Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database

Size: px
Start display at page:

Download "Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database"

Transcription

1 Overview - MS Proteomics in One Slide Obtain protein Digest into peptides Acquire spectra in mass spectrometer MS masses of peptides MS/MS fragments of a peptide Results! Match to sequence database 2

2 But it s more complex than that. Most things are more difficult than for genomics / transcriptomics. No amplification we only ever lose signal Can t sequence peptides as sensitively as DNA/RNA More complications peptides can be modified in many, many ways Mapping spectra -> peptides > proteins is not as easy as reads to transcripts Implications for quantification 3

3 Data Analysis Challenges & Solutions Let s look at data analysis, using an example experiment. Control Cells Treated Cells We have a cancer cell line. We treated it with secret compound Z. We want to know what effect Z has on the proteome of the cells. What proteins are in the samples? Which proteins significantly change in amount between the samples? This will be a discovery, shotgun proteomics experiment.

4 Peptide LC-MS Optional separation 5

5 An LC MS System Oxford TDI Proteomics Core 6

6 7

7 8 MSMS Fragmentation

8 A Real Spectrum Peptide from Keratin a common contaminant! 9

9 Great, what do we get out of the machine? 15 RAW data files in vendor format (5 x triplicate runs) Approx 30GB of raw data 500,000 1,000,000 spectra

10 Formats, formats, formats Vendor Raw Data Formats Vendor Software Academic Converters Bespoke Scripts Thermo.RAW Fragment Spectra Peak Lists PKL Agilent.d DTA Waters.RAW AB Sciex.wiff Generic Flexible Formats mzml Bruker.yep /.baf mzxml MGF MS2 mzdata

11 Converters and BioHPC BioHPC cannot install license restricted mass-spec vendor software, so we need to use open formats. To run protein ID analyses on BioHPC we recommend obtaining MGF format data Ask your proteomics core, or use ProteoWizard. 12

12 Peptide Identification Identify peptides by matching experimental spectra to theoretical ones from a protein sequence database. Input Spectrum Database Search Engine HQGVMVGMGQK Sequence Database e.g. UniProtKB Score: 46 A Peptide to Spectrum Match (PSM)

13 SearchGUI How to run searches easily?? Many tools, all with own command line and parameter formats. Use CompOmics Search GUI Installed on BioHPC Installed search engines: X! Tandem MS-GF+ OMSSA Comet 14

14 PSM Scoring Making scores more meaningful Mascot Score = 46 Xcorr = 2.43 Every search engine uses a different scoring algorithm. Rules for calling a good ID have evolved, but may not be based on good evidence. Very hard to compare or combine results. HyperScore = Can we transform them into something more useful?

15 PSM Re-Scoring Take score(s) from the search engine Map to a standard scale Fit distributions for true and false IDs Obtain probability for score x. Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical chemistry, 74(20),

16 Target-Decoy Method Are our probabilities really accurate??? Real Sequences TARGETS Fake Sequences DECOYS A correct match is always to a real sequence A incorrect random match is equally likely to a target or decoy sequence. Estimate the number of incorrect target matches by counting the decoy matches. An empirical estimate of the False Discovery Rate (FDR). Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature methods, 4(3),

17 Filtering PSMs A large experiment produces > 100,000 PSMs. No way to manually inspect each one! We usually report PSMs filtered to a specific False Discovery Rate. 1% FDR is most common. Matches with post-translational modifications require special treatment.

18 PeptideShaker How to do all combination and filtering easily? Use CompOmics PeptideShaker Installed on BioHPC 19

19 Protein Inference I We don t identify proteins we only identify peptides! Peptides could come from one or more proteins how do we resolve this? Peptides A Proteins 1 Present: Peptide A is uniquely assigned B C D E ??? All peptides are shared Not Present Present

20 Protein Inference II (Very) Naïve rules e.g. If protein is identified with 2 unique peptides it is present Parsimony The smallest list of proteins that can explain the peptides identified is the most likely. Minimal set cover / minimal partial set cover etc. Bayesian Models Consider probabilities that proteins produced peptides and spectra. Prior information probability peptide x can be observed by MS etc. Correlation with other sources e.g. did RNA-Seq on the same sample find mrna for the protein?

21 Protein Scoring - ProteinProphet Start with a list of peptides and their identification probabilities. Map peptides to all possible proteins that contain them. Group proteins that can t be distinguished - no unique peptides. Adjust peptide probabilities based on number of siblings. Assign weights for shared peptides to each protein containing them. Compute protein probability assuming peptide IDs are independent events. N ProteinProb i = 1 (1 Weight i,j PeptideProb j ) j=1 Protein Probability = Probability at least one of the peptide IDs was correct = 1 Probability all of the IDs were wrong Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Analytical chemistry, 75(17),

22 Quantification Spectral Counts Now we have protein IDs we could do quantification by counting the number of PSMs assigned to each protein. PSMs produced by a protein are protein proportional to abundance BUT Longer proteins generate more peptides = more PSMs Some proteins are just difficult = fewer PSMs than expected Can compare spectral counts of same protein, or normalize by length, Mw, expected number of peptides etc. Not good for less-abundant proteins. Low spectral counts = poor comparisons 1 v 2 not as accurate as 10 v 20

