Consider a cross section with a general shape such as shown in Figure B.2.1 with the x axis normal to the cross section. Figure B.2.1.

Size: px
Start display at page:

Download "Consider a cross section with a general shape such as shown in Figure B.2.1 with the x axis normal to the cross section. Figure B.2.1."

Transcription

1 ppendix B rea Properties of Cross Sections B.1 Introduction The area, the centroid of area, and the area moments of inertia of the cross sections are needed in slender bar calculations for stress and deflection. To simplif the problem we place the x axis so that it coincides with the loci of centroids of all cross sections of the bar. In our examples the cross sections lie in the plane. Furthermore, for beam bending analsis in these chapters we orient the and axes so that the are principal axes of inertia of the cross section area. This simplifies the equations for stress and displacement. Just what this means is explained in the following sections. B. Centroids of Cross Sections Consider a cross section with a general shape such as shown in Figure B..1 with the x axis normal to the cross section. Figure B..1 The x axis is a centroidal axis if d = 0 d = 0 (B..1) nalsis of Structures: n Introduction Including Numerical Methods, First Edition. Joe G. Eisle and nthon M. Waas. 011 John Wile & Sons, Ltd. Published 011 b John Wile & Sons, Ltd.

2 60 ppendix B: rea Properties of Cross Sections If the cross sectional is smmetrical the centroid is easil found since it will alwas lie on the axis of smmetr. For sections with double smmetr, that is, smmetr about both the and axes, such as those sections in Figure B.., the location is obvious. (a) (b) (c) Figure B.. For sections with smmetr about just one axis we know the centroid lies on that axis but we must locate just where on that axis. For the sections in Figure B..3 we use the formulae d d ȳ = d as appropriate. = (B..) d (a) (b) (c) Figure B..3 When an area can be divided into sub areas with simple geometr so that the centroid of the sub area is easil identified the process of finding the centroid of the original area is simplified to ȳ = s s s = s s s (B..3)

3 ppendix B: rea Properties of Cross Sections 603 where s and s represent the distances from base axes to the centroids of the sub areas and s represents the areas of the sub areas. n example will help. Example B..1 Consider the cross section in to which some dimensions have be added. 0 We place the axis on the axis of smmetr where we know the centroid lies and the axis convenientl at the right edge. The cross section is divided into three rectangular areas for which their centroids are known. To find = = = (a) For slender bar analsis the axis is moved to the new location. Centroids of some common shapes are given in the last section of this appendix. B.3 rea Moments and Product of Inertia The area moments of inertia are I = d I = d (B.3.1) and the area product of inertia is I = d (B.3.)

4 604 ppendix B: rea Properties of Cross Sections We are interested primaril in values referred to centroidal axes. In man cases I = 0. This occurs when either the x or the x axes plane is a plane of smmetr or the axes are oriented so that I = 0. Then the axes are called principal axes of inertia. For sections with double smmetr the integration is often straight forward. n example will help. Example B.3.1 Consider first the rectangular cross section with double smmetr as shown in. h b Given a height h and a width b we have h I = bd = 1 b h 1 bh3 I = hd = 1 b h b 1 b3 h I = dd = 0 b h (a) Moments of inertia of tpical double and single smmetr sections are given in the last section of this appendix. For sections made up of subsections with known moments of inertia about the centroids of the sub sections there is a transfer process. It is known as the parallel axis theorem. Let the c c axes be centroid axes for an area whose moments and product of inertia are known. We wish to find the moments of inertia of this area with respect to a set of axes. Let ȳ c and c be the distances from the axes to the c c axes as shown in Figure B.3.1. I = ( c + ȳ c ) d = c d + ȳ c c d+ c d (B.3.3) Since c d = 0 d = (B.3.4)

5 ppendix B: rea Properties of Cross Sections 605 c c c Figure B.3.1 this becomes I = I c c + ȳ c (B.3.5) Likewise I = I c c + c (B.3.6) and I = I c c + ȳ c c (B.3.7) Example B.3. Find the area moments of inertia with respect to centroidal axes for the cross section in Example B..1. Units are millimeters

