Efficient Processing of Models for Large- scale Shotgun Proteomics Data

Size: px
Start display at page:

Download "Efficient Processing of Models for Large- scale Shotgun Proteomics Data"

Transcription

1 Efficient Processing of Models for Large- scale Shotgun Proteomics Data Himanshu Grover, Ph.D. Vanathi Gopalakrishnan, Ph.D. University of Pi;sburgh C- Big 2012, Pi;sburgh, USA 14 th October, 2012

2 Outline Background on Proteins and Shotgun Proteomics ComputaJonal modeling framework: Context- sensijve PepJde IdenJficaJon (CSPI) Problem Statement Methods for efficient handling Challenges and Future Work

3 Proteomics Interac?ons PTMs Expression

4 Proteomics

5 Mass Spectrometry Analytical tool to identify unknown compounds Sample Complex IonizaJon Mass Analyzer Collabora?ve Detector 5

6 Amino Acids Amino Acids and Proteins

7 Shotgun Proteomics: Protein/PepJde IdenJficaJon Shotgun Sequencing Protein sample EnzymaJc Digest MS/MS (CID) Rel. Int Pep?de Spectrum m/z Fragmenta?on Spectrum

8 Database Searching Predominant methodology for peptide ID from MS/MS 8

9 Fact!! < 30% of spectra are confidently assigned with pepjdes Ø Noise Ø Variability Ø Inadequate scoring systems 9

10 Computa?onal BoKlenecks Ø High volume and rate of data genera?on 24* ^ 3 spectra per day from moderate sized labs Ø Large protein databases: ~90 K protein sequences for Humans Constrained searches: ~5-10 ^ 6 unique pepjdes in database ~10-20 ^ 3 pepjdes per spectrum Unconstrained searches Over billion pepjdes

11 Context- SensiJve PepJde IdenJficaJon (CSPI) Framework DemysJfied Grover et. al. (2012), OMICS (submi;ed for Ø Novel probabilisjc framework Scalable and flexible Ø Specific Goal: Model influence of pepjde physicochemical context on the observed peak heights (intensijes) in fragmentajon spectra 11

12 Input- Output Hidden Markov Models (IO- HMM)... q t- 1 q t q t+1... Hidden Layer P(q t q t- 1 ;Ө) (Transi?on Probability) y t- 1 y t y t+1 Output Layer P(y t q t ;Ө) (Emission Probability) Classical Hidden Markov Model... q t- 1 q t q t+1... Hidden Layer P(q t q t- 1,x t ;Ө) (Transi?on Probability) Input Layer x t- 1 x t x t+1 y t- 1 y t y t+1 Input- output Hidden Markov Model Output Layer P(y t q t,x t ;Ө) (Emission Probability)

13 CSPI Model Structure Input Layer x t- 1 x t x t+1.. q t- 1 q t q t+1.. Hidden Layer P (q t q t- 1, x t ; Θ) y t- 1 y t y t+1 Output Layer P (yt qt; Θ) 13

14 Input Layer: PepJde Physicochemical Context S G F L E E D E L K 100 Relative Intensity 0 Global Experimental Spectrum b 3 b 4 y 2 y 3 y 4 y 5 b5 Local y 7 b 6 b 7 b 8 y b 8 9 y m/z 14

15 Context in the context of CSPI S G F L E E D E L K x t = {x t,0, x t,1, x t,2,., x t,47 } Input Layer x t- 1 x t x t+1.. q t- 1 q t q t+1.. Hidden Layer y t- 1 y t y t+1 Output Layer

16 Matching A PepJde with Experimental Spectra b ions S G F L E E D E L K y y ions Experimental Spectrum y 7 Relative Intensity 0 b 3 b 4 y 2 y 3 y 4 y 5 b5 y 8 b b b b 9 y m/z 16

17 Normalized IntensiJes in context of CSPI Input Layer x t- 1 x t x t+1.. q t- 1 q t q t+1.. Hidden Layer y t- 1 y t y t+1 Output Layer b ions S G F L E E D E L K y ions

18 Summary t=0 t=1 t- 1 t t+1 T S G F L E E D E L K x t- 1,0 47 x t,0 47 x t+1,0 47 PSM. q t- 1 q t q t+1. y t- 1 = I b/y, t- 1 y t = I b/y, t- 1 y t+1 = I b/y, t- 1

