Engineering Mechanics: Statics in SI Units, 12e

Size: px
Start display at page:

Download "Engineering Mechanics: Statics in SI Units, 12e"

Transcription

1 Engineering Mechanics: Statics in S Units, 1e 10 Moments of nertia 1 Chapter(Objectives Method(for(determining(the(moment(of(inertia(for(an(area( Definition(of(Radius(of(Gration Chapter(Outline 1. Definitions(of(Moments(of(nertia(for(reas(. Parallelis(Theorem(for(an(rea(. Radius(of(Gration(of(an(rea( 4. Moments(of(nertia(for(Composite(reas

2 10.1(Definition(of(Moments(of(nertia(for(reas The(centroid(of(area(is(first(order(of(moment(of(an( area,( d d Moment(of(inertial(is(the(second(order(of(moment( of(an(area( d d Moment(of(inertia(is(used(to(calculate,(for(eample,( when(calculating(a(moment(about(an(ais(for( distributed(load,(where(the(force(is(proportion(to( distance( Mainl(applied(in(Mechanics(of(Materials,(Structural( Mechanics,(Fluid(Mechanics,(Mechanical(Design 10.1(Definition(of(Moments(of(nertia(for(reas For(eample(the(pressure(of(fluid(p(is(proportional( to(depth(, p γ! where γ is Specific(Weight of fluid! The(force(on(a(small(area(is(dF pd((( Moment(of(a(force(about(the((ais(is(( dm df γ d, M γ d The(value( (((((((((((((is(called(( d the(moment(of(the(area(( about(ais γ d 4

3 10.1(Definition(of(Moments(of(nertia(for(reas Moment(of(nertia(( Consider(the(area((on(the(pla(#( The(moment(of(inertial(of(the(small(are( about( and( is(( d d d d The(moment(of(inertia(about((and( ais is( d d (Definition(of(Moments(of(nertia(for(reas Polar(Moment(of(nertia(( The(second(order(of(moment(of(the(area(d(about(O(or(about( the(z(ais(is((this(ais(is(called(polar(ais)( dj O r d (r(is(the(perpendicular(distance(from(pole((z(ais)(to(the(area(d Polar(moment(of(inertia( J O r d + r + 6

4 10.(Parallel(is(Theorem(for(an(rea The(theorem(is(used(to(find(the(moment(of(inertia( of(an(area(about(an(arbitrar(ais(parallel(to(the( ais(passing(the(centroid(of(the(area((the(moment( of(inertia(about(the(centroid(must(be(known)( Consider(the(area,(in(which( ((is(passing(through( the(centroid( The(area(d(has(the(distance(from((to( (equal(to( (( The(moment(of(inertial(of(the(area(d(( about(!with(the(distance(from(the(centroid( (ais( ( equal(to(d ( ) d ' + d ( ' + d ) ' d + d d d ' d + d d 7 10.(Parallel(is(Theorem(for(an(rea ' d + d ' d + The(first(term(is(the(moment(of(inertial(about(the(ais(passing(the( centroid( The(second(term(is(zeros(since( (passes(the(centroid( ' d d 0; 0 The(third(term(is(( d Hence( ( and( + d + d nd( JO JC + d ( where( ( and d d + d J C! +! d d 8

5 10.(Radius(of(Gration(of(an(rea Radius(of(gration(is(used(in(column(design(is( k k ko JO This(is(similar(to(an(equivalent(radius(when(finding( the(moment(of(inertia( The(equation(is(similar(to(the(moment(of(inertia k, where d d 9 Procedure(for(nalsis Consider(ntegration(of(d! Eample(Find( ( ( Case(1( Consider(d(parallel(the((ais( ( Case( d d and d Case(1 Consider(d(perpendicular(to(the((ais( d d but d Find find of small area from parallel ais theorem Case( 10