23 Astrocyte CompOmics Protein ID Workflow BioHPC provides a simple workflow to: Identify peptides with 3 search engines Combine the results Perform target-decoy validation Export reports Download project for inspection in PeptideShaker GUI Uses CompOmics tools, runs on BioHPC Nucleus cluster See 24

24 The Example Experiment We want to do an exhaustive and accurate comparison, so we will use SILAC quantification and fractionate our samples at the peptide level. Normal Growth Medium Control Cells Lysis 5 MS Runs Mix Digest Fractionate Treated Cells Lysis Heavy Growth Medium REPEAT IN TRIPLICATE

25 Quantification SILAC I Normal Growth Medium Control Cells Treated Cells Heavy Growth Medium We always see each peptide twice Heavy and light forms Protein ratio = peptide Heavy to Light ratio So, let s find ratios for all peptides in our MS data..

26 Heavy m/z Quantification SILAC II Time Find SILAC pair signatures in the MS run Many scans through time see the same SILAC pair as the peptide elutes Extract intensity of light and heavy at each scan through time Peptide Ratio = Slope OR Peptide Ratio = Ratio of area under curves Light

27 SILAC Pair Finding From: Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature biotechnology, 26(12),

28 SILAC Protein Level In SILAC each peptide gives an ratio estimate for the protein(s) it originates from. Ratios from multiple peptides can be combined into a protein ratio in various ways. Simple mean / median of peptide ratios Weighted mean / median more abundant peptides contribute more Find & discard outliers Plot H vs L peptide areas and perform linear regression Multiple peptide observations allow estimate of protein ratio error via variability between peptide ratios.

29 MaxQuant Installed in BioHPC windcv session (Windows Only) Uses vendor specific input files (Thermo RAW) Identification & Quantitation in one package Good for SILAC experiments, not recommended for non-quantitative work 30

30 Significance Analysis I Once we have the protein quantitation we can look for meaningful differences between samples. At this point proteomics data is much like other datasets. You can apply techniques from e.g. microarray analysis to proteomics data. Proteomics has a poor reputation for statistical rigor: e.g. many people consider that in a 1:1 mixture log 2 ratios are normally distributed. Things beyond 2 s.d. are interesting changes: log 2 Protein Ratio No! The variance of proteomics measurements is highly dependent on intensity

31 Log Intensity Significance Analysis II To make well-grounded decisions we must model the variance of the measurements, which depends on intensity: 30 A A & B have the same ratios between samples A changes significantly B does not change significantly B Can use microarray focused packages, such as LIMMA or plgem for R Log Ratio

32 Introductory Web Resources Proteome Software Wiki CompOmics Tutorials Steen & Steen Harvard

33 What do you want to do on BioHPC? We have installed various software. Is there anything else you need? What analyses do you want to do on BioHPC? File Conversion Proteowizard / msconvert (windcv) Peptide Identification Search Engines X!Tandem, OMSSA, MSGF+, Comet, SearchGUI Postprocessing Tools Peptide Shaker, Trans-Proteomics Pipeline Quantitative Proteomics MaxQuant (windcv) Downstream Statistics PeptideShaker, Perseus (windcv), R, Python 34

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables PROTEOME DISCOVERER Workflow concept Data goes through the workflow Spectra Peptides Quantitation A Node contains an operation An edge represents data flow The results are brought together in tables Protein

More information

HOWTO, example workflow and data files. (Version )

HOWTO, example workflow and data files. (Version ) HOWTO, example workflow and data files. (Version 20 09 2017) 1 Introduction: SugarQb is a collection of software tools (Nodes) which enable the automated identification of intact glycopeptides from HCD

More information

Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously Proteomics Sample prep 144 Lecture 5 Quantitation techniques Search Algorithms Proteomics

More information

Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics

Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics Xiao-jun Li, Ph.D. Current address: Homestead Clinical Day 4 October 19, 2006 Protein Quantification LC-MS/MS Data XLink mzxml file

More information

SeqAn and OpenMS Integration Workshop. Temesgen Dadi, Julianus Pfeuffer, Alexander Fillbrunn The Center for Integrative Bioinformatics (CIBI)

SeqAn and OpenMS Integration Workshop. Temesgen Dadi, Julianus Pfeuffer, Alexander Fillbrunn The Center for Integrative Bioinformatics (CIBI) SeqAn and OpenMS Integration Workshop Temesgen Dadi, Julianus Pfeuffer, Alexander Fillbrunn The Center for Integrative Bioinformatics (CIBI) Mass-spectrometry data analysis in KNIME Julianus Pfeuffer,

More information

X!TandemPipeline (Myosine Anabolisée) validating, filtering and grouping MSMS identifications

X!TandemPipeline (Myosine Anabolisée) validating, filtering and grouping MSMS identifications X!TandemPipeline 3.3.3 (Myosine Anabolisée) validating, filtering and grouping MSMS identifications Olivier Langella and Benoit Valot langella@moulon.inra.fr; valot@moulon.inra.fr PAPPSO - http://pappso.inra.fr/