19 ParameterizaJon: TransiJon/Emission FuncJons 1 S 1+ exp(w T k x t ) k=1 P(q t q t 1 = j, x t ;Θ qt ) = exp((w T i x t )) S 1+ exp(w T k x t ) where w i T are the Logistic Regression weight vectors k=1 Logis?c Func?on if y t ="NA" ;i = 1,2,...,s 1 if y t!="na" X t. q t- 1 q t. Emission Distr ns Y t y t q t ~ 1.0 if y t = 0 P(Θ) if y t > 0 where P = Exp(λ), Be(α,β), N(µ,σ 2 ) 19 { }

20 Parameter EsJmaJon Ø Parameters to esjmate per CSPI model (4 hidden states): Ø Over 700 (LogisJc funcjon weights, Emission distribujon parameters) Ø Maximum Likelihood Ø Generalized ExpectaJon MaximizaJon algorithm (GEM) 20

21 Inference: Log- likelihood RaJo Ø Score: Log Likelihood RaJo # CSPI _ Score = log P(Spectrum intensities PeptideSeq; Θ True ) & % ( $ P(Spectrum intensities PeptideSeq; Θ Null )' Ø Computed using Forward Procedure 21

22 ComputaJonal bo;leneck Ø Database searching Ø Extract candidate pepjdes (sub- strings) for each spectrum Ø Candidate Pep?des scoring Ø ^ 3 spectra * ~10-20 ^ 3 pep?des Ø CSPI: Ø Increases performance but Ø takes ~5-8 seconds per spectrum to evaluate candidates (under constrained searches)

23 Database Searching Ø Mass- range query Ø Amino acids (characters) have masses Ø Goal: Ø Search for sub- strings with a (roughly) specific mass Ø Naïve Approach: Ø Scan the protein database for each query

24 Indexed Database Searching Ø Berkeley DB: key- value store Ø Pre- compute Ø Key: Mass of pepjde Ø Value: LocaJon and length of pepjde Ø MulJple index files Ø Time (per query): < 1 sec

25 Challenge Ø Works well for constrained database searches: Ø Time to generate Ø Size Ø Issues with unconstrained searches Ø PotenJal solujon: Ø Parallel generajon and query Ø Simple synchronizajon primijves and muljple index files facilitates

26 Candidate PepJde Scoring Ø Embarrassingly parallel For each spectrum, searching and scoring/ ranking is independent of others Ø UJlize muljprocessing

27 Parallel ImplementaJon Spectra Protein Database (Index) Main (Parent) Process 1. Read and preprocess spectra 2. Query Protein Database FIFO Task (Input) Queue Put spectrum/candidates on shared queue 1. i th spectrum 2. Candidates Extract obj from queue Extract obj from queue Extract obj from queue Child Process 1 Score and Rank Child Process 2 Score and Rank Child Process N Score and Rank Put obj on queue Put obj on queue Put obj on queue FIFO Results (Output) Queue Scored results for i th spectrum Extract obj from Queue Output (Child) Process Write results to file

28 Parallel ImplementaJon Spectra Protein Database (Index) Main (Parent) Process 1. Read and preprocess spectra 2. Query Protein Database FIFO Task (Input) Queue Put spectrum/candidates on shared queue 1. i th spectrum 2. Candidates Extract obj from queue Extract obj from queue Extract obj from queue Child Process 1 Score and Rank Child Process 2 Score and Rank Child Process N Score and Rank Put obj on queue Put obj on queue Put obj on queue Scored results for i th spectrum Extract obj from Queue Output (Child) Process Write results to file FIFO Results (Output) Queue

29 Challenges and PotenJal SoluJons Ø Spectrum- level parallelizajon Ø Candidate- level opjmizajon can provide further gains: Non- trivial: Careful profiling of individual steps IPC overhead vs. performance gain Protein Database Size Search Constraints

30 Conclusions and Future Work Ø Complex and computajonally intensive algorithms Ø CollaboraJve efforts are required for robust analyses (evidence combinajon) Ø requires efficient processing Ø be;er parameter esjmates Ø Further efficiency improvements Ø Other applicajons: Ø Time- series Gene- Expression + Protein- expression MicroRNA expression + Gene Expression SJmulus/Response

31 Acknowledgements Ø Funding Agencies: This work was supported in part by the following grants: NIGMS Award Number K25GM071951, NIH Award Number P41RR and NLM Award Number R01LM to Dr. Vanathi Gopalakrishnan. 31