6 11 Eample(10.1 Determine(the(moment(of(inertia(for(the(rectangular(area(with( respect(to(( (a) the(centroidal( (ais,(( (b)(the(ais( b (passing(through(the(base(of(the(rectangle,(( (c)(the(pole(or(z (ais(perpendicular(( to(the( # (plane(and(passing(( through(the(centroid(c. 1 Solution Part((a)( Differential(element(chosen,(distance( (from( (ais.( Since(d!!b!d,( Part((b)( B(appling(parallel(ais(theorem, / / / / 1 1 ' ') ( ' ' bh d b bd d h h h h!! bh h bh bh d b! " # $ % & + + '

7 Solution Part((c)( For(polar(moment(of(inertia(about(point(C,( First(determine,( Then: J ' C 1 1! hb + ' 1 1 bh( h + b ) 1 Eample(10. Determine(the(moment(of(inertia(for(the(area(about((ais. Case(1 Case( 14

8 Solution Solution(((case(1)( Differential(element(area;(!! d ( 100 ) d Moment(of(nertia 0 00mm d 107(10 6 ) 0 00mm & # $ ! d % " mm 4 (100 ) d 15 Solution Solution(((case()( To(determine(the(moment(of(inertia(of(the(differential(element( area(d,(b(parallelais(theorem.(( For(a(small(rectangle(element( Then;(( 1 d! d!!! 1 b(parallelais(theorem b d and h 16

9 Eample(10. Determine(the(moment(of(inertia(for(the(area(about((ais. Case(1 Case( 17 Solution Solution(((case(1)( Differential(element(area;(!! d d Moment(of(nertia 18

10 Solution Solution(((case()( To(determine(the(moment(of(inertia(of(the(differential(element( area(d,(( For(a(small(rectangle(element( Then;((!!! ntegrating(with(respect(to( b d and h (Moments(of(nertia(for(Composite(reas The(composite(area(is(composed(of(areas(with(man(simple(geometries( The(moment(of(inertia(of(composite(areas(can(be(found(b(the(sum(of(individual( moment(of(inertia(with(sign((holes(are(negative)( Procedure(for(nalsis( Composite(areas( Divide(a(composite(area(into(simple(geometrical(areas(and(locate(the(centroids( of(each(of(the(areas(and(find(the(moment(of(inertias(about(each(of(their(own( centroids( Parallel(is(Theorem( ppl(the(parallel(ais(theorem(to(calculate(the(moment(of(inertia(about(the( required(ais( Summation( Sum(all(of(the(moment(of(inertia,(beware(of(signs 0

11 Eample(10.4 Compute(the(moment(of(inertia(of(the(composite(area(about( the((ais. 1 Solution Composite(Parts( Composite(area(obtained(b(subtracting(the(circle(form(the( rectangle.( Centroid(of(each(area(is(located(in(the(figure(below.

12 Solution Parallel(is(Theorem( Circle( 1 4 ' + d π 5 + π 5 4 Rectangle( 1 ' + d Summation( 6 4 ( ) ( ) ( 75) 11.4( 10 ) mm 6 4 ( )( ) ( )( 150)( 75) 11.5( 10 ) mm For(moment(of(inertia(for(the(composite(area, ( 10 ) ( 10 ) 6 4 ( ) mm

Engineering(Mechanics:( Statics(in(SI(Units,(12e. Moments(of(Inertia

Engineering(Mechanics:( Statics(in(SI(Units,(12e. Moments(of(Inertia Engineering(Mechanics:( Statics(in(SI(Units,(12e 10 Moments(of(Inertia 1 Chapter(Objectives Method(for(determining(the(moment(of(inertia(for(an(area Definition(of(Radius(of(Gyration Chapter(Outline 1.