More information

A Description of the CPTAC Common Data Analysis Pipeline (CDAP)

A Description of the CPTAC Common Data Analysis Pipeline (CDAP) A Description of the CPTAC Common Data Analysis Pipeline (CDAP) v. 01/14/2014 Summary The purpose of this document is to describe the software programs and output files of the Common Data Analysis Pipeline

More information

Comprehensive support for quantitation

Comprehensive support for quantitation Comprehensive support for quantitation One of the major new features in the current release of Mascot is support for quantitation. This is still work in progress. Our goal is to support all of the popular

More information

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra Andrew Keller Outline Need to validate peptide assignments to MS/MS spectra Statistical approach to validation Running PeptideProphet

More information

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra Andrew Keller Day 2 October 17, 2006 Andrew Keller Rosetta Bioinformatics, Seattle Outline Need to validate peptide assignments to MS/MS

More information

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion

Key questions of proteomics. Bioinformatics 2. Proteomics. Foundation of proteomics. What proteins are there? Protein digestion s s Key questions of proteomics What proteins are there? Bioinformatics 2 Lecture 2 roteomics How much is there of each of the proteins? - Absolute quantitation - Stoichiometry What (modification/splice)

More information

Last updated: Copyright

Last updated: Copyright Last updated: 2012-08-20 Copyright 2004-2012 plabel (v2.4) User s Manual by Bioinformatics Group, Institute of Computing Technology, Chinese Academy of Sciences Tel: 86-10-62601016 Email: zhangkun01@ict.ac.cn,

More information

iprophet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates

iprophet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates MCP Papers in Press. Published on August 29, 2011 as Manuscript M111.007690 This is the Pre-Published Version iprophet: Multi-level integrative analysis of shotgun proteomic data improves peptide and protein

More information

Spectronaut Pulsar. User Manual

Spectronaut Pulsar. User Manual Spectronaut Pulsar User Manual 1 General Information... 6 1.1 Computer System Requirements... 6 1.2 Scope of Spectronaut Software... 6 1.3 Spectronaut Pulsar... 6 1.4 Spectronaut Release Features... 7

More information

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University Protein Quantitation II: Multiple Reaction Monitoring Kelly Ruggles kelly@fenyolab.org New York University Traditional Affinity-based proteomics Use antibodies to quantify proteins Western Blot RPPA Immunohistochemistry

More information

MS-MS Analysis Programs

MS-MS Analysis Programs MS-MS Analysis Programs Basic Process Genome - Gives AA sequences of proteins Use this to predict spectra Compare data to prediction Determine degree of correctness Make assignment Did we see the protein?

More information

Proteome-wide label-free quantification with MaxQuant. Jürgen Cox Max Planck Institute of Biochemistry July 2011

Proteome-wide label-free quantification with MaxQuant. Jürgen Cox Max Planck Institute of Biochemistry July 2011 Proteome-wide label-free quantification with MaxQuant Jürgen Cox Max Planck Institute of Biochemistry July 2011 MaxQuant MaxQuant Feature detection Data acquisition Initial Andromeda search Statistics

More information

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University Protein Quantitation II: Multiple Reaction Monitoring Kelly Ruggles kelly@fenyolab.org New York University Traditional Affinity-based proteomics Use antibodies to quantify proteins Western Blot Immunohistochemistry

More information

Quan%ta%on with XPRESS. and. ASAPRa%o

Quan%ta%on with XPRESS. and. ASAPRa%o Quan%ta%on with XPRESS and ASAPRa%o 1 Pep%de and Protein Quan%ta%on Raw Mass Spec Data Pep%de Iden%fica%on Pep%de Valida%on Quan%ta%on Protein Assignment Protein List msconvert X!Tandem SpectraST SEQUEST*

More information

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 *

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 * Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 * 1 Department of Chemistry, Pomona College, Claremont, California

More information

Towards the Prediction of Protein Abundance from Tandem Mass Spectrometry Data

Towards the Prediction of Protein Abundance from Tandem Mass Spectrometry Data Towards the Prediction of Protein Abundance from Tandem Mass Spectrometry Data Anthony J Bonner Han Liu Abstract This paper addresses a central problem of Proteomics: estimating the amounts of each of

More information

Targeted Proteomics Environment

Targeted Proteomics Environment Targeted Proteomics Environment Quantitative Proteomics with Bruker Q-TOF Instruments and Skyline Brendan MacLean Quantitative Proteomics Spectrum-based Spectral counting Isobaric tags Chromatography-based

More information

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics

DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics Chih-Chiang Tsou 1,2, Dmitry Avtonomov 2, Brett Larsen 3, Monika Tucholska 3, Hyungwon Choi 4 Anne-Claude Gingras

More information

The Pitfalls of Peaklist Generation Software Performance on Database Searches

The Pitfalls of Peaklist Generation Software Performance on Database Searches Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, CO, June 1-5, 2008 The Pitfalls of Peaklist Generation Software Performance on Database Searches Aenoch J. Lynn,

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons.