6 606 ppendix B: rea Properties of Cross Sections Transferring the three sections from top to bottom: I = 1 1 (0)3 + 0 (40) (60) (0)3 + 0 (40) = 6,893,333 mm 4 (a) I = ()3 + 0 (9.3) (0) (30.77) ()3 + 0 (9.3) (b) = 4,850,56 mm 4 From smmetr the product of intertia I = 0. For a section with no smmetr the process requires also finding the product of inertia. We show an example next. Example B.3.3 Consider the following section. Find the centroid and the area moments and product of inertial with respect to the centroidal axes. 0 c c c c 50 First find the centroid: c = = = 3.6 mm ȳ c = = = 59.5 mm (a)

7 ppendix B: rea Properties of Cross Sections 607 Now the moments of inertia: I = 1 1 (0)3 + 0 (30.48) (60) (9.5) (0) (49.5) = 4,879,048 mm 4 I = ()3 + 0 (17.38) (b) (0) (.6) (50) (7.6) = 3,191,190 mm 4 I = = 1,695,38 mm 4 Since in the main text we do all analsis with respect to principle axes, that is, axes for which I = 0, we must reorient the axes to appl those methods. Consider the rotated axes in Figure B.3.. θ Figure B.3. point with the coordinates and with respect to the axes have the coordinates and with respect to the axes. The transformation equations are = cos θ + sin θ = cos θ sin θ (B.3.8) From this we obtain I = ( ) d= ( cos θ + sin θ) d = I cos θ + I sin θ + I sin θ cos θ (B.3.9) = I + I I I cos θ + I sin θ

8 608 ppendix B: rea Properties of Cross Sections I I = ( ) d = ( cos θ sin θ) d = I cos θ + I sin θ I sin θ cos θ (B.3.10) = I + I + I I cos θ I sin θ = d = ( cos θ + sin θ)( cos θ sin θ) d = I sin θ cos θ I sin θ cos θ + I sin θ cos θ (B.3.11) = I I sin θ + I cos θ Thereisavalueofθ for which I x = 0. I ma be found b setting I I sin θ + I cos θ = 0 tan θ = I I I (B.3.1) It ma be noted that when I x = 0thenI is either a maximum or a minimum and I is a corresponding minimum or a maximum. These values are I max min = I + I ± ( I I ) + I (B.3.13) Example B.3.4 Find the rotation angle of the axes to obtain principal axes of inertia and the resulting values for the cross section in Example B.3.. c c c c The angle of rotation is tan θ = I 1,695,38 = I I 4,879,048 3,191,190 = θ =.56 (a)

9 ppendix B: rea Properties of Cross Sections 609 The principal moments of inertia are I max = 5,98,805 mm 4 I min =,141,433 mm 4 (b) B.4 Properties of Common Cross Sections c h = bh I = bh 3 /1 I = hb 3 /1 I = 0 b c = πr c R I = I = πr 4 /4 J = πr 4 / I = 0 c = bh/ h I = bh 3 /36 c h/3 I = hb 3 /36 I = b h /7 b b/3

SOLUTION Determine the moment of inertia for the shaded area about the x axis. I x = y 2 da = 2 y 2 (xdy) = 2 y y dy

SOLUTION Determine the moment of inertia for the shaded area about the x axis. I x = y 2 da = 2 y 2 (xdy) = 2 y y dy 5. Determine the moment of inertia for the shaded area about the ais. 4 4m 4 4 I = da = (d) 4 = 4 - d I = B (5 + (4)() + 8(4) ) (4 - ) 3-5 4 R m m I = 39. m 4 6. Determine the moment of inertia for the

More information

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b03/c2hlch...

h p://edugen.wileyplus.com/edugen/courses/crs1404/pc/b03/c2hlch... n this appendix we discuss... 1 of 4 16-Sep-12 19:35 APPENDIX C In this appendix we discuss how to calculate the moment of inertia of an area. 1 The moment of inertia of an area was first introduced in

More information

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface

2. Supports which resist forces in two directions. Fig Hinge. Rough Surface. Fig Rocker. Roller. Frictionless Surface 4. Structural Equilibrium 4.1 ntroduction n statics, it becomes convenient to ignore the small deformation and displacement. We pretend that the materials used are rigid, having the propert or infinite