More information

Engineering Mechanics: Statics in SI Units, 12e

Engineering Mechanics: Statics in SI Units, 12e Engineering Mechanics: Statics in SI Units, 1e 9 Center of Gravity and Centroid 1 Chapter(Objectives Concept)of)the)center)of)gravity,)center)of)mass,)and)the) centroid))) Determine)the)location)of)the)center)of)gravity)and)centroid)

More information

Statics: Lecture Notes for Sections 10.1,10.2,10.3 1

Statics: Lecture Notes for Sections 10.1,10.2,10.3 1 Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 0 Engineering Mechanics: Statics Unit 9. Moments of nertia Definition of Moments of nertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of nertia for Composite Areas

More information

Moments of Inertia. Notation:

Moments of Inertia. Notation: RCH 1 Note Set 9. S015abn Moments of nertia Notation: b d d d h c Jo O = name for area = name for a (base) width = calculus smbol for differentiation = name for a difference = name for a depth = difference

More information

Distributed Forces: Moments of Inertia

Distributed Forces: Moments of Inertia Distributed Forces: Moments of nertia Contents ntroduction Moments of nertia of an Area Moments of nertia of an Area b ntegration Polar Moments of nertia Radius of Gration of an Area Sample Problems Parallel

More information

ME 141. Lecture 8: Moment of Inertia

ME 141. Lecture 8: Moment of Inertia ME 4 Engineering Mechanics Lecture 8: Moment of nertia Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil679@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 9 Distributed CHAPTER VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Forces: Moments of nertia Contents ntroduction

More information

10.5 MOMENT OF INERTIA FOR A COMPOSITE AREA

10.5 MOMENT OF INERTIA FOR A COMPOSITE AREA 10.5 MOMENT OF NERTA FOR A COMPOSTE AREA A composite area is made by adding or subtracting a series of simple shaped areas like rectangles, triangles, and circles. For example, the area on the left can

More information

Moment of Inertia and Centroid

Moment of Inertia and Centroid Chapter- Moment of nertia and Centroid Page- 1. Moment of nertia and Centroid Theory at a Glance (for ES, GATE, PSU).1 Centre of gravity: The centre of gravity of a body defined as the point through which

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer 00 The McGraw-Hill Companies, nc. All rights reserved. Seventh E CHAPTER VECTOR MECHANCS FOR ENGNEERS: 9 STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Distributed Forces: Lecture Notes: J. Walt Oler

More information

CIVL Statics. Moment of Inertia - Composite Area. A math professor in an unheated room is cold and calculating. Radius of Gyration

CIVL Statics. Moment of Inertia - Composite Area. A math professor in an unheated room is cold and calculating. Radius of Gyration CVL 131 - Statics Moment of nertia Composite Areas A math professor in an unheated room is cold and calculating. Radius of Gration This actuall sounds like some sort of rule for separation on a dance floor.

More information

Chapter 5 Equilibrium of a Rigid Body Objectives

Chapter 5 Equilibrium of a Rigid Body Objectives Chapter 5 Equilibrium of a Rigid Bod Objectives Develop the equations of equilibrium for a rigid bod Concept of the free-bod diagram for a rigid bod Solve rigid-bod equilibrium problems using the equations

More information

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface 4. Structural Equilibrium 4.1 ntroduction n statics, it becomes convenient to ignore the small deformation and displacement. We pretend that the materials used are rigid, having the propert or infinite

More information

ME 101: Engineering Mechanics

ME 101: Engineering Mechanics ME 0: Engineering Mechanics Rajib Kumar Bhattacharja Department of Civil Engineering ndian nstitute of Technolog Guwahati M Block : Room No 005 : Tel: 8 www.iitg.ernet.in/rkbc Area Moments of nertia Parallel

More information

Statics: Lecture Notes for Sections

Statics: Lecture Notes for Sections 0.5 MOMENT OF INERTIA FOR A COMPOSITE AREA A composite area is made by adding or subtracting a series of simple shaped areas like rectangles, triangles, and circles. For example, the area on the left can

