Complete Induction and the Well- Ordering Principle

Size: px
Start display at page:

Download "Complete Induction and the Well- Ordering Principle"

Transcription

1 Complete Induction and the Well- Ordering Principle Complete Induction as a Rule of Inference In mathematical proofs, complete induction (PCI) is a rule of inference of the form P (a) P (a + 1) P (b) k b ([P (a) P (a + 1) P (k)] P (k + 1)) n a (P (n)) where a and b are positive integers with a b, and P is any propositional function with domain n a.

2 Complete Induction To prove that a propositional function P (n) is true for all positive integers n a, we complete two steps: 1. (Base Case) Verify the truth of P (a) P (a + 1) P (b) 2. (Inductive Step) Prove the conditional statement [P (a) P (a + 1) P (k)] P (k + 1) is true for all positive integers k b. To complete the inductive step, we assume P (m) is true for all m = a, a+1, a+2,..., k, then show P (k + 1) must also be true for all k b.

3 Complete Induction Special Case: a = b = 1 To prove that a propositional function P (n) is true for all positive integers n, we complete two steps: 1. (Base Case) Verify that P (1) is true. 2. (Inductive Step) Prove the conditional statement [P (1) P (2) P (3) P (k)] P (k + 1) is true for all positive integers k.

4 Complete Induction Special Case: a = b = 1 Example: Prove that every positive integer n has a binary expansion of the form n = a 0 + a a a j 2 j, where j is a nonnegative integer, a j = 1, and a i {0, 1} for all i.

5 Complete Induction Proof: Let P (n) be the proposition: n = a 0 + a a a j 2 j, where j is a nonnegative integer, a j = 1, and a i {0, 1} for all i. We want to show P (n) is true for all n 1. Base Step: P (1) is true, since 1 = a where j = 0 and a 0 = 1. Inductive Step: Assume P (m) is true for all positive integers m k. Then, consider the integer k + 1. We have two cases:

6 Case 1: (k+1 is even) If k + 1 is even, then k + 1 = 2m where m k. Therefore, P (m) is true and we have k + 1 = 2m = 2(a 0 + a a a j 2 j ) = 0 + a a a a j 2 j+1 = â 0 + â â â â j+1 2 j+1 where â j+1 = a j = 1, â 0 = 0, and â i = a i 1 {0, 1} for all 1 i j. Therefore, P (k + 1) is true in this case. Case 2: (k+1 is odd) If k + 1 is odd, then k = 2m where m < k.

7 Therefore, P (m) is true and we have k + 1 = 1 + 2m = 1 + 2(a 0 + a a a j 2 j ) = 1 + a a a a j 2 j+1 = â 0 + â â â â j+1 2 j+1 where â j+1 = a j = 1, â 0 = 1, and â i = a i 1 {0, 1} for all 1 i j. Therefore, P (k + 1) is true in either case. This completes the inductive step. Therefore, it follows by complete induction that P (n) is true for all n 1.

8 Complete Induction Example: Prove that every positive integer n 2 can be expressed as a product of prime numbers.

9 Complete Induction Proof: Let P (n) be the proposition: n = p 1 p 2 p j, where j 1 and p i is prime for all j. We want to show P (n) is true for all n 2. We will use complete induction corresponding to the case a = b = 2. Base Step: P (2) is true, since is a prime number. 2 = p 1 Inductive Step: Assume P (m) is true for all integers m = a, a + 1,..., k. That is, assume all integers m = 2, 3,..., k have a prime factorization.

10 Then, for k b = 2, we have two cases. Case 1: (k+1 is prime) If k +1 = p 1 is prime, then P (k +1) is true. Case 2: (k+1 is composite) If k + 1 is composite, then there exist integers c and d with 1 < c d < k + 1, such that k + 1 = c d Then, 2 c k and 2 d k, and it follows by the induction hypothesis that c = p 1 p 2 p j d = q 1 q 2 q l where p i and q i are prime for all i. Thus, k + 1 = (p 1 p 2 p j ) (q 1 q 2 q l )

11 and we conclude that P (k + 1) is true. This completes the inductive step, and it follows by complete induction that P (n) is true for all n 2.

12 Well-Ordering Principle Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element.

13 Well-Ordering Principle Example: Use well-ordering property to prove the division algorithm: If a is an integer and d is a positive integer, then there exist (unique) integers q and r with 0 r < d such that a = dq + r.