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES Section Properties Centroid The centroid of an area is the point about which the area could be balanced if it was supported from that point. The word is derived from the word center, and it can be though

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns. CHAPTER OBJECTIVES Discuss the behavior of columns. Discuss the buckling of columns. Determine the axial load needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods

More information

5.1. Cross-Section and the Strength of a Bar

5.1. Cross-Section and the Strength of a Bar TRENGTH OF MTERL Meanosüsteemide komponentide õppetool 5. Properties of ections 5. ross-ection and te trengt of a Bar 5. rea Properties of Plane apes 5. entroid of a ection 5.4 rea Moments of nertia 5.5

More information

Chapter 10: Moments of Inertia

Chapter 10: Moments of Inertia Chapter 10: Moments of Inertia Chapter Objectives To develop a method for determining the moment of inertia and product of inertia for an area with respect to given x- and y-axes. To develop a method for

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are *12.4 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are very small,

More information

LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure

LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 14 Strength of a Bar in Transverse Bending 1 ntroduction s we have seen, onl normal stresses occur at cross sections of a rod in pure bending. The corresponding

More information

Chapter 9 BIAXIAL SHEARING

Chapter 9 BIAXIAL SHEARING 9. DEFNTON Chapter 9 BAXAL SHEARNG As we have seen in the previous chapter, biaial (oblique) shearing produced b the shear forces and, appears in a bar onl accompanied b biaial bending (we ma discuss about

More information

ME 101: Engineering Mechanics

ME 101: Engineering Mechanics ME 0: Engineering Mechanics Rajib Kumar Bhattacharja Department of Civil Engineering ndian nstitute of Technolog Guwahati M Block : Room No 005 : Tel: 8 www.iitg.ernet.in/rkbc Area Moments of nertia Parallel

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

Lecture 6: Distributed Forces Part 2 Second Moment of Area

Lecture 6: Distributed Forces Part 2 Second Moment of Area Lecture 6: Distributed Forces Part Second Moment of rea The second moment of area is also sometimes called the. This quantit takes the form of The phsical representation of the above integral can be described

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Exam 05: Chapters 10 and 11

Exam 05: Chapters 10 and 11 Name: Exam 05: Chapters 10 and 11 Select and solve four of the following problems to the best of your ability. You must choose two problem from each column. Please notice that it is possible to select

More information

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue)

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue) /1/01 10.6 Product of Inertia Product of Inertia: I xy = xy da When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero. Parallel axis theorem for products of inertia:

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

Chapter 5 Equilibrium of a Rigid Body Objectives

Chapter 5 Equilibrium of a Rigid Body Objectives Chapter 5 Equilibrium of a Rigid Bod Objectives Develop the equations of equilibrium for a rigid bod Concept of the free-bod diagram for a rigid bod Solve rigid-bod equilibrium problems using the equations

More information

Sample Problems for Exam II

Sample Problems for Exam II Sample Problems for Exam 1. Te saft below as lengt L, Torsional stiffness GJ and torque T is applied at point C, wic is at a distance of 0.6L from te left (point ). Use Castigliano teorem to Calculate

More information

AE3160 Experimental Fluid and Solid Mechanics

AE3160 Experimental Fluid and Solid Mechanics AE3160 Experimental Fluid and Solid Mechanics Cantilever Beam Bending Claudio Di Leo 1 Learning Objectives 1. On Structural Mechanics: a) Mechanics of Slender Beams b) Strain Transformation Theory c) Principal

More information

[4] Properties of Geometry

[4] Properties of Geometry [4] Properties of Geometr Page 1 of 6 [4] Properties of Geometr [4.1] Center of Gravit and Centroid [4.] Composite Bodies [4.3] Moments of Inertia [4.4] Composite reas and Products of Inertia [4] Properties

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

5 Distributed Forces 5.1 Introduction

5 Distributed Forces 5.1 Introduction 5 Distributed Forces 5.1 Introduction - Concentrated forces are models. These forces do not exist in the exact sense. - Every external force applied to a body is distributed over a finite contact area.