More information

Moment of Inertia. Moment of Inertia

Moment of Inertia. Moment of Inertia Moment of nertia What is a commi+ee? A group of the unwilling, picked from the unfit, to do the unnecessar. Moment of nertia When we calculated the centroid of a shape, we took the moment generated b the

More information

Chapter 10: Moments of Inertia

Chapter 10: Moments of Inertia Chapter 10: Moments of Inertia Chapter Objectives To develop a method for determining the moment of inertia and product of inertia for an area with respect to given x- and y-axes. To develop a method for

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 01 Engineering Mechanics: Statics Unit 5.3 Reduction of a Simple Distributed Loading Distributed Loads Thus far we ve been working with loads that are concentrated at a point: Many times in engineering

More information

SOLUTION Determine the moment of inertia for the shaded area about the x axis. I x = y 2 da = 2 y 2 (xdy) = 2 y y dy

SOLUTION Determine the moment of inertia for the shaded area about the x axis. I x = y 2 da = 2 y 2 (xdy) = 2 y y dy 5. Determine the moment of inertia for the shaded area about the ais. 4 4m 4 4 I = da = (d) 4 = 4 - d I = B (5 + (4)() + 8(4) ) (4 - ) 3-5 4 R m m I = 39. m 4 6. Determine the moment of inertia for the

More information

2.6 Force reacts with planar object in fluid

2.6 Force reacts with planar object in fluid 2.6 Force reacts with planar object in fluid Fluid surface Specific weight (γ) => Object sinks in fluid => C is center of gravity or Centroid => P is center of pressure (always under C) => x axis is cross

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA)

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) LETURE Third Edition BEMS: SHER ND MOMENT DGRMS (FORMUL). J. lark School of Engineering Department of ivil and Environmental Engineering 1 hapter 5.1 5. b Dr. brahim. ssakkaf SPRNG 00 ENES 0 Mechanics

More information

REVOLVED CIRCLE SECTIONS. Triangle revolved about its Centroid

REVOLVED CIRCLE SECTIONS. Triangle revolved about its Centroid REVOLVED CIRCLE SECTIONS Triangle revolved about its Centroid Box-in Method Circle Sector Method Integrating to solve I, Ax, and A for a revolved triangle is difficult. A quadrilateral and another triangle

More information

Forces on a curved surface

Forces on a curved surface Civil Engineering Hydraulics Forces on Curved Surfaces There is a theory which states that if ever anybody discovers exactly what the Universe is for and why it is here, it will instantly disappear and

More information

MTE 119 STATICS LECTURE MATERIALS FINAL REVIEW PAGE NAME & ID DATE. Example Problem F.1: (Beer & Johnston Example 9-11)

MTE 119 STATICS LECTURE MATERIALS FINAL REVIEW PAGE NAME & ID DATE. Example Problem F.1: (Beer & Johnston Example 9-11) Eample Problem F.: (Beer & Johnston Eample 9-) Determine the mass moment of inertia with respect to: (a) its longitudinal ais (-ais) (b) the y-ais SOLUTION: a) Mass moment of inertia about the -ais: Step

More information

Static Forces on Surfaces-Buoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface:

Static Forces on Surfaces-Buoyancy. Fluid Mechanics. There are two cases: Case I: if the fluid is above the curved surface: Force on a Curved Surface due to Hydrostatic Pressure If the surface is curved, the forces on each element of the surface will not be parallel (normal to the surface at each point) and must be combined

More information

Second Moments or Moments of Inertia

Second Moments or Moments of Inertia Second Moments or Moments of Inertia The second moment of inertia of an element of area such as da in Figure 1 with respect to any axis is defined as the product of the area of the element and the square

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering_2016 Engineering Mechanics Statics 6. Moment of a Couple Dr. Rami Zakaria Moment of a Couple We need a moment (or torque) of (12 N m) to rotate the wheel. Notice that one

More information

Chapter 9 Moment of Inertia

Chapter 9 Moment of Inertia Chapter 9 Moment of Inertia Dr. Khairul Salleh Basaruddin Applied Mechanics Division School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) khsalleh@unimap.edu.my PARALLEL-AXIS THEOREM,

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

REDUCTION OF A SIMPLE DISTRIBUTED LOADING. Today s Objectives: Students will be able to determine an equivalent force for a distributed load.