14 Well-Ordering Principle Proof: Consider the set S = {n Z + n = a dq +1 where q Z} This set is nonempty because dq can be made as large as desired (by taking q < 0 with q sufficiently large). By the wellordering principle, S has a least element n 0 = (a dq 0 ) + 1 where q 0 Z. We claim n 0 d. If not, then n 1 = (a d(q 0 + 1)) + 1 = n 0 d > 0, which implies n 1 S and n 1 < n 0. This contradicts the assumption that n 0 is the least element of S. Therefore, 1 n 0 d. This proves a = dq 0 + r where r = n 0 1 is an integer such that 0 r < d.

15 The proof that q 0 and r are unique is left as an exercise.

16 Well-Ordering Principle Theorem: The Well-Ordering Principle (WOP) and the Principle of Mathematical Induction (PMI) are equivalent.

17 WOP PMI Proof: Assume WOP holds. We want to prove PMI holds. Let S Z + such that (i) 1 S, (ii) k S k + 1 S for all k Z +. We want to prove S = Z +. Assume for the sake of contradiction that S Z +. Then, T = Z + S is a non-empty subset of Z +. Therefore, by the well-ordering principle, T has a least element m. That is, there exists m T such that m n for all n T. Since 1 S, we know m 2. Therefore m 1 is a positive integer. Clearly m 1 / T (otherwise m 1 would be the least element

18 of T ). This means m 1 S, and by assumption (ii) (m 1) S (m 1) + 1 S. Therefore, m S which contradicts the fact that m T. We conclude that S = Z +. Therefore PMI holds.

19 Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1

20 Binary Relation Example: Consider the sets A = {2, 3, 5, 7} and B = {4, 6, 8, 9, 10}. Let R be the relation from A to B defined by a R b iff b is divisible by a. Then R consists of the ordered pairs {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}. 2

21 Domain and Range The domain of a relation R from A to B is the set Dom(R) = {x A y (y B and x R y)}. The range of the relation R from A to B is the set Rng(R) = {y B x (x A and x R y)}. 3

22 Domain and Range Example: Consider the sets A = {2, 3, 5, 7} and B = {4, 6, 8, 9, 10}. Let R be the relation from A to B defined by a R b iff b is divisible by a. Then R consists of the ordered pairs {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}.

23 Domain and Range Example: Consider the sets A = {2, 3, 5, 7} and B = {4, 6, 8, 9, 10}. Let R be the relation from A to B defined by a R b iff b is divisible by a. Then R consists of the ordered pairs {(2, 4), (2, 6), (2, 8), (2, 10), (3, 6), (3, 9), (5, 10)}. Dom(R) = {2, 3, 5} Rng(R) = {4, 6, 8, 9, 10} 4

24 Domain and Range Example: Let X = Y = R, and consider the relation R from X to Y defined by x R y iff x y That is, R = { (x, y) R R x 2 } 16 + y

25 Domain and Range Example: Let X = Y = R, and consider the relation R from X to Y defined by x R y iff x y That is, R = { (x, y) R R x 2 } 16 + y Dom(R) = [ 4, 4] Rng(R) = [ 3, 3] 6

We want to show P (n) is true for all integers

We want to show P (n) is true for all integers Generalized Induction Proof: Let P (n) be the proposition 1 + 2 + 2 2 + + 2 n = 2 n+1 1. We want to show P (n) is true for all integers n 0. Generalized Induction Example: Use generalized induction to

More information

Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element.

Well-Ordering Principle. Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element. Well-Ordering Principle Axiom: Every nonempty subset of Z + has a least element. That is, if S Z + and S, then S has a smallest element. Well-Ordering Principle Example: Use well-ordering property to prove

More information

MATH 215 Final. M4. For all a, b in Z, a b = b a.

MATH 215 Final. M4. For all a, b in Z, a b = b a. MATH 215 Final We will assume the existence of a set Z, whose elements are called integers, along with a well-defined binary operation + on Z (called addition), a second well-defined binary operation on

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B.