Nature Methods: doi: /nmeth Supplementary Figure 1. Fragment indexing allows efficient spectra similarity comparisons. Supplementary Figure 1 Fragment indexing allows efficient spectra similarity comparisons. The cost and efficiency of spectra similarity calculations can be approximated by the number of fragment comparisons

More information

Mass spectrometry in proteomics

Mass spectrometry in proteomics I519 Introduction to Bioinformatics, Fall, 2013 Mass spectrometry in proteomics Haixu Tang School of Informatics and Computing Indiana University, Bloomington Modified from: www.bioalgorithms.info Outline

More information

PRIDE Cluster: building the consensus of proteomics data

PRIDE Cluster: building the consensus of proteomics data Supplementary Materials PRIDE Cluster: building the consensus of proteomics data Johannes Griss, Joseph Michael Foster, Henning Hermjakob and Juan Antonio Vizcaíno EMBL-European Bioinformatics Institute,

More information

Tutorial 2: Analysis of DIA data in Skyline

Tutorial 2: Analysis of DIA data in Skyline Tutorial 2: Analysis of DIA data in Skyline In this tutorial we will learn how to use Skyline to perform targeted post-acquisition analysis for peptide and inferred protein detection and quantitation using

More information

MaSS-Simulator: A highly configurable MS/MS simulator for generating test datasets for big data algorithms.

MaSS-Simulator: A highly configurable MS/MS simulator for generating test datasets for big data algorithms. MaSS-Simulator: A highly configurable MS/MS simulator for generating test datasets for big data algorithms. Muaaz Gul Awan 1 and Fahad Saeed 1 1 Department of Computer Science, Western Michigan University,

More information

Computational Methods for Mass Spectrometry Proteomics

Computational Methods for Mass Spectrometry Proteomics Computational Methods for Mass Spectrometry Proteomics Eidhammer, Ingvar ISBN-13: 9780470512975 Table of Contents Preface. Acknowledgements. 1 Protein, Proteome, and Proteomics. 1.1 Primary goals for studying

More information

In shotgun proteomics, a complex protein mixture derived from a biological sample is directly analyzed. Research Article

In shotgun proteomics, a complex protein mixture derived from a biological sample is directly analyzed. Research Article JOURNAL OF COMPUTATIONAL BIOLOGY Volume 16, Number 8, 2009 # Mary Ann Liebert, Inc. Pp. 1 11 DOI: 10.1089/cmb.2009.0018 Research Article A Bayesian Approach to Protein Inference Problem in Shotgun Proteomics

More information

Spectrum-to-Spectrum Searching Using a. Proteome-wide Spectral Library

Spectrum-to-Spectrum Searching Using a. Proteome-wide Spectral Library MCP Papers in Press. Published on April 30, 2011 as Manuscript M111.007666 Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library Chia-Yu Yen, Stephane Houel, Natalie G. Ahn, and William

More information

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry by Xi Han A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree

More information

STATISTICAL METHODS FOR THE ANALYSIS OF MASS SPECTROMETRY- BASED PROTEOMICS DATA. A Dissertation XUAN WANG

STATISTICAL METHODS FOR THE ANALYSIS OF MASS SPECTROMETRY- BASED PROTEOMICS DATA. A Dissertation XUAN WANG STATISTICAL METHODS FOR THE ANALYSIS OF MASS SPECTROMETRY- BASED PROTEOMICS DATA A Dissertation by XUAN WANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of

More information

Bayesian Clustering of Multi-Omics

Bayesian Clustering of Multi-Omics Bayesian Clustering of Multi-Omics for Cardiovascular Diseases Nils Strelow 22./23.01.2019 Final Presentation Trends in Bioinformatics WS18/19 Recap Intermediate presentation Precision Medicine Multi-Omics

More information

Proteomics: the first decade and beyond. (2003) Patterson and Aebersold Nat Genet 33 Suppl: from

Proteomics: the first decade and beyond. (2003) Patterson and Aebersold Nat Genet 33 Suppl: from Advances in mass spectrometry and the generation of large quantities of nucleotide sequence information, combined with computational algorithms that could correlate the two, led to the emergence of proteomics

More information

TUTORIAL EXERCISES WITH ANSWERS

TUTORIAL EXERCISES WITH ANSWERS TUTORIAL EXERCISES WITH ANSWERS Tutorial 1 Settings 1. What is the exact monoisotopic mass difference for peptides carrying a 13 C (and NO additional 15 N) labelled C-terminal lysine residue? a. 6.020129

More information

Tutorial 1: Setting up your Skyline document

Tutorial 1: Setting up your Skyline document Tutorial 1: Setting up your Skyline document Caution! For using Skyline the number formats of your computer have to be set to English (United States). Open the Control Panel Clock, Language, and Region

More information

Site-specific Identification of Lysine Acetylation Stoichiometries in Mammalian Cells