More information

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine

More information

Distributed Forces: Moments of Inertia

Distributed Forces: Moments of Inertia Distributed Forces: Moments of nertia Contents ntroduction Moments of nertia of an Area Moments of nertia of an Area b ntegration Polar Moments of nertia Radius of Gration of an Area Sample Problems Parallel

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

Samantha Ramirez, MSE

Samantha Ramirez, MSE Samantha Ramirez, MSE Centroids The centroid of an area refers to the point that defines the geometric center for the area. In cases where the area has an axis of symmetry, the centroid will lie along

More information

Chapter 8 BIAXIAL BENDING

Chapter 8 BIAXIAL BENDING Chapter 8 BAXAL BENDN 8.1 DEFNTON A cross section is subjected to biaial (oblique) bending if the normal (direct) stresses from section are reduced to two bending moments and. enerall oblique bending is

More information

MAE 323: Lecture 1. Review

MAE 323: Lecture 1. Review This review is divided into two parts. The first part is a mini-review of statics and solid mechanics. The second part is a review of matrix/vector fundamentals. The first part is given as an refresher

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

REVOLVED CIRCLE SECTIONS. Triangle revolved about its Centroid

REVOLVED CIRCLE SECTIONS. Triangle revolved about its Centroid REVOLVED CIRCLE SECTIONS Triangle revolved about its Centroid Box-in Method Circle Sector Method Integrating to solve I, Ax, and A for a revolved triangle is difficult. A quadrilateral and another triangle

More information

L2. Bending of beams: Normal stresses, PNA: , CCSM: chap 9.1-2

L2. Bending of beams: Normal stresses, PNA: , CCSM: chap 9.1-2 L2. Bending of beams: ormal stresses, P: 233-239, CCSM: chap 9.1-2 àcoordinate system üship coordinate system übeam coordinate system üstress resultats - Section forces üstress - strain tensors (recall

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO

Basic principles of steel structures. Dr. Xianzhong ZHAO Basic principles of steel structures Dr. Xianzhong ZHAO.zhao@mail.tongji.edu.cn www.sals.org.cn 1 Introduction Resistance of cross-section Compression members Outlines Overall stabilit of uniform (solid

More information

Second Moments or Moments of Inertia

Second Moments or Moments of Inertia Second Moments or Moments of Inertia The second moment of inertia of an element of area such as da in Figure 1 with respect to any axis is defined as the product of the area of the element and the square

More information

Structures. Shainal Sutaria

Structures. Shainal Sutaria Structures ST Shainal Sutaria Student Number: 1059965 Wednesday, 14 th Jan, 011 Abstract An experiment to find the characteristics of flow under a sluice gate with a hydraulic jump, also known as a standing

More information

AREAS, RADIUS OF GYRATION

AREAS, RADIUS OF GYRATION Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 9 Distributed CHAPTER VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Forces: Moments of nertia Contents ntroduction

More information

10 3. Determine the moment of inertia of the area about the x axis.

10 3. Determine the moment of inertia of the area about the x axis. 10 3. Determine the moment of inertia of the area about the ais. m m 10 4. Determine the moment of inertia of the area about the ais. m m 10 3. Determine the moment of inertia of the shaded area about

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 0 Engineering Mechanics: Statics Unit 9. Moments of nertia Definition of Moments of nertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of nertia for Composite Areas

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

Moments of Inertia. Notation:

Moments of Inertia. Notation: RCH 1 Note Set 9. S015abn Moments of nertia Notation: b d d d h c Jo O = name for area = name for a (base) width = calculus smbol for differentiation = name for a difference = name for a depth = difference

More information

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1 ENG2000 Chapter 7 Beams ENG2000: R.I. Hornsey Beam: 1 Overview In this chapter, we consider the stresses and moments present in loaded beams shear stress and bending moment diagrams We will also look at

More information

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer

STATICS. Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer 00 The McGraw-Hill Companies, nc. All rights reserved. Seventh E CHAPTER VECTOR MECHANCS FOR ENGNEERS: 9 STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Distributed Forces: Lecture Notes: J. Walt Oler