Relations. Binary Relation. Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation. Let R A B be a relation from A to B. Relations Binary Relation Let A and B be sets. A (binary) relation from A to B is a subset of A B. Notation Let R A B be a relation from A to B. If (a, b) R, we write a R b. 1 Binary Relation Example:

More information

Intro to Logic and Proofs

Intro to Logic and Proofs Intro to Logic and Proofs Propositions A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both. Examples: It is raining today. Washington

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers Copyright

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Basic Proof Examples

Basic Proof Examples Basic Proof Examples Lisa Oberbroeckling Loyola University Maryland Fall 2015 Note. In this document, we use the symbol as the negation symbol. Thus p means not p. There are four basic proof techniques

More information

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION The Peano axioms The following are the axioms for the natural numbers N. You might think of N as the set of integers {0, 1, 2,...}, but it turns

More information

Mathematics 228(Q1), Assignment 2 Solutions

Mathematics 228(Q1), Assignment 2 Solutions Mathematics 228(Q1), Assignment 2 Solutions Exercise 1.(10 marks) A natural number n > 1 is said to be square free if d N with d 2 n implies d = 1. Show that n is square free if and only if n = p 1 p k

More information

Mathematical Induction. Section 5.1

Mathematical Induction. Section 5.1 Mathematical Induction Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

a = qb + r where 0 r < b. Proof. We first prove this result under the additional assumption that b > 0 is a natural number. Let

a = qb + r where 0 r < b. Proof. We first prove this result under the additional assumption that b > 0 is a natural number. Let 2. Induction and the division algorithm The main method to prove results about the natural numbers is to use induction. We recall some of the details and at the same time present the material in a different

More information

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof Ch. 1.6 Introduction to Proofs The following techniques for methods of proofs are discussed in our text - Vacuous proof - Trivial proof - Direct proof - Indirect proof (our book calls this by contraposition)

More information

Chapter 5: The Integers

Chapter 5: The Integers c Dr Oksana Shatalov, Fall 2014 1 Chapter 5: The Integers 5.1: Axioms and Basic Properties Operations on the set of integers, Z: addition and multiplication with the following properties: A1. Addition

More information

n(n + 1). 2 . If n = 3, then 1+2+3=6= 3(3+1) . If n = 2, then = 3 = 2(2+1)

n(n + 1). 2 . If n = 3, then 1+2+3=6= 3(3+1) . If n = 2, then = 3 = 2(2+1) Chapter 4 Induction In this chapter, we introduce mathematical induction, which is a proof technique that is useful for proving statements of the form (8n N)P(n), or more generally (8n Z)(n a =) P(n)),

More information

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers:

WORKSHEET MATH 215, FALL 15, WHYTE. We begin our course with the natural numbers: WORKSHEET MATH 215, FALL 15, WHYTE We begin our course with the natural numbers: N = {1, 2, 3,...} which are a subset of the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } We will assume familiarity with their

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Distinguish between a theorem, an axiom, lemma, a corollary, and a conjecture. Recognize direct proofs

More information

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Contradiction Benjamin V.C. Collins James A. Swenson Contrapositive The contrapositive of the statement If A, then B is the statement If not B, then not A. A statement and its contrapositive

More information

Solutions to Assignment 1

Solutions to Assignment 1 Solutions to Assignment 1 Question 1. [Exercises 1.1, # 6] Use the division algorithm to prove that every odd integer is either of the form 4k + 1 or of the form 4k + 3 for some integer k. For each positive

More information

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set

n n P} is a bounded subset Proof. Let A be a nonempty subset of Z, bounded above. Define the set 1 Mathematical Induction We assume that the set Z of integers are well defined, and we are familiar with the addition, subtraction, multiplication, and division. In particular, we assume the following

More information

With Question/Answer Animations

With Question/Answer Animations Chapter 5 With Question/Answer Animations Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

0.Axioms for the Integers 1

0.Axioms for the Integers 1 0.Axioms for the Integers 1 Number theory is the study of the arithmetical properties of the integers. You have been doing arithmetic with integers since you were a young child, but these mathematical

More information

Introduction to Decision Sciences Lecture 10

Introduction to Decision Sciences Lecture 10 Introduction to Decision Sciences Lecture 10 Andrew Nobel October 17, 2017 Mathematical Induction Given: Propositional function P (n) with domain N + Basis step: Show that P (1) is true Inductive step:

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: Rule of Inference Mathematical Induction: Conjecturing and Proving Mathematical Induction:

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page. Formal Methods Name: Key Midterm 2, Spring, 2007 Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.. Determine whether each of

More information

Discrete Structures - CM0246 Mathematical Induction

Discrete Structures - CM0246 Mathematical Induction Discrete Structures - CM0246 Mathematical Induction Andrés Sicard-Ramírez EAFIT University Semester 2014-2 Motivation Example Conjecture a formula for the sum of the first n positive odd integers. Discrete

More information

Induction and recursion. Chapter 5

Induction and recursion. Chapter 5 Induction and recursion Chapter 5 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms Mathematical Induction Section 5.1

More information

Solutions to Homework Set 1

Solutions to Homework Set 1 Solutions to Homework Set 1 1. Prove that not-q not-p implies P Q. In class we proved that A B implies not-b not-a Replacing the statement A by the statement not-q and the statement B by the statement

More information

Homework 1. 10(b) A useful denial of the statement We will win the first game or the second one is We will lose the first two games.