32 Thanks Ques?ons?

Hilbert Space Embeddings of Hidden Markov Models

Hilbert Space Embeddings of Hidden Markov Models Hilbert Space Embeddings of Hidden Markov Models Le Song Carnegie Mellon University Joint work with Byron Boots, Sajid Siddiqi, Geoff Gordon and Alex Smola 1 Big Picture QuesJon Graphical Models! Dependent

More information

Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics

Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics Xiao-jun Li, Ph.D. Current address: Homestead Clinical Day 4 October 19, 2006 Protein Quantification LC-MS/MS Data XLink mzxml file

More information

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables PROTEOME DISCOVERER Workflow concept Data goes through the workflow Spectra Peptides Quantitation A Node contains an operation An edge represents data flow The results are brought together in tables Protein

More information

SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS

SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS SPECTRA LIBRARY ASSISTED DE NOVO PEPTIDE SEQUENCING FOR HCD AND ETD SPECTRA PAIRS 1 Yan Yan Department of Computer Science University of Western Ontario, Canada OUTLINE Background Tandem mass spectrometry

More information

CSE182-L8. Mass Spectrometry

CSE182-L8. Mass Spectrometry CSE182-L8 Mass Spectrometry Project Notes Implement a few tools for proteomics C1:11/2/04 Answer MS questions to get started, select project partner, select a project. C2:11/15/04 (All but web-team) Plan

More information

Stephen Scott.

Stephen Scott. 1 / 21 sscott@cse.unl.edu 2 / 21 Introduction Designed to model (profile) a multiple alignment of a protein family (e.g., Fig. 5.1) Gives a probabilistic model of the proteins in the family Useful for

More information

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database Overview - MS Proteomics in One Slide Obtain protein Digest into peptides Acquire spectra in mass spectrometer MS masses of peptides MS/MS fragments of a peptide Results! Match to sequence database 2 But

More information

MS-MS Analysis Programs

MS-MS Analysis Programs MS-MS Analysis Programs Basic Process Genome - Gives AA sequences of proteins Use this to predict spectra Compare data to prediction Determine degree of correctness Make assignment Did we see the protein?

More information

Last Lecture Recap. UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 6: Regression Models with Regulariza8on

Last Lecture Recap. UVA CS / Introduc8on to Machine Learning and Data Mining. Lecture 6: Regression Models with Regulariza8on UVA CS 45 - / 65 7 Introduc8on to Machine Learning and Data Mining Lecture 6: Regression Models with Regulariza8on Yanun Qi / Jane University of Virginia Department of Computer Science Last Lecture Recap

More information

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University Protein Quantitation II: Multiple Reaction Monitoring Kelly Ruggles kelly@fenyolab.org New York University Traditional Affinity-based proteomics Use antibodies to quantify proteins Western Blot RPPA Immunohistochemistry

More information

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra Andrew Keller Outline Need to validate peptide assignments to MS/MS spectra Statistical approach to validation Running PeptideProphet

More information

Bayesian Clustering of Multi-Omics

Bayesian Clustering of Multi-Omics Bayesian Clustering of Multi-Omics for Cardiovascular Diseases Nils Strelow 22./23.01.2019 Final Presentation Trends in Bioinformatics WS18/19 Recap Intermediate presentation Precision Medicine Multi-Omics

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

profileanalysis Innovation with Integrity Quickly pinpointing and identifying potential biomarkers in Proteomics and Metabolomics research

profileanalysis Innovation with Integrity Quickly pinpointing and identifying potential biomarkers in Proteomics and Metabolomics research profileanalysis Quickly pinpointing and identifying potential biomarkers in Proteomics and Metabolomics research Innovation with Integrity Omics Research Biomarker Discovery Made Easy by ProfileAnalysis

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Syllabus Fri. 21.10. (1) 0. Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 27.10. (2) A.1 Linear Regression Fri. 3.11. (3) A.2 Linear Classification Fri. 10.11. (4) A.3 Regularization

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Quan%ta%on with XPRESS. and. ASAPRa%o

Quan%ta%on with XPRESS. and. ASAPRa%o Quan%ta%on with XPRESS and ASAPRa%o 1 Pep%de and Protein Quan%ta%on Raw Mass Spec Data Pep%de Iden%fica%on Pep%de Valida%on Quan%ta%on Protein Assignment Protein List msconvert X!Tandem SpectraST SEQUEST*

