A generalization of Fibonacci and Lucas matrices

Size: px
Start display at page:

Download "A generalization of Fibonacci and Lucas matrices"

Transcription

1 Discrete Applied Mathematics 56 28) wwwelseviercom/locate/dam A geeralizatio of Fioacci ad Lucas matrices Predrag Staimirović, Jovaa Nikolov, Iva Staimirović Uiversity of Niš, Departmet of Mathematics, Faculty of Sciece, Višegradska 33, 8 Niš, Seria Received 27 Feruary 27; received i revised form 2 Septemer 27; accepted 29