Homework 1. 10(b) A useful denial of the statement We will win the first game or the second one is We will lose the first two games. Homework 1 Exercises 1.1 (f) P Q Q Q Q P (Q Q) T T F T T T F T T T F T F T F F F T T F 5(d) The proposition Horses have four legs but three quarters do not equal one dollar is of the form A C. Since A

More information

NOTES ON SIMPLE NUMBER THEORY

NOTES ON SIMPLE NUMBER THEORY NOTES ON SIMPLE NUMBER THEORY DAMIEN PITMAN 1. Definitions & Theorems Definition: We say d divides m iff d is positive integer and m is an integer and there is an integer q such that m = dq. In this case,

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from

Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from Strong Induction (Second Principle) Example: There are two piles of cards, players take turn: each turn: one player removes any number of cards from 1 pile (any of the two). The player who removes the

More information

INDUCTION AND RECURSION. Lecture 7 - Ch. 4

INDUCTION AND RECURSION. Lecture 7 - Ch. 4 INDUCTION AND RECURSION Lecture 7 - Ch. 4 4. Introduction Any mathematical statements assert that a property is true for all positive integers Examples: for every positive integer n: n!

More information

Number Theory and Graph Theory. Prime numbers and congruences.

Number Theory and Graph Theory. Prime numbers and congruences. 1 Number Theory and Graph Theory Chapter 2 Prime numbers and congruences. By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-1:Primes

More information

5: The Integers (An introduction to Number Theory)

5: The Integers (An introduction to Number Theory) c Oksana Shatalov, Spring 2017 1 5: The Integers (An introduction to Number Theory) The Well Ordering Principle: Every nonempty subset on Z + has a smallest element; that is, if S is a nonempty subset

More information

Divisibility = 16, = 9, = 2, = 5. (Negative!)

Divisibility = 16, = 9, = 2, = 5. (Negative!) Divisibility 1-17-2018 You probably know that division can be defined in terms of multiplication. If m and n are integers, m divides n if n = mk for some integer k. In this section, I ll look at properties

More information

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings

Kevin James. MTHSC 412 Section 3.1 Definition and Examples of Rings MTHSC 412 Section 3.1 Definition and Examples of Rings A ring R is a nonempty set R together with two binary operations (usually written as addition and multiplication) that satisfy the following axioms.

More information

1.2 The Well-Ordering Principle

1.2 The Well-Ordering Principle 36 Chapter 1. The Integers Exercises 1.1 1. Prove the following theorem: Theorem. Let m and a be integers. If m a and a m, thenm = ±a. 2. Prove the following theorem: Theorem. For all integers a, b and

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2018 Fall Hakjoo Oh COSE212 2018 Fall, Lecture 1 September 5, 2018 1 / 10 Inductive Definitions Inductive definition (induction)

More information

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

21 Induction. Tom Lewis. Fall Term Tom Lewis () 21 Induction Fall Term / 14

21 Induction. Tom Lewis. Fall Term Tom Lewis () 21 Induction Fall Term / 14 21 Induction Tom Lewis Fall Term 2010 Tom Lewis () 21 Induction Fall Term 2010 1 / 14 Outline 1 The method of induction 2 Strong mathematical induction Tom Lewis () 21 Induction Fall Term 2010 2 / 14 Pessimists

More information

COT 2104 Homework Assignment 1 (Answers)

COT 2104 Homework Assignment 1 (Answers) 1) Classify true or false COT 2104 Homework Assignment 1 (Answers) a) 4 2 + 2 and 7 < 50. False because one of the two statements is false. b) 4 = 2 + 2 7 < 50. True because both statements are true. c)

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

NOTES ON INTEGERS. 1. Integers

NOTES ON INTEGERS. 1. Integers NOTES ON INTEGERS STEVEN DALE CUTKOSKY The integers 1. Integers Z = {, 3, 2, 1, 0, 1, 2, 3, } have addition and multiplication which satisfy familar rules. They are ordered (m < n if m is less than n).