More information

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University Protein Quantitation II: Multiple Reaction Monitoring Kelly Ruggles kelly@fenyolab.org New York University Traditional Affinity-based proteomics Use antibodies to quantify proteins Western Blot Immunohistochemistry

More information

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 1 Sequence Motifs what is a sequence motif? a sequence pattern of biological significance typically

More information

MS Based Proteomics: Recent Case Studies Using Advanced Instrumentation

MS Based Proteomics: Recent Case Studies Using Advanced Instrumentation MS Based Proteomics: Recent Case Studies Using Advanced Instrumentation Chris Adams, PH.D. Stanford University Mass Spectrometry http://mass-spec.stanford.edu/ For personal use only. Please do not reuse

More information

On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering

On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering On Optimizing the Non-metric Similarity Search in Tandem Mass Spectra by Clustering Jiří Novák, David Hoksza, Jakub Lokoč, and Tomáš Skopal Siret Research Group, Faculty of Mathematics and Physics, Charles

More information

Tandem Mass Spectrometry: Generating function, alignment and assembly

Tandem Mass Spectrometry: Generating function, alignment and assembly Tandem Mass Spectrometry: Generating function, alignment and assembly With slides from Sangtae Kim and from Jones & Pevzner 2004 Determining reliability of identifications Can we use Target/Decoy to estimate

More information

STATISTICAL METHODS FOR THE ANALYSIS OF MASS SPECTROMETRY- BASED PROTEOMICS DATA. A Dissertation XUAN WANG

STATISTICAL METHODS FOR THE ANALYSIS OF MASS SPECTROMETRY- BASED PROTEOMICS DATA. A Dissertation XUAN WANG STATISTICAL METHODS FOR THE ANALYSIS OF MASS SPECTROMETRY- BASED PROTEOMICS DATA A Dissertation by XUAN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons.

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons. Supplementary Figure 1 Fragment indexing allows efficient spectra similarity comparisons. The cost and efficiency of spectra similarity calculations can be approximated by the number of fragment comparisons

More information

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule.

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule. CSE 473: Ar+ficial Intelligence Markov Models - II Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

De novo peptide sequencing methods for tandem mass. spectra

De novo peptide sequencing methods for tandem mass. spectra De novo peptide sequencing methods for tandem mass spectra A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Protein identification problem from a Bayesian pointofview

Protein identification problem from a Bayesian pointofview Statistics and Its Interface Volume 5 (2012 21 37 Protein identification problem from a Bayesian pointofview YongFugaLi,RandyJ.Arnold,PredragRadivojac and Haixu Tang We present a generic Bayesian framework

More information

Mass spectrometry in proteomics

Mass spectrometry in proteomics I519 Introduction to Bioinformatics, Fall, 2013 Mass spectrometry in proteomics Haixu Tang School of Informatics and Computing Indiana University, Bloomington Modified from: www.bioalgorithms.info Outline

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

Proteomics. November 13, 2007

Proteomics. November 13, 2007 Proteomics November 13, 2007 Acknowledgement Slides presented here have been borrowed from presentations by : Dr. Mark A. Knepper (LKEM, NHLBI, NIH) Dr. Nathan Edwards (Center for Bioinformatics and Computational

More information

HOWTO, example workflow and data files. (Version )

HOWTO, example workflow and data files. (Version ) HOWTO, example workflow and data files. (Version 20 09 2017) 1 Introduction: SugarQb is a collection of software tools (Nodes) which enable the automated identification of intact glycopeptides from HCD

More information

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra Andrew Keller Day 2 October 17, 2006 Andrew Keller Rosetta Bioinformatics, Seattle Outline Need to validate peptide assignments to MS/MS

More information

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems Protein Identification Using Tandem Mass Spectrometry Nathan Edwards Informatics Research Applied Biosystems Outline Proteomics context Tandem mass spectrometry Peptide fragmentation Peptide identification

More information

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were developed to allow the analysis of large intact (bigger than

More information

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion s s Key questions of proteomics What proteins are there? Bioinformatics 2 Lecture 2 roteomics How much is there of each of the proteins? - Absolute quantitation - Stoichiometry What (modification/splice)

More information

Towards the Prediction of Protein Abundance from Tandem Mass Spectrometry Data

Towards the Prediction of Protein Abundance from Tandem Mass Spectrometry Data Towards the Prediction of Protein Abundance from Tandem Mass Spectrometry Data Anthony J Bonner Han Liu Abstract This paper addresses a central problem of Proteomics: estimating the amounts of each of