REDUCTION OF A SIMPLE DISTRIBUTED LOADING. Today s Objectives: Students will be able to determine an equivalent force for a distributed load. REDUCTION OF A SIMPLE DISTRIBUTED LOADING Today s Objectives: Students will be able to determine an equivalent force for a distributed load. = READING QUIZ 1. The resultant force (F R ) due to a distributed

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

Dynamic Modelling of Mechanical Systems

Dynamic Modelling of Mechanical Systems Dynamic Modelling of Mechanical Systems Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering g IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD Hints of the Last Assignment

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering Shanghai Jiao Tong University

More information

Problem 6.24 The Pratt bridge truss supports five forces ( F D 300 kn). The dimension L D 8m.Determine the axial forces in members BC, BI, and BJ.

Problem 6.24 The Pratt bridge truss supports five forces ( F D 300 kn). The dimension L D 8m.Determine the axial forces in members BC, BI, and BJ. Problem 6.24 The Pratt bridge truss supports five forces ( F D 300 kn). The dimension L D 8m.Determine the aial forces in members C, I, and J. L L L L L L C D E G L I J K L M H F F F F F Solution: Find

More information

Helpful Concepts for MTH 261 Final. What are the general strategies for determining the domain of a function?

Helpful Concepts for MTH 261 Final. What are the general strategies for determining the domain of a function? Helpful Concepts for MTH 261 Final What are the general strategies for determining the domain of a function? How do we use the graph of a function to determine its range? How many graphs of basic functions

More information

Moments and Product of Inertia

Moments and Product of Inertia Moments and Product of nertia Contents ntroduction( 绪论 ) Moments of nertia of an Area( 平面图形的惯性矩 ) Moments of nertia of an Area b ntegration( 积分法求惯性矩 ) Polar Moments of nertia( 极惯性矩 ) Radius of Gration

More information

LECTURE 13 Strength of a Bar in Pure Bending

LECTURE 13 Strength of a Bar in Pure Bending V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 13 Strength of a Bar in Pure Bending Bending is a tpe of loading under which bending moments and also shear forces occur at cross sections of a rod. f the bending

More information

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface. Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest. - A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,

More information

AREAS, RADIUS OF GYRATION

AREAS, RADIUS OF GYRATION Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

StaticS Fourteenth edition in si units

StaticS Fourteenth edition in si units EnginEEring MEchanics StaticS Fourteenth edition in si units r.. hibbeler SI onversion b Kai beng Yap hoboken oston columbus san Francisco ne York indianapolis ondon Toronto sdne singapore Toko Montreal

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

Answers Investigation 3

Answers Investigation 3 Answers Investigation Applications. a., b. s = n c. The numbers seem to be increasing b a greater amount each time. The square number increases b consecutive odd integers:,, 7,, c X X=. a.,,, b., X 7 X=

More information

EXERCISES Chapter 15: Multiple Integrals. Evaluating Integrals in Cylindrical Coordinates

EXERCISES Chapter 15: Multiple Integrals. Evaluating Integrals in Cylindrical Coordinates 08 Chapter 5: Multiple Integrals EXERCISES 5.6 Evaluating Integrals in Clindrical Evaluate the clindrical coordinate integrals in Eercises 6... 3. 4. 5. 6. Changing Order of Integration in Clindrical The

More information

Stresses in Curved Beam

Stresses in Curved Beam Stresses in Curved Beam Consider a curved beam subjected to bending moment M b as shown in the figure. The distribution of stress in curved flexural member is determined by using the following assumptions:

More information

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGraw-Hill Companies, nc. All rights reserved. Eighth E CHAPTER 9 VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University

More information

Name ME 270 Summer 2006 Examination No. 1 PROBLEM NO. 3 Given: Below is a Warren Bridge Truss. The total vertical height of the bridge is 10 feet and each triangle has a base of length, L = 8ft. Find:

More information

10 3. Determine the moment of inertia of the area about the x axis.

