus College, Singapore Limitations of propositional logic Consider the following classical argument: (1) All men are mortal (2) Socrates is a man Therefore:

More information

Experiment 7: Magnitude comparators

Experiment 7: Magnitude comparators Module: Logic Design Lab Name:... University no:.. Group no: Lab Partner Name: Experiment 7: Magnitude comparators Mr. Mohamed El-Saied Objective: Realization of -bit comparator using logic gates. Realization

More information

HOMEWORK #2 - MATH 3260

HOMEWORK #2 - MATH 3260 HOMEWORK # - MATH 36 ASSIGNED: JANUARAY 3, 3 DUE: FEBRUARY 1, AT :3PM 1) a) Give by listing the sequence of vertices 4 Hamiltonian cycles in K 9 no two of which have an edge in common. Solution: Here is

More information

Section 7.1 Relations and Their Properties. Definition: A binary relation R from a set A to a set B is a subset R A B.

Section 7.1 Relations and Their Properties. Definition: A binary relation R from a set A to a set B is a subset R A B. Section 7.1 Relations and Their Properties Definition: A binary relation R from a set A to a set B is a subset R A B. Note: there are no constraints on relations as there are on functions. We have a common

More information

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic:

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic: x NOT ~x x y AND x /\ y x y OR x \/ y Figure 1: Types of gates in a digital circuit. CS2742 midterm test 2 study sheet Boolean circuits: Boolean circuits is a generalization of Boolean formulas in which

More information

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel

Lecture Notes on DISCRETE MATHEMATICS. Eusebius Doedel Lecture Notes on DISCRETE MATHEMATICS Eusebius Doedel c Eusebius J. Doedel, 009 Contents Logic. Introduction............................................................................... Basic logical

More information

Chapter 2: Switching Algebra and Logic Circuits

Chapter 2: Switching Algebra and Logic Circuits Chapter 2: Switching Algebra and Logic Circuits Formal Foundation of Digital Design In 1854 George Boole published An investigation into the Laws of Thoughts Algebraic system with two values 0 and 1 Used

More information

CHAPTER 7. Exercises 17/ / /2 2 0

CHAPTER 7. Exercises 17/ / /2 2 0 CHAPTER 7 Exercises E7. (a) For the whole part, we have: Quotient Remainders 23/2 /2 5 5/2 2 2/2 0 /2 0 Reading the remainders in reverse order, we obtain: 23 0 = 0 2 For the fractional part we have 2

More information

Propositional Logic: Syntax

Propositional Logic: Syntax Logic Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and programs) epistemic

More information

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms

REVIEW QUESTIONS. Chapter 1: Foundations: Sets, Logic, and Algorithms REVIEW QUESTIONS Chapter 1: Foundations: Sets, Logic, and Algorithms 1. Why can t a Venn diagram be used to prove a statement about sets? 2. Suppose S is a set with n elements. Explain why the power set

More information

10.4 The Kruskal Katona theorem

10.4 The Kruskal Katona theorem 104 The Krusal Katona theorem 141 Example 1013 (Maximum weight traveling salesman problem We are given a complete directed graph with non-negative weights on edges, and we must find a maximum weight Hamiltonian

More information

Digital Circuit And Logic Design I. Lecture 4

Digital Circuit And Logic Design I. Lecture 4 Digital Circuit And Logic Design I Lecture 4 Outline Combinational Logic Design Principles (2) 1. Combinational-circuit minimization 2. Karnaugh maps 3. Quine-McCluskey procedure Panupong Sornkhom, 2005/2

More information

Logic Design. Chapter 2: Introduction to Logic Circuits

Logic Design. Chapter 2: Introduction to Logic Circuits Logic Design Chapter 2: Introduction to Logic Circuits Introduction Logic circuits perform operation on digital signal Digital signal: signal values are restricted to a few discrete values Binary logic

More information

Binary Logic and Gates

Binary Logic and Gates 1 COE 202- Digital Logic Binary Logic and Gates Dr. Abdulaziz Y. Barnawi COE Department KFUPM 2 Outline Introduction Boolean Algebra Elements of Boolean Algebra (Binary Logic) Logic Operations & Logic

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Logic. Propositional Logic: Syntax

Logic. Propositional Logic: Syntax Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.)

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.) DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.) 1 Learning Objectives 1. Apply the laws and theorems of Boolean algebra to to the manipulation of algebraic expressions to simplifying an expression, finding

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

CS1800 Discrete Structures Fall 2016 Profs. Gold & Schnyder April 25, CS1800 Discrete Structures Final

CS1800 Discrete Structures Fall 2016 Profs. Gold & Schnyder April 25, CS1800 Discrete Structures Final CS1800 Discrete Structures Fall 2016 Profs. Gold & Schnyder April 25, 2017 CS1800 Discrete Structures Final Instructions: 1. The exam is closed book and closed notes. You may not use a calculator or any

More information

CS589 Principles of DB Systems Fall 2008 Lecture 4e: Logic (Model-theoretic view of a DB) Lois Delcambre

CS589 Principles of DB Systems Fall 2008 Lecture 4e: Logic (Model-theoretic view of a DB) Lois Delcambre CS589 Principles of DB Systems Fall 2008 Lecture 4e: Logic (Model-theoretic view of a DB) Lois Delcambre lmd@cs.pdx.edu 503 725-2405 Goals for today Review propositional logic (including truth assignment)