More information

Graphical Models. Lecture 3: Local Condi6onal Probability Distribu6ons. Andrew McCallum

Graphical Models. Lecture 3: Local Condi6onal Probability Distribu6ons. Andrew McCallum Graphical Models Lecture 3: Local Condi6onal Probability Distribu6ons Andrew McCallum mccallum@cs.umass.edu Thanks to Noah Smith and Carlos Guestrin for some slide materials. 1 Condi6onal Probability Distribu6ons

More information

Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments

Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments pubs.acs.org/jpr Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments Marina Spivak, Michael S. Bereman, Michael J. MacCoss, and William Stafford

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

Today s Lecture: HMMs

Today s Lecture: HMMs Today s Lecture: HMMs Definitions Examples Probability calculations WDAG Dynamic programming algorithms: Forward Viterbi Parameter estimation Viterbi training 1 Hidden Markov Models Probability models

More information

Metabolomics in an Identity Crisis? Am I a Feature or a Compound? The world leader in serving science

Metabolomics in an Identity Crisis? Am I a Feature or a Compound? The world leader in serving science Metabolomics in an Identity Crisis? Am I a Feature or a Compound? The world leader in serving science Agenda 1 2 3 Unknown Analysis in Metabolomics Determining Features and Compounds for Data Reduction

More information

Week 5: Logistic Regression & Neural Networks

Week 5: Logistic Regression & Neural Networks Week 5: Logistic Regression & Neural Networks Instructor: Sergey Levine 1 Summary: Logistic Regression In the previous lecture, we covered logistic regression. To recap, logistic regression models and

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Advanced Data Science

Advanced Data Science Advanced Data Science Dr. Kira Radinsky Slides Adapted from Tom M. Mitchell Agenda Topics Covered: Time series data Markov Models Hidden Markov Models Dynamic Bayes Nets Additional Reading: Bishop: Chapter

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Last updated: Copyright

Last updated: Copyright Last updated: 2012-08-20 Copyright 2004-2012 plabel (v2.4) User s Manual by Bioinformatics Group, Institute of Computing Technology, Chinese Academy of Sciences Tel: 86-10-62601016 Email: zhangkun01@ict.ac.cn,

More information

Mathematical statistics

Mathematical statistics October 1 st, 2018 Lecture 11: Sufficient statistic Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation

More information

Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm,

Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm, Getting statistical significance and Bayesian confidence limits for your hidden Markov model or score-maximizing dynamic programming algorithm, with pairwise alignment of sequences as an example 1,2 1

More information

Mass Spectrometry Based De Novo Peptide Sequencing Error Correction

Mass Spectrometry Based De Novo Peptide Sequencing Error Correction Mass Spectrometry Based De Novo Peptide Sequencing Error Correction by Chenyu Yao A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 18: HMMs and Particle Filtering 4/4/2011 Pieter Abbeel --- UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

More information

GC and CELPP: Workflows and Insights

GC and CELPP: Workflows and Insights GC and CELPP: Workflows and Insights Xianjin Xu, Zhiwei Ma, Rui Duan, Xiaoqin Zou Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, & Informatics Institute

More information

Page 1. References. Hidden Markov models and multiple sequence alignment. Markov chains. Probability review. Example. Markovian sequence

Page 1. References. Hidden Markov models and multiple sequence alignment. Markov chains. Probability review. Example. Markovian sequence Page Hidden Markov models and multiple sequence alignment Russ B Altman BMI 4 CS 74 Some slides borrowed from Scott C Schmidler (BMI graduate student) References Bioinformatics Classic: Krogh et al (994)

More information

QuasiNovo: Algorithms for De Novo Peptide Sequencing

QuasiNovo: Algorithms for De Novo Peptide Sequencing University of South Carolina Scholar Commons Theses and Dissertations 2013 QuasiNovo: Algorithms for De Novo Peptide Sequencing James Paul Cleveland University of South Carolina Follow this and additional

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

CS Homework 3. October 15, 2009

CS Homework 3. October 15, 2009 CS 294 - Homework 3 October 15, 2009 If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for part 1 and Alex Simma (asimma@eecs.berkeley.edu) for part 2. Also check the class website

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry by Xi Han A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

UVA CS 4501: Machine Learning. Lecture 6 Extra: Op=miza=on for Linear Regression Model with Regulariza=ons. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 6 Extra: Op=miza=on for Linear Regression Model with Regulariza=ons. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 6 Extra: Op=miza=on for Linear Regression Model with Regulariza=ons Dr. Yanjun Qi University of Virginia Department of Computer Science EXTRA (NOT REQUIRED IN EXAMS)

More information

Alignment Algorithms. Alignment Algorithms

Alignment Algorithms. Alignment Algorithms Midterm Results Big improvement over scores from the previous two years. Since this class grade is based on the previous years curve, that means this class will get higher grades than the previous years.