10 3. Determine the moment of inertia of the area about the x axis. 10 3. Determine the moment of inertia of the area about the ais. m m 10 4. Determine the moment of inertia of the area about the ais. m m 10 3. Determine the moment of inertia of the shaded area about

More information

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue)

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue) /1/01 10.6 Product of Inertia Product of Inertia: I xy = xy da When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero. Parallel axis theorem for products of inertia:

More information

Statics - TAM 211. Lecture 31 December 10, 2018 Chap 10.1, 10.2, 10.4, 10.8

Statics - TAM 211. Lecture 31 December 10, 2018 Chap 10.1, 10.2, 10.4, 10.8 Statics - TAM 211 Lecture 31 December 10, 2018 Chap 10.1, 10.2, 10.4, 10.8 Announcements Check ALL of your grades on Blackboard! Report issues Prof. H-W office hours Monday 3-5pm (Room C315 ZJUI Building)

More information

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 3. (Hydrostatic forces on flat and curved surfaces)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 3. (Hydrostatic forces on flat and curved surfaces) ME 262 BSIC FLUID MECHNICS ssistant Professor Neslihan Semerci Lecture 3 (Hydrostatic forces on flat and curved surfaces) 15. HYDROSTTIC PRESSURE 15.1 Hydrostatic pressure force on flat surfaces When a

More information

Solutions to Assignment-11

Solutions to Assignment-11 Solutions to Assignment-. (a) For any sequence { } of positive numbers, show that lim inf + lim inf an lim sup an lim sup +. Show from this, that the root test is stronger than the ratio test. That is,

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Consider a cross section with a general shape such as shown in Figure B.2.1 with the x axis normal to the cross section. Figure B.2.1.

Consider a cross section with a general shape such as shown in Figure B.2.1 with the x axis normal to the cross section. Figure B.2.1. ppendix B rea Properties of Cross Sections B.1 Introduction The area, the centroid of area, and the area moments of inertia of the cross sections are needed in slender bar calculations for stress and deflection.

More information

Chapter 9 BIAXIAL SHEARING

Chapter 9 BIAXIAL SHEARING 9. DEFNTON Chapter 9 BAXAL SHEARNG As we have seen in the previous chapter, biaial (oblique) shearing produced b the shear forces and, appears in a bar onl accompanied b biaial bending (we ma discuss about

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

Statics - TAM 211. Lecture 31. (no lecture 30) April 6, 2018 Chap 9.2

Statics - TAM 211. Lecture 31. (no lecture 30) April 6, 2018 Chap 9.2 Statics - TAM 211 Lecture 31 (no lecture 30) April 6, 2018 Chap 9.2 Announcements No class Wednesday April 11 No office hours for Prof. H-W on Wednesday April 11 Upcoming deadlines: Monday (4/9) Mastering

More information

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1

MTE 119 STATICS FINAL HELP SESSION REVIEW PROBLEMS PAGE 1 9 NAME & ID DATE. Example Problem P.1 MTE STATICS Example Problem P. Beer & Johnston, 004 by Mc Graw-Hill Companies, Inc. The structure shown consists of a beam of rectangular cross section (4in width, 8in height. (a Draw the shear and bending

More information

BASIC MATHS TUTORIAL 7 - MOMENTS OF AREA. This tutorial should be skipped if you are already familiar with the topic.