More information

Recitation 7: Existence Proofs and Mathematical Induction

Recitation 7: Existence Proofs and Mathematical Induction Math 299 Recitation 7: Existence Proofs and Mathematical Induction Existence proofs: To prove a statement of the form x S, P (x), we give either a constructive or a non-contructive proof. In a constructive

More information

. As the binomial coefficients are integers we have that. 2 n(n 1).

. As the binomial coefficients are integers we have that. 2 n(n 1). Math 580 Homework. 1. Divisibility. Definition 1. Let a, b be integers with a 0. Then b divides b iff there is an integer k such that b = ka. In the case we write a b. In this case we also say a is a factor

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 1 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 2 Section 5.1 3 Section Summary Mathematical Induction Examples of

More information

MATH 2400: PRACTICE PROBLEMS FOR EXAM 1

MATH 2400: PRACTICE PROBLEMS FOR EXAM 1 MATH 2400: PRACTICE PROBLEMS FOR EXAM 1 PETE L. CLARK 1) Find all real numbers x such that x 3 = x. Prove your answer! Solution: If x 3 = x, then 0 = x 3 x = x(x + 1)(x 1). Earlier we showed using the

More information

The theory of numbers

The theory of numbers 1 AXIOMS FOR THE INTEGERS 1 The theory of numbers UCU Foundations of Mathematics course 2017 Author: F. Beukers 1 Axioms for the integers Roughly speaking, number theory is the mathematics of the integers.

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 2 1 Divisibility Theorems 2 DIC Example 3 Converses 4 If and only if 5 Sets 6 Other Set Examples 7 Set Operations 8 More Set Terminology

More information

Meaning of Proof Methods of Proof

Meaning of Proof Methods of Proof Mathematical Proof Meaning of Proof Methods of Proof 1 Dr. Priya Mathew SJCE Mysore Mathematics Education 4/7/2016 2 Introduction Proposition: Proposition or a Statement is a grammatically correct declarative

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 4 1 Principle of Mathematical Induction 2 Example 3 Base Case 4 Inductive Hypothesis 5 Inductive Step When Induction Isn t Enough

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Problem 1: Specify two different predicates P (x) and

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

CS 220: Discrete Structures and their Applications. Mathematical Induction in zybooks

CS 220: Discrete Structures and their Applications. Mathematical Induction in zybooks CS 220: Discrete Structures and their Applications Mathematical Induction 6.4 6.6 in zybooks Why induction? Prove algorithm correctness (CS320 is full of it) The inductive proof will sometimes point out

More information

MATH10040: Numbers and Functions Homework 1: Solutions

MATH10040: Numbers and Functions Homework 1: Solutions MATH10040: Numbers and Functions Homework 1: Solutions 1. Prove that a Z and if 3 divides into a then 3 divides a. Solution: The statement to be proved is equivalent to the statement: For any a N, if 3

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

MTHSC 3190 Section 2.9 Sets a first look

MTHSC 3190 Section 2.9 Sets a first look MTHSC 3190 Section 2.9 Sets a first look Definition A set is a repetition free unordered collection of objects called elements. Definition A set is a repetition free unordered collection of objects called

More information

1.2 MATHEMATICAL INDUCTION. Peano s Postulates and Induction. 10 Chapter 1 The Real Numbers

1.2 MATHEMATICAL INDUCTION. Peano s Postulates and Induction. 10 Chapter 1 The Real Numbers 10 Chapter 1 The Real Numbers 1. MATHEMATICAL INDUCTION If a flight of stairs is designed so that falling off any step inevitably leads to falling off the next, then falling off the first step is a sure

More information

Four Basic Sets. Divisors

Four Basic Sets. Divisors Four Basic Sets Z = the integers Q = the rationals R = the real numbers C = the complex numbers Divisors Definition. Suppose a 0 and b = ax, where a, b, and x are integers. Then we say a divides b (or

More information

7 Mathematical Induction. For the natural numbers N a the following are equivalent:

7 Mathematical Induction. For the natural numbers N a the following are equivalent: 7 Mathematical Induction Definition: N a = {n N n a}. For the natural numbers N a the following are equivalent: 1. Ordinary axiom of induction: IfS N a such that (a) a S (b) n N a (n S n +1 S) then S =

More information

CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati

CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati Important 1. No questions about the paper will be entertained during

More information

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions Math 4: Principles of Analysis Fall 0 Homework Part B solutions. Let x, y, z R. Use the axioms of the real numbers to prove the following. a) If x + y = x + z then y = z. Solution. By Axiom a), there is

More information

CSE 20. Final Review. CSE 20: Final Review

CSE 20. Final Review. CSE 20: Final Review CSE 20 Final Review Final Review Representation of integers in base b Logic Proof systems: Direct Proof Proof by contradiction Contraposetive Sets Theory Functions Induction Final Review Representation

More information

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes.