More information

Sparse Proteomics Analysis (SPA)

Sparse Proteomics Analysis (SPA) Sparse Proteomics Analysis (SPA) Toward a Mathematical Theory for Feature Selection from Forward Models Martin Genzel Technische Universität Berlin Winter School on Compressed Sensing December 5, 2015

More information

The Pitfalls of Peaklist Generation Software Performance on Database Searches

The Pitfalls of Peaklist Generation Software Performance on Database Searches Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, CO, June 1-5, 2008 The Pitfalls of Peaklist Generation Software Performance on Database Searches Aenoch J. Lynn,

More information

Some Review and Hypothesis Tes4ng. Friday, March 15, 13

Some Review and Hypothesis Tes4ng. Friday, March 15, 13 Some Review and Hypothesis Tes4ng Outline Discussing the homework ques4ons from Joey and Phoebe Review of Sta4s4cal Inference Proper4es of OLS under the normality assump4on Confidence Intervals, T test,

More information

Development and Evaluation of Methods for Predicting Protein Levels from Tandem Mass Spectrometry Data. Han Liu

Development and Evaluation of Methods for Predicting Protein Levels from Tandem Mass Spectrometry Data. Han Liu Development and Evaluation of Methods for Predicting Protein Levels from Tandem Mass Spectrometry Data by Han Liu A thesis submitted in conformity with the requirements for the degree of Master of Science

More information

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics Chih-Chiang Tsou 1,2, Dmitry Avtonomov 2, Brett Larsen 3, Monika Tucholska 3, Hyungwon Choi 4 Anne-Claude Gingras

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Automatic Differentiation and Neural Networks

Automatic Differentiation and Neural Networks Statistical Machine Learning Notes 7 Automatic Differentiation and Neural Networks Instructor: Justin Domke 1 Introduction The name neural network is sometimes used to refer to many things (e.g. Hopfield

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Mining Graph/Network Data Instructor: Yizhou Sun yzsun@ccs.neu.edu November 16, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining Matrix Data Decision

More information

Basic math for biology

Basic math for biology Basic math for biology Lei Li Florida State University, Feb 6, 2002 The EM algorithm: setup Parametric models: {P θ }. Data: full data (Y, X); partial data Y. Missing data: X. Likelihood and maximum likelihood

More information

Data Mining in Bioinformatics HMM

Data Mining in Bioinformatics HMM Data Mining in Bioinformatics HMM Microarray Problem: Major Objective n Major Objective: Discover a comprehensive theory of life s organization at the molecular level 2 1 Data Mining in Bioinformatics

More information

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra Xiaowen Liu Department of BioHealth Informatics, Department of Computer and Information Sciences, Indiana University-Purdue

More information

Was T. rex Just a Big Chicken? Computational Proteomics

Was T. rex Just a Big Chicken? Computational Proteomics Was T. rex Just a Big Chicken? Computational Proteomics Phillip Compeau and Pavel Pevzner adjusted by Jovana Kovačević Bioinformatics Algorithms: an Active Learning Approach 215 by Compeau and Pevzner.

More information

MaSS-Simulator: A highly configurable MS/MS simulator for generating test datasets for big data algorithms.