Site-specific Identification of Lysine Acetylation Stoichiometries in Mammalian Cells Supplementary Information Site-specific Identification of Lysine Acetylation Stoichiometries in Mammalian Cells Tong Zhou 1, 2, Ying-hua Chung 1, 2, Jianji Chen 1, Yue Chen 1 1. Department of Biochemistry,

More information

Mass spectrometry-based proteomics has become

Mass spectrometry-based proteomics has become FOCUS: THE ORBITRAP Computational Principles of Determining and Improving Mass Precision and Accuracy for Proteome Measurements in an Orbitrap Jürgen Cox and Matthias Mann Proteomics and Signal Transduction,

More information

profileanalysis Innovation with Integrity Quickly pinpointing and identifying potential biomarkers in Proteomics and Metabolomics research

profileanalysis Innovation with Integrity Quickly pinpointing and identifying potential biomarkers in Proteomics and Metabolomics research profileanalysis Quickly pinpointing and identifying potential biomarkers in Proteomics and Metabolomics research Innovation with Integrity Omics Research Biomarker Discovery Made Easy by ProfileAnalysis

More information

MassHunter Software Overview

MassHunter Software Overview MassHunter Software Overview 1 Qualitative Analysis Workflows Workflows in Qualitative Analysis allow the user to only see and work with the areas and dialog boxes they need for their specific tasks A

More information

Methods for proteome analysis of obesity (Adipose tissue)

Methods for proteome analysis of obesity (Adipose tissue) Methods for proteome analysis of obesity (Adipose tissue) I. Sample preparation and liquid chromatography-tandem mass spectrometric analysis Instruments, softwares, and materials AB SCIEX Triple TOF 5600

More information

Yifei Bao. Beatrix. Manor Askenazi

Yifei Bao. Beatrix. Manor Askenazi Detection and Correction of Interference in MS1 Quantitation of Peptides Using their Isotope Distributions Yifei Bao Department of Computer Science Stevens Institute of Technology Beatrix Ueberheide Department

More information

Statistical analysis of isobaric-labeled mass spectrometry data

Statistical analysis of isobaric-labeled mass spectrometry data Statistical analysis of isobaric-labeled mass spectrometry data Farhad Shakeri July 3, 2018 Core Unit for Bioinformatics Analyses Institute for Genomic Statistics and Bioinformatics University Hospital

More information

Transferred Subgroup False Discovery Rate for Rare Post-translational Modifications Detected by Mass Spectrometry* S

Transferred Subgroup False Discovery Rate for Rare Post-translational Modifications Detected by Mass Spectrometry* S Transferred Subgroup False Discovery Rate for Rare Post-translational Modifications Detected by Mass Spectrometry* S Yan Fu and Xiaohong Qian Technological Innovation and Resources 2014 by The American

More information

Biological Mass Spectrometry

Biological Mass Spectrometry Biochemistry 412 Biological Mass Spectrometry February 13 th, 2007 Proteomics The study of the complete complement of proteins found in an organism Degrees of Freedom for Protein Variability Covalent Modifications

More information

Correction of Errors in Tandem Mass Spectrum Extraction Enhances Phosphopeptide Identification

Correction of Errors in Tandem Mass Spectrum Extraction Enhances Phosphopeptide Identification pubs.acs.org/jpr Correction of Errors in Tandem Mass Spectrum Extraction Enhances Phosphopeptide Identification Piliang Hao,*,,, Yan Ren,, James P. Tam, and Siu Kwan Sze*,, School of Biological Sciences

More information

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry Jon Hao, Rong Ye, and Mason Tao Poochon Scientific, Frederick, Maryland 21701 Abstract Background:

More information

Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis

Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis Agilent MassHunter Profinder: Solving the Challenge of Isotopologue Extraction for Qualitative Flux Analysis Technical Overview Introduction Metabolomics studies measure the relative abundance of metabolites

More information

Tutorial 1: Library Generation from DDA data

Tutorial 1: Library Generation from DDA data Tutorial 1: Library Generation from DDA data 1. Introduction Before a targeted, peptide-centric DIA analysis can be performed, a spectral library containing peptide-query parameters needs to be generated.

More information

Database search of tandem mass spectra is a central component

Database search of tandem mass spectra is a central component B American Society for Mass Spectrometry, 2015 J. Am. Soc. Mass Spectrom. (2015) 26:1077Y1084 DOI: 10.1007/s13361-015-1120-3 RESEARCH ARTICLE Crescendo: A Protein Sequence Database Search Engine for Tandem

More information

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 BST 226 Statistical Methods for Bioinformatics David M. Rocke January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 Mass Spectrometry Mass spectrometry (mass spec, MS) comprises a set of instrumental

More information

High-Field Orbitrap Creating new possibilities

High-Field Orbitrap Creating new possibilities Thermo Scientific Orbitrap Elite Hybrid Mass Spectrometer High-Field Orbitrap Creating new possibilities Ultrahigh resolution Faster scanning Higher sensitivity Complementary fragmentation The highest

More information

SRM assay generation and data analysis in Skyline

SRM assay generation and data analysis in Skyline in Skyline Preparation 1. Download the example data from www.srmcourse.ch/eupa.html (3 raw files, 1 csv file, 1 sptxt file). 2. The number formats of your computer have to be set to English (United States).