More information

Analytical study of sandwich structures using Euler Bernoulli beam equation

Analytical study of sandwich structures using Euler Bernoulli beam equation Analtical stud of sandwich structures using Euler Bernoulli beam equation Hui Xue and H. Khawaja Citation: AIP Conference Proceedings 1798, 020076 (2017); doi: 10.1063/1.4972668 View online: http://dx.doi.org/10.1063/1.4972668

More information

Generation of Biaxial Interaction Surfaces

Generation of Biaxial Interaction Surfaces COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA AUGUST 2002 CONCRETE FRAE DESIGN BS 8110-97 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

Elastic Stability Of Columns

Elastic Stability Of Columns Elastic Stability Of Columns Introduction: Structural members which carry compressive loads may be divided into two broad categories depending on their relative lengths and cross-sectional dimensions.

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

NATIONAL PROGRAM ON TECHNOLOGY ENHANCED LEARNING (NPTEL) IIT MADRAS Offshore structures under special environmental loads including fire-resistance

NATIONAL PROGRAM ON TECHNOLOGY ENHANCED LEARNING (NPTEL) IIT MADRAS Offshore structures under special environmental loads including fire-resistance Week Eight: Advanced structural analyses Tutorial Eight Part A: Objective questions (5 marks) 1. theorem is used to derive deflection of curved beams with small initial curvature (Castigliano's theorem)

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 17

ENGR-1100 Introduction to Engineering Analysis. Lecture 17 ENGR-1100 Introduction to Engineering Analysis Lecture 17 CENTROID OF COMPOSITE AREAS Today s Objective : Students will: a) Understand the concept of centroid. b) Be able to determine the location of the

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA)

BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) LETURE Third Edition BEMS: SHER ND MOMENT DGRMS (FORMUL). J. lark School of Engineering Department of ivil and Environmental Engineering 1 hapter 5.1 5. b Dr. brahim. ssakkaf SPRNG 00 ENES 0 Mechanics

More information

Vectors Primer. M.C. Simani. July 7, 2007

Vectors Primer. M.C. Simani. July 7, 2007 Vectors Primer M.. Simani Jul 7, 2007 This note gives a short introduction to the concept of vector and summarizes the basic properties of vectors. Reference textbook: Universit Phsics, Young and Freedman,

More information

CIVL Statics. Moment of Inertia - Composite Area. A math professor in an unheated room is cold and calculating. Radius of Gyration

CIVL Statics. Moment of Inertia - Composite Area. A math professor in an unheated room is cold and calculating. Radius of Gyration CVL 131 - Statics Moment of nertia Composite Areas A math professor in an unheated room is cold and calculating. Radius of Gration This actuall sounds like some sort of rule for separation on a dance floor.

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

5. Triple Integrals. 5A. Triple integrals in rectangular and cylindrical coordinates. 2 + y + z x=0. y Outer: 1

5. Triple Integrals. 5A. Triple integrals in rectangular and cylindrical coordinates. 2 + y + z x=0. y Outer: 1 5. Triple Integrals 5A. Triple integrals in rectangular and clindrical coordinates ] 5A- a) (x + + )dxdd Inner: x + x( + ) + + x ] ] Middle: + + + ( ) + Outer: + 6 x ] x b) x ddxd Inner: x x 3 4 ] ] +

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

276 Calculus and Structures

276 Calculus and Structures 76 Calculus and Structures CHAPTER THE CONJUGATE BEA ETHOD Calculus and Structures 77 Copyright Chapter THE CONJUGATE BEA ETHOD.1 INTRODUCTION To find the deflection of a beam you must solve the equation,

More information

Aircraft Structures Beams Torsion & Section Idealization

Aircraft Structures Beams Torsion & Section Idealization Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Beams Torsion & Section Idealiation Ludovic Noels omputational & Multiscale Mechanics of Materials M3 http://www.ltas-cm3.ulg.ac.be/

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

Contents. Dynamics and control of mechanical systems. Focuses on

Contents. Dynamics and control of mechanical systems. Focuses on Dnamics and control of mechanical sstems Date Da (/8) Da (3/8) Da 3 (5/8) Da 4 (7/8) Da 5 (9/8) Da 6 (/8) Content Review of the basics of mechanics. Kinematics of rigid bodies - coordinate transformation,

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

M5 Simple Beam Theory (continued)