More information

Unit i) 1)verify that [p->(q->r)] -> [(p->q)->(p->r)] is a tautology or not? 2) simplify the Boolean expression xy+(x+y) + y

Unit i) 1)verify that [p->(q->r)] -> [(p->q)->(p->r)] is a tautology or not? 2) simplify the Boolean expression xy+(x+y) + y Unit i) 1)verify that [p->(q->r)] -> [(p->q)->(p->r)] is a tautology or not? 2) simplify the Boolean expression xy+(x+y) + y 3)find a minimal sum of product representation f(w,x,y)= m(1,2,5,6) 4)simplify

More information

MC9211 Computer Organization

MC9211 Computer Organization MC92 Computer Organization Unit : Digital Fundamentals Lesson2 : Boolean Algebra and Simplification (KSB) (MCA) (29-2/ODD) (29 - / A&B) Coverage Lesson2 Introduces the basic postulates of Boolean Algebra

More information

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman

CS 121 Digital Logic Design. Chapter 2. Teacher Assistant. Hanin Abdulrahman CS 121 Digital Logic Design Chapter 2 Teacher Assistant Hanin Abdulrahman 1 2 Outline 2.2 Basic Definitions 2.3 Axiomatic Definition of Boolean Algebra. 2.4 Basic Theorems and Properties 2.5 Boolean Functions

More information

Discrete Mathematics Exam File Spring Exam #1

Discrete Mathematics Exam File Spring Exam #1 Discrete Mathematics Exam File Spring 2008 Exam #1 1.) Consider the sequence a n = 2n + 3. a.) Write out the first five terms of the sequence. b.) Determine a recursive formula for the sequence. 2.) Consider

More information

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows.

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows. Chapter 1 Logic 1.1 Introduction and Definitions Definitions. A sentence (statement, proposition) is an utterance (that is, a string of characters) which is either true (T) or false (F). A predicate is

More information

Logic. Propositional Logic: Syntax. Wffs

Logic. Propositional Logic: Syntax. Wffs Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA 1 Learning Objectives Understand the basic operations and laws of Boolean algebra. Relate these operations and laws to circuits composed of AND gates, OR gates, INVERTERS

More information

Logic: The Big Picture

Logic: The Big Picture Logic: The Big Picture A typical logic is described in terms of syntax: what are the legitimate formulas semantics: under what circumstances is a formula true proof theory/ axiomatization: rules for proving

More information

Boolean Algebra & Logic Gates. By : Ali Mustafa

Boolean Algebra & Logic Gates. By : Ali Mustafa Boolean Algebra & Logic Gates By : Ali Mustafa Digital Logic Gates There are three fundamental logical operations, from which all other functions, no matter how complex, can be derived. These Basic functions

More information

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates.

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates. DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS AIM To design and implement encoders and decoders using logic gates. COMPONENTS REQUIRED S.No Components Specification Quantity 1. Digital IC Trainer

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Boolean Algebra CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators

University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura. February 9, :30 pm Duration: 1:50 hs. Closed book, no calculators University of Ottawa CSI 2101 Midterm Test Instructor: Lucia Moura February 9, 2010 11:30 pm Duration: 1:50 hs Closed book, no calculators Last name: First name: Student number: There are 5 questions and

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity CS 350 Algorithms and Complexity Winter 2019 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

CS 350 Algorithms and Complexity

CS 350 Algorithms and Complexity 1 CS 350 Algorithms and Complexity Fall 2015 Lecture 15: Limitations of Algorithmic Power Introduction to complexity theory Andrew P. Black Department of Computer Science Portland State University Lower

More information

ECE 238L Boolean Algebra - Part I

ECE 238L Boolean Algebra - Part I ECE 238L Boolean Algebra - Part I August 29, 2008 Typeset by FoilTEX Understand basic Boolean Algebra Boolean Algebra Objectives Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 06 October 24, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 5 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

D I S C R E T E M AT H E M AT I C S H O M E W O R K

D I S C R E T E M AT H E M AT I C S H O M E W O R K D E PA R T M E N T O F C O M P U T E R S C I E N C E S C O L L E G E O F E N G I N E E R I N G F L O R I D A T E C H D I S C R E T E M AT H E M AT I C S H O M E W O R K W I L L I A M S H O A F F S P R

More information

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Multiplexers

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Multiplexers CSCI : Computer Architecture I Instructor: Pranava K. Jha Multiplexers Q. Develop a Boolean expression for the function F in terms of the input variables v, w, x, y and z in the following circuit. (E is

More information

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases

Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases Writing proofs for MATH 51H Section 2: Set theory, proofs of existential statements, proofs of uniqueness statements, proof by cases September 22, 2018 Recall from last week that the purpose of a proof

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

Chapter 2. Boolean Algebra and Logic Gates

Chapter 2. Boolean Algebra and Logic Gates Chapter 2 Boolean Algebra and Logic Gates Basic Definitions A binary operator defined on a set S of elements is a rule that assigns, to each pair of elements from S, a unique element from S. The most common

More information