More information

Quality Assessment of Tandem Mass Spectra Based on Cumulative Intensity Normalization

Quality Assessment of Tandem Mass Spectra Based on Cumulative Intensity Normalization Quality Assessment of Tandem Mass Spectra Based on Cumulative Intensity Normalization Seungjin Na and Eunok Paek* Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea

More information

Tandem Mass Spectrometry: Generating function, alignment and assembly

Tandem Mass Spectrometry: Generating function, alignment and assembly Tandem Mass Spectrometry: Generating function, alignment and assembly With slides from Sangtae Kim and from Jones & Pevzner 2004 Determining reliability of identifications Can we use Target/Decoy to estimate

More information

DeMix Workflow for Efficient Identification of Co-fragmented. Peptides in High Resolution Data-dependent Tandem Mass

DeMix Workflow for Efficient Identification of Co-fragmented. Peptides in High Resolution Data-dependent Tandem Mass MCP Papers in Press. Published on August 6, 2014 as Manuscript O114.038877 DeMix Workflow for Efficient Identification of Co-fragmented Peptides in High Resolution Data-dependent Tandem Mass Spectrometry

More information

MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines

MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines Article Subscriber access provided by University of Texas Libraries MSblender: a probabilistic approach for integrating peptide identifications from multiple database search engines Taejoon Kwon, Hyungwon

More information

Performing Peptide Bioanalysis Using High Resolution Mass Spectrometry with Target Enhancement MRM Acquisition

Performing Peptide Bioanalysis Using High Resolution Mass Spectrometry with Target Enhancement MRM Acquisition Performing Peptide Bioanalysis Using High Resolution Mass Spectrometry with Target Enhancement MRM Acquisition Yun Wang Alelyunas, Mark D. Wrona, and Nick Tomczyk Waters Corporation, Milford, MA, USA GOAL

More information

MSc Chemistry Analytical Sciences. Advances in Data Dependent and Data Independent Acquisition for data analysis in proteomic research

MSc Chemistry Analytical Sciences. Advances in Data Dependent and Data Independent Acquisition for data analysis in proteomic research MSc Chemistry Analytical Sciences Literature Thesis Advances in Data Dependent and Data Independent Acquisition for data analysis in proteomic research by Florian L. R. Lucas 11198877 September 2016 12

More information

MS-based proteomics to investigate proteins and their modifications

MS-based proteomics to investigate proteins and their modifications MS-based proteomics to investigate proteins and their modifications Francis Impens VIB Proteomics Core October th 217 Overview Mass spectrometry-based proteomics: general workflow Identification of protein

More information

Efficient Marginalization to Compute Protein Posterior Probabilities from Shotgun Mass Spectrometry Data

Efficient Marginalization to Compute Protein Posterior Probabilities from Shotgun Mass Spectrometry Data Efficient Marginalization to Compute Protein Posterior Probabilities from Shotgun Mass Spectrometry Data Oliver Serang Department of Genome Sciences, University of Washington, Seattle, Washington Michael

More information

All Ions MS/MS: Targeted Screening and Quantitation Using Agilent TOF and Q-TOF LC/MS Systems

All Ions MS/MS: Targeted Screening and Quantitation Using Agilent TOF and Q-TOF LC/MS Systems All Ions MS/MS: Targeted Screening and Quantitation Using Agilent TOF and Q-TOF LC/MS Systems Technical Overview Introduction All Ions MS/MS is a technique that is available for Agilent high resolution

More information

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software Supplementary Methods Software Interpretation of Tandem mass spectra Tandem mass spectra were extracted from the Xcalibur data system format (.RAW) and charge state assignment was performed using in house

More information

Compounding insights Thermo Scientific Compound Discoverer Software

Compounding insights Thermo Scientific Compound Discoverer Software Compounding insights Thermo Scientific Compound Discoverer Software Integrated, complete, toolset solves small-molecule analysis challenges Thermo Scientific Orbitrap mass spectrometers produce information-rich

More information

Developing Algorithms for the Determination of Relative Abundances of Peptides from LC/MS Data

Developing Algorithms for the Determination of Relative Abundances of Peptides from LC/MS Data Developing Algorithms for the Determination of Relative Abundances of Peptides from LC/MS Data RIPS Team Jake Marcus (Project Manager) Anne Eaton Melanie Kanter Aru Ray Faculty Mentors Shawn Cokus Matteo

More information

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems

Protein Identification Using Tandem Mass Spectrometry. Nathan Edwards Informatics Research Applied Biosystems Protein Identification Using Tandem Mass Spectrometry Nathan Edwards Informatics Research Applied Biosystems Outline Proteomics context Tandem mass spectrometry Peptide fragmentation Peptide identification

More information

A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes

A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes A Quadrupole-Orbitrap Hybrid Mass Spectrometer Offers Highest Benchtop Performance for In-Depth Analysis of Complex Proteomes Zhiqi Hao 1, Yi Zhang 1, Shannon Eliuk 1, Justin Blethrow 1, Dave Horn 1, Vlad

More information

UCD Conway Institute of Biomolecular & Biomedical Research Graduate Education 2009/2010

UCD Conway Institute of Biomolecular & Biomedical Research Graduate Education 2009/2010 EMERGING PROTEOMIC TECHNOLOGIES - MODULE SCHEDULE & OUTLINE 2010 Course Organiser: Dr. Giuliano Elia Module Co-ordinator: Dr Giuliano Elia Credits: 5 Date & Time Session & Topic Coordinator 14th April

More information

Qualitative Proteomics (how to obtain high-confidence high-throughput protein identification!)