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. INTEGERS PETER MAYR (MATH 2001, CU BOULDER) In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. 1. Divisibility Definition. Let a, b

More information

Induction. Induction. Induction. Induction. Induction. Induction 2/22/2018

Induction. Induction. Induction. Induction. Induction. Induction 2/22/2018 The principle of mathematical induction is a useful tool for proving that a certain predicate is true for all natural numbers. It cannot be used to discover theorems, but only to prove them. If we have

More information

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results

not to be republished NCERT REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results REAL NUMBERS CHAPTER 1 (A) Main Concepts and Results Euclid s Division Lemma : Given two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, 0 r < b. Euclid s Division

More information

In case (1) 1 = 0. Then using and from Friday,

In case (1) 1 = 0. Then using and from Friday, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B. Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination III (Spring 2007) Problem 1: Suppose A, B, C and D are finite sets

More information

Discrete Mathematics for CS Fall 2003 Wagner Lecture 3. Strong induction

Discrete Mathematics for CS Fall 2003 Wagner Lecture 3. Strong induction CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 3 This lecture covers further variants of induction, including strong induction and the closely related wellordering axiom. We then apply these

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

Introduction Integers. Discrete Mathematics Andrei Bulatov

Introduction Integers. Discrete Mathematics Andrei Bulatov Introduction Integers Discrete Mathematics Andrei Bulatov Discrete Mathematics - Integers 9- Integers God made the integers; all else is the work of man Leopold Kroenecker Discrete Mathematics - Integers

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

CHAPTEER - TWO SUBGROUPS. ( Z, + ) is subgroup of ( R, + ). 1) Find all subgroups of the group ( Z 8, + 8 ).

CHAPTEER - TWO SUBGROUPS. ( Z, + ) is subgroup of ( R, + ). 1) Find all subgroups of the group ( Z 8, + 8 ). CHAPTEER - TWO SUBGROUPS Definition 2-1. Let (G, ) be a group and H G be a nonempty subset of G. The pair ( H, ) is said to be a SUBGROUP of (G, ) if ( H, ) is group. Example. ( Z, + ) is subgroup of (

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Problem 1: Suppose A, B, C and D are arbitrary sets.

More information

Midterm: Sample 3. ECS20 (Fall 2017) 1) Using truth tables, establish for each of the two propositions below if it is a tautology, a contradiction

Midterm: Sample 3. ECS20 (Fall 2017) 1) Using truth tables, establish for each of the two propositions below if it is a tautology, a contradiction Midterm: Sample 3 ECS20 (Fall 2017) Part I: logic 1) Using truth tables, establish for each of the two propositions below if it is a tautology, a contradiction or neither. 1) [p (q r)] [((r p) q) q] Let

More information

Induction and Recursion

Induction and Recursion . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Induction and Recursion

More information

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2.

MATH 55 - HOMEWORK 6 SOLUTIONS. 1. Section = 1 = (n + 1) 3 = 2. + (n + 1) 3. + (n + 1) 3 = n2 (n + 1) 2. MATH 55 - HOMEWORK 6 SOLUTIONS Exercise Section 5 Proof (a) P () is the statement ( ) 3 (b) P () is true since ( ) 3 (c) The inductive hypothesis is P (n): ( ) n(n + ) 3 + 3 + + n 3 (d) Assuming the inductive

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

Math 118: Advanced Number Theory. Samit Dasgupta and Gary Kirby

Math 118: Advanced Number Theory. Samit Dasgupta and Gary Kirby Math 8: Advanced Number Theory Samit Dasgupta and Gary Kirby April, 05 Contents Basics of Number Theory. The Fundamental Theorem of Arithmetic......................... The Euclidean Algorithm and Unique

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Today's learning goals Determine whether a relation is an equivalence relation by determining whether it is Reflexive Symmetric

More information

Math 110 HW 3 solutions

Math 110 HW 3 solutions Math 0 HW 3 solutions May 8, 203. For any positive real number r, prove that x r = O(e x ) as functions of x. Suppose r

More information