M5 Simple Beam Theory (continued) M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.-7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity

More information

9 Kinetics of 3D rigid bodies - rotating frames

9 Kinetics of 3D rigid bodies - rotating frames 9 Kinetics of 3D rigid bodies - rotating frames 9. Consider the two gears depicted in the figure. The gear B of radius R B is fixed to the ground, while the gear A of mass m A and radius R A turns freely

More information

Axial force-moment interaction in the LARSA hysteretic beam element

Axial force-moment interaction in the LARSA hysteretic beam element Axial force-moment interaction in the LARSA hsteretic beam element This document briefl discusses the modeling of tri-axial interaction (i.e. between axial force and bending moments) in the LARSA beam

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Moment of Inertia and Centroid

Moment of Inertia and Centroid Chapter- Moment of nertia and Centroid Page- 1. Moment of nertia and Centroid Theory at a Glance (for ES, GATE, PSU).1 Centre of gravity: The centre of gravity of a body defined as the point through which

More information

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H Question 1 (Problem 2.3 of rora s Introduction to Optimum Design): Design a beer mug, shown in fig, to hold as much beer as possible. The height and radius of the mug should be not more than 20 cm. The

More information

Moments of inertia of a cross section

Moments of inertia of a cross section BUDAPEST UNVERSTY OF TECHNOLOGY AND ECONOMCS Moments of inertia of a cross section Made by: David Lehotzky Budapest, March 3, 206. Figure : The cross section under study a b h v d 0 8 4 0.5 5 Table : Parameters

More information

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions Deflection of Beams Equation of the Elastic Curve The governing second order differential equation for the elastic curve of a beam deflection is EI d d = where EI is the fleural rigidit, is the bending

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

Moments and Product of Inertia

Moments and Product of Inertia Moments and Product of nertia Contents ntroduction( 绪论 ) Moments of nertia of an Area( 平面图形的惯性矩 ) Moments of nertia of an Area b ntegration( 积分法求惯性矩 ) Polar Moments of nertia( 极惯性矩 ) Radius of Gration

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL 4. BEMS: CURVED, COMPOSITE, UNSYMMETRICL Discussions of beams in bending are usually limited to beams with at least one longitudinal plane of symmetry with the load applied in the plane of symmetry or

More information

Simulation of Geometrical Cross-Section for Practical Purposes

Simulation of Geometrical Cross-Section for Practical Purposes Simulation of Geometrical Cross-Section for Practical Purposes Bhasker R.S. 1, Prasad R. K. 2, Kumar V. 3, Prasad P. 4 123 Department of Mechanical Engineering, R.D. Engineering College, Ghaziabad, UP,

More information

ON THE DESIGN CURVES FOR BUCKLING PROBLEMS

ON THE DESIGN CURVES FOR BUCKLING PROBLEMS EUROSTEEL 008, 3-5 September 008, Gra, Austria O THE DESIG CURVES FOR BUCKLIG PROBLES Jósef Salai a, Ferenc Papp b a KÉSZ Ltd., Budapest, Hungar b Budapest Universit of technolog and Economics, Department

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

MOI (SEM. II) EXAMINATION.

MOI (SEM. II) EXAMINATION. Problems Based On Centroid And MOI (SEM. II) EXAMINATION. 2006-07 1- Find the centroid of a uniform wire bent in form of a quadrant of the arc of a circle of radius R. 2- State the parallel axis theorem.

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

Engineering Mechanics Statics

Engineering Mechanics Statics Mechanical Systems Engineering_2016 Engineering Mechanics Statics 6. Moment of a Couple Dr. Rami Zakaria Moment of a Couple We need a moment (or torque) of (12 N m) to rotate the wheel. Notice that one

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2. Question 1 A pin-jointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical

More information

BEAM DEFLECTION THE ELASTIC CURVE

BEAM DEFLECTION THE ELASTIC CURVE BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam. Supports that apply a moment

More information

Essential Mathematics 2 Introduction to the calculus

Essential Mathematics 2 Introduction to the calculus Essential Mathematics Introduction to the calculus As you will alrea know, the calculus may be broadly separated into two major parts. The first part the Differential Calculus is concerned with finding

More information