Qualitative Proteomics (how to obtain high-confidence high-throughput protein identification!) Qualitative Proteomics (how to obtain high-confidence high-throughput protein identification!) James A. Mobley, Ph.D. Director of Research in Urology Associate Director of Mass Spectrometry (contact: mobleyja@uab.edu)

More information

False Discovery Rates of Protein Identifications: A Strike against the Two-Peptide Rule

False Discovery Rates of Protein Identifications: A Strike against the Two-Peptide Rule False Discovery Rates of Protein Identifications: A Strike against the Two-Peptide Rule Nitin Gupta*, and Pavel A. Pevzner Bioinformatics Program and Department of Computer Science and Engineering, University

More information

Introduction to pepxmltab

Introduction to pepxmltab Introduction to pepxmltab Xiaojing Wang October 30, 2018 Contents 1 Introduction 1 2 Convert pepxml to a tabular format 1 3 PSMs Filtering 4 4 Session Information 5 1 Introduction Mass spectrometry (MS)-based

More information

Protein identification problem from a Bayesian pointofview

Protein identification problem from a Bayesian pointofview Statistics and Its Interface Volume 5 (2012 21 37 Protein identification problem from a Bayesian pointofview YongFugaLi,RandyJ.Arnold,PredragRadivojac and Haixu Tang We present a generic Bayesian framework

More information

A NESTED MIXTURE MODEL FOR PROTEIN IDENTIFICATION USING MASS SPECTROMETRY

A NESTED MIXTURE MODEL FOR PROTEIN IDENTIFICATION USING MASS SPECTROMETRY Submitted to the Annals of Applied Statistics A NESTED MIXTURE MODEL FOR PROTEIN IDENTIFICATION USING MASS SPECTROMETRY By Qunhua Li,, Michael MacCoss and Matthew Stephens University of Washington and

More information

Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent

Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent Figure S1. Interaction of PcTS with αsyn. (a) 1 H- 15 N HSQC NMR spectra of 100 µm αsyn in the absence (0:1, black) and increasing equivalent concentrations of PcTS (100 µm, blue; 500 µm, green; 1.5 mm,

More information

Modeling Mass Spectrometry-Based Protein Analysis

Modeling Mass Spectrometry-Based Protein Analysis Chapter 8 Jan Eriksson and David Fenyö Abstract The success of mass spectrometry based proteomics depends on efficient methods for data analysis. These methods require a detailed understanding of the information

More information

Intensity-based protein identification by machine learning from a library of tandem mass spectra

Intensity-based protein identification by machine learning from a library of tandem mass spectra Intensity-based protein identification by machine learning from a library of tandem mass spectra Joshua E Elias 1,Francis D Gibbons 2,Oliver D King 2,Frederick P Roth 2,4 & Steven P Gygi 1,3,4 Tandem mass

More information

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring High-Throughput Protein Quantitation Using Multiple Reaction Monitoring Application Note Authors Ning Tang, Christine Miller, Joe Roark, Norton Kitagawa and Keith Waddell Agilent Technologies, Inc. Santa

More information

Protein inference based on peptides identified from. tandem mass spectra

Protein inference based on peptides identified from. tandem mass spectra Protein inference based on peptides identified from tandem mass spectra A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor

More information

Welcome! Course 7: Concepts for LC-MS

Welcome! Course 7: Concepts for LC-MS Welcome! Mass Spectrometry meets Cheminformatics Tobias Kind and Julie Leary UC Davis Course 7: Concepts for LC-MS Class website: CHE 241 - Spring 28 - CRN 16583 Slides: http://fiehnlab.ucdavis.edu/staff/kind/teaching/

More information

Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment

Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment pubs.acs.org/jpr Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment J urgen Cox,*, Nadin Neuhauser, Annette Michalski, Richard A. Scheltema, Jesper V. Olsen, and Matthias Mann*,,

More information

A TMT-labeled Spectral Library for Peptide Sequencing

A TMT-labeled Spectral Library for Peptide Sequencing A TMT-labeled Spectral Library for Peptide Sequencing by Jianqiao Shen A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

pparse: A method for accurate determination of monoisotopic peaks in high-resolution mass spectra

pparse: A method for accurate determination of monoisotopic peaks in high-resolution mass spectra 226 DOI 10.1002/pmic.201100081 Proteomics 2012, 12, 226 235 RESEARCH ARTICLE pparse: A method for accurate determination of monoisotopic peaks in high-resolution mass spectra Zuo-Fei Yuan 1,2, Chao Liu