BASIC MATHS TUTORIAL 7 - MOMENTS OF AREA. This tutorial should be skipped if you are already familiar with the topic. BASIC MATHS TUTORIAL 7 - MOMENTS OF AREA This tutorial should be skipped if you are already familiar with the topic. In this section you will do the following. Define the centre of area. Define and calculate

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010 Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

More information

5.1. Cross-Section and the Strength of a Bar

5.1. Cross-Section and the Strength of a Bar TRENGTH OF MTERL Meanosüsteemide komponentide õppetool 5. Properties of ections 5. ross-ection and te trengt of a Bar 5. rea Properties of Plane apes 5. entroid of a ection 5.4 rea Moments of nertia 5.5

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES Section Properties Centroid The centroid of an area is the point about which the area could be balanced if it was supported from that point. The word is derived from the word center, and it can be though

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

Determine the moment of inertia of the area about the x axis Determine the moment of inertia of the area about the y axis.

Determine the moment of inertia of the area about the x axis Determine the moment of inertia of the area about the y axis. 10 Solutions 44918 1/28/09 4:21 PM Page 941 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copright laws as the currentl eist. No portion

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

5 Equilibrium of a Rigid Body Chapter Objectives

5 Equilibrium of a Rigid Body Chapter Objectives 5 Equilibrium of a Rigid Body Chapter Objectives Develop the equations of equilibrium for a rigid body Concept of the free-body diagram for a rigid body Solve rigid-body equilibrium problems using the

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Algebra Mat: Working Towards Year 6

Algebra Mat: Working Towards Year 6 Algebra Mat: Working Towards Year 6 at 3 and adds 3 each time. 5, 10, 15, 20, Use simple formulae. The perimeter of a rectangle = a + a + b + b a = a b = 2, cd = 6, find 2 different pairs of numbers for

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure

LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 14 Strength of a Bar in Transverse Bending 1 ntroduction s we have seen, onl normal stresses occur at cross sections of a rod in pure bending. The corresponding

More information

Exam 05: Chapters 10 and 11

Exam 05: Chapters 10 and 11 Name: Exam 05: Chapters 10 and 11 Select and solve four of the following problems to the best of your ability. You must choose two problem from each column. Please notice that it is possible to select

More information

Cataraqui Source Protection Area. Context. Figure 1-1 % % %Ð %Ú. rrca. rvca. mvca. snca. cvca. qca. crca. oca. ltrca. Lake Ontario.

Cataraqui Source Protection Area. Context. Figure 1-1 % % %Ð %Ú. rrca. rvca. mvca. snca. cvca. qca. crca. oca. ltrca. Lake Ontario. % Cx % Nhmb H c cc c T % % % fw qc % Twd E %{ F x d Ap % C P mc Ud C f G cc Smh F c Kmp %Ú Ud C f Pc %É Ud C f m D G c Pc %w c Nh F 1-1 C Tw C Ah Cq Cw V w T Mpp V b Q d V Sh N Cd A, 5 d Fb, Pd Dcmb 1,

More information

STATICS VECTOR MECHANICS FOR ENGINEERS: Distributed Forces: Centroids and Centers of Gravity. Tenth Edition CHAPTER

STATICS VECTOR MECHANICS FOR ENGINEERS: Distributed Forces: Centroids and Centers of Gravity. Tenth Edition CHAPTER Tenth E CHAPTER 5 VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. David F. Mazurek Lecture Notes: John Chen California Polytechnic State University Distributed Forces:

More information

The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:

The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that: ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 2 Pressure This section will study the forces acting on or generated by fluids at rest. Objectives Introduce the concept

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems JU 18/HL Dnamics and control of mechanical sstems Date Da 1 (3/5) 5/5 Da (7/5) Da 3 (9/5) Da 4 (11/5) Da 5 (14/5) Da 6 (16/5) Content Revie of the basics of mechanics. Kinematics of rigid bodies coordinate

More information

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee Lecture - 28 Hi, this is Dr. S. P. Harsha from Mechanical and

More information

Triple Integrals in Cartesian Coordinates. Triple Integrals in Cylindrical Coordinates. Triple Integrals in Spherical Coordinates