MaSS-Simulator: A highly configurable MS/MS simulator for generating test datasets for big data algorithms. MaSS-Simulator: A highly configurable MS/MS simulator for generating test datasets for big data algorithms. Muaaz Gul Awan 1 and Fahad Saeed 1 1 Department of Computer Science, Western Michigan University,

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

GWAS IV: Bayesian linear (variance component) models

GWAS IV: Bayesian linear (variance component) models GWAS IV: Bayesian linear (variance component) models Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS IV: Bayesian

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

TUTORIAL EXERCISES WITH ANSWERS

TUTORIAL EXERCISES WITH ANSWERS TUTORIAL EXERCISES WITH ANSWERS Tutorial 1 Settings 1. What is the exact monoisotopic mass difference for peptides carrying a 13 C (and NO additional 15 N) labelled C-terminal lysine residue? a. 6.020129

More information

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Substitution score matrices, PAM, BLOSUM Needleman-Wunsch algorithm (Global) Smith-Waterman algorithm (Local) BLAST (local, heuristic) E-value

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2011 1 HMM Lecture Notes Dannie Durand and Rose Hoberman October 11th 1 Hidden Markov Models In the last few lectures, we have focussed on three problems

More information

Peter A. DiMaggio, Jr., Nicolas L. Young, Richard C. Baliban, Benjamin A. Garcia, and Christodoulos A. Floudas. Research

Peter A. DiMaggio, Jr., Nicolas L. Young, Richard C. Baliban, Benjamin A. Garcia, and Christodoulos A. Floudas. Research Research A Mixed Integer Linear Optimization Framework for the Identification and Quantification of Targeted Post-translational Modifications of Highly Modified Proteins Using Multiplexed Electron Transfer

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Computational Methods for Mass Spectrometry Proteomics

Computational Methods for Mass Spectrometry Proteomics Computational Methods for Mass Spectrometry Proteomics Eidhammer, Ingvar ISBN-13: 9780470512975 Table of Contents Preface. Acknowledgements. 1 Protein, Proteome, and Proteomics. 1.1 Primary goals for studying

More information

Comprehensive support for quantitation

Comprehensive support for quantitation Comprehensive support for quantitation One of the major new features in the current release of Mascot is support for quantitation. This is still work in progress. Our goal is to support all of the popular

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

CRF for human beings

CRF for human beings CRF for human beings Arne Skjærholt LNS seminar CRF for human beings LNS seminar 1 / 29 Let G = (V, E) be a graph such that Y = (Y v ) v V, so that Y is indexed by the vertices of G. Then (X, Y) is a conditional

More information

CSE 473: Ar+ficial Intelligence

CSE 473: Ar+ficial Intelligence CSE 473: Ar+ficial Intelligence Hidden Markov Models Luke Ze@lemoyer - University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Protein Post-translational Modifications Mapping with MS/MS based Frequent Interval Pattern Mining

Protein Post-translational Modifications Mapping with MS/MS based Frequent Interval Pattern Mining Protein Post-translational Modifications Mapping with MS/MS based Frequent Interval Pattern Mining Han Liu Department of Computer Science University of Illinois at Urbana-Champaign Email: hanliu@ncsa.uiuc.edu

More information

Active learning in sequence labeling

Active learning in sequence labeling Active learning in sequence labeling Tomáš Šabata 11. 5. 2017 Czech Technical University in Prague Faculty of Information technology Department of Theoretical Computer Science Table of contents 1. Introduction

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 BST 226 Statistical Methods for Bioinformatics David M. Rocke January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 Mass Spectrometry Mass spectrometry (mass spec, MS) comprises a set of instrumental

More information

CS229 Project: Musical Alignment Discovery

CS229 Project: Musical Alignment Discovery S A A V S N N R R S CS229 Project: Musical Alignment iscovery Woodley Packard ecember 16, 2005 Introduction Logical representations of musical data are widely available in varying forms (for instance,

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions:

CSE 473: Ar+ficial Intelligence. Example. Par+cle Filters for HMMs. An HMM is defined by: Ini+al distribu+on: Transi+ons: Emissions: CSE 473: Ar+ficial Intelligence Par+cle Filters for HMMs Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All

More information

Evolu&on of Cellular Interac&on Networks. Pedro Beltrao Krogan and Lim UCSF

Evolu&on of Cellular Interac&on Networks. Pedro Beltrao Krogan and Lim UCSF Evolu&on of Cellular Interac&on Networks Pedro Beltrao Krogan and Lim Labs @ UCSF Point muta&ons Recombina&on Duplica&ons Mutants Mutants Point muta&ons Recombina&on Duplica&ons Changes in protein- protein,

More information

Introduction to pepxmltab

Introduction to pepxmltab Introduction to pepxmltab Xiaojing Wang October 30, 2018 Contents 1 Introduction 1 2 Convert pepxml to a tabular format 1 3 PSMs Filtering 4 4 Session Information 5 1 Introduction Mass spectrometry (MS)-based

More information