More information

JUMP: a tag-based database search tool for peptide identification with high sensitivity

JUMP: a tag-based database search tool for peptide identification with high sensitivity MCP Papers in Press. Published on September 8, 2014 as Manuscript O114.039586 JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy Xusheng Wang 1, Yuxin

More information

Background: Comment [1]: Comment [2]: Comment [3]: Comment [4]: mass spectrometry

Background: Comment [1]: Comment [2]: Comment [3]: Comment [4]: mass spectrometry Background: Imagine it is time for your lunch break, you take your sandwich outside and you sit down to enjoy your lunch with a beautiful view of Montana s Rocky Mountains. As you look up, you see what

More information

An Unsupervised, Model-Free, Machine-Learning Combiner for Peptide Identifications from Tandem Mass Spectra

An Unsupervised, Model-Free, Machine-Learning Combiner for Peptide Identifications from Tandem Mass Spectra Clin Proteom (2009) 5:23 36 DOI 0.007/s204-009-9024-5 An Unsupervised, Model-Free, Machine-Learning Combiner for Peptide Identifications from Tandem Mass Spectra Nathan Edwards Xue Wu Chau-Wen Tseng Published

More information

MSnID Package for Handling MS/MS Identifications

MSnID Package for Handling MS/MS Identifications Vladislav A. Petyuk December 1, 2018 Contents 1 Introduction.............................. 1 2 Starting the project.......................... 3 3 Reading MS/MS data........................ 3 4 Updating

More information

Identification of proteins by enzyme digestion, mass

Identification of proteins by enzyme digestion, mass Method for Screening Peptide Fragment Ion Mass Spectra Prior to Database Searching Roger E. Moore, Mary K. Young, and Terry D. Lee Beckman Research Institute of the City of Hope, Duarte, California, USA

More information

A statistical approach to peptide identification from clustered tandem mass spectrometry data

A statistical approach to peptide identification from clustered tandem mass spectrometry data A statistical approach to peptide identification from clustered tandem mass spectrometry data Soyoung Ryu, David R. Goodlett, William S. Noble and Vladimir N. Minin Department of Statistics, University

More information

Making Sense of Differences in LCMS Data: Integrated Tools

Making Sense of Differences in LCMS Data: Integrated Tools Making Sense of Differences in LCMS Data: Integrated Tools David A. Weil Agilent Technologies MassHunter Overview Page 1 March 2008 How Clean is our Water?... Page 2 Chemical Residue Analysis.... From

More information

MassHunter TOF/QTOF Users Meeting

MassHunter TOF/QTOF Users Meeting MassHunter TOF/QTOF Users Meeting 1 Qualitative Analysis Workflows Workflows in Qualitative Analysis allow the user to only see and work with the areas and dialog boxes they need for their specific tasks

More information

Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics* S

Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics* S Research Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics* S Wilhelm Haas, Brendan K. Faherty, Scott A. Gerber, Joshua E. Elias, Sean A. Beausoleil, Corey E. Bakalarski,

More information

Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments

Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments pubs.acs.org/jpr Learning Score Function Parameters for Improved Spectrum Identification in Tandem Mass Spectrometry Experiments Marina Spivak, Michael S. Bereman, Michael J. MacCoss, and William Stafford

More information

Improved Validation of Peptide MS/MS Assignments. Using Spectral Intensity Prediction

Improved Validation of Peptide MS/MS Assignments. Using Spectral Intensity Prediction MCP Papers in Press. Published on October 2, 2006 as Manuscript M600320-MCP200 Improved Validation of Peptide MS/MS Assignments Using Spectral Intensity Prediction Shaojun Sun 1, Karen Meyer-Arendt 2,

More information

Data pre-processing in liquid chromatography mass spectrometry-based proteomics

Data pre-processing in liquid chromatography mass spectrometry-based proteomics BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 21 25, pages 454 459 doi:1.193/bioinformatics/bti66 Data and text mining Data pre-processing in liquid chromatography mass spectrometry-based proteomics Xiang

More information

Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-Independent Acquisition Mass Spectrometry

Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-Independent Acquisition Mass Spectrometry MCP Papers in Press. Published on July 21, 2015 as Manuscript O114.042267 Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-Independent Acquisition Mass Spectrometry

More information

Skyline Small Molecule Targets

Skyline Small Molecule Targets Skyline Small Molecule Targets The Skyline Targeted Proteomics Environment provides informative visual displays of the raw mass spectrometer data you import into your Skyline documents. Originally developed

More information

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA LECTURE-25 Quantitative proteomics: itraq and TMT TRANSCRIPT Welcome to the proteomics course. Today we will talk about quantitative proteomics and discuss about itraq and TMT techniques. The quantitative

More information

Quantitative Proteomics

Quantitative Proteomics Quantitative Proteomics Quantitation AND Mass Spectrometry Condition A Condition B Identify and quantify differently expressed proteins resulting from a change in the environment (stimulus, disease) Lyse

More information