Triple Integrals in Cartesian Coordinates. Triple Integrals in Cylindrical Coordinates. Triple Integrals in Spherical Coordinates Chapter 3 Multiple Integral 3. Double Integrals 3. Iterated Integrals 3.3 Double Integrals in Polar Coordinates 3.4 Triple Integrals Triple Integrals in Cartesian Coordinates Triple Integrals in Clindrical

More information

Answers. Investigation 3. ACE Assignment Choices. Applications. = = 210 (Note: students

Answers. Investigation 3. ACE Assignment Choices. Applications. = = 210 (Note: students Answers Investigation ACE Assignment Choices Problem. Core,,, Other Applications ; Connections, ; Etensions 7, ; unassigned choices from previous problems Problem. Core, Other Connections 7; Etensions

More information

DEFINITION OF MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA

DEFINITION OF MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA DEFINITION OF MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the moment of inertia

More information

Sections 5.1: Areas and Distances

Sections 5.1: Areas and Distances Sections.: Areas and Distances In this section we shall consider problems closely related to the problems we considered at the beginning of the semester (the tangent and velocity problems). Specifically,

More information

Ch 5 Practice Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Ch 5 Practice Exam. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Ch 5 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the value of x. The diagram is not to scale. a. 32 b. 50 c.

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 17

ENGR-1100 Introduction to Engineering Analysis. Lecture 17 ENGR-1100 Introduction to Engineering Analysis Lecture 17 CENTROID OF COMPOSITE AREAS Today s Objective : Students will: a) Understand the concept of centroid. b) Be able to determine the location of the

More information

CONFORMAL MAPPING. Some examples where this method can be used is: the electrostatic potential; heat conduction; flow of fluids.

CONFORMAL MAPPING. Some examples where this method can be used is: the electrostatic potential; heat conduction; flow of fluids. CONFORMAL MAPPING In a limited group of problems one can use a short cut to the solution of the Laplace's equation, conformal mapping. The problem has to be D (two dimensional), i.e., the boundaries, boundary

More information

Multiple Integration

Multiple Integration Contents 7 Multiple Integration 7. Introduction to Surface Integrals 7. Multiple Integrals over Non-rectangular Regions 7. Volume Integrals 4 7.4 Changing Coordinates 66 Learning outcomes In this Workbook

More information

Rectangular box of sizes (dimensions) w,l,h wlh Right cylinder of radius r and height h r 2 h

Rectangular box of sizes (dimensions) w,l,h wlh Right cylinder of radius r and height h r 2 h Volumes: Slicing Method, Method of Disks and Washers -.,.. Volumes of Some Regular Solids: Solid Volume Rectangular bo of sizes (dimensions) w,l,h wlh Right clinder of radius r and height h r h Right cone

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *2343051529* MATHEMATICS 0580/22 Paper 2 (Extended) May/June 2017 Candidates answer on the Question

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

Supplement: Statically Indeterminate Frames

Supplement: Statically Indeterminate Frames : Statically Indeterminate Frames Approximate Analysis - In this supplement, we consider another approximate method of solving statically indeterminate frames subjected to lateral loads known as the. Like

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

(Please write your Roll No. immediately) Mid Term Examination. Regular (Feb 2017)

(Please write your Roll No. immediately) Mid Term Examination. Regular (Feb 2017) (Please write your Roll No. immediately) Roll No... Mid Term Examination Regular (Feb 2017) B.Tech-II sem Sub-Engineering Mechanics Paper code- ETME-110 Time-1.5 hours Max Marks-30 Note: 1. Q.No. 1 is

More information

Chapter 1. Solving Algebraic Equations for a Variable

Chapter 1. Solving Algebraic Equations for a Variable www.ck1.org CHAPTER 1 Solving Algebraic Equations for a Variable Here you ll learn how to isolate the variable in an equation or formula. Problem: You are planning a trip to Spain in the summer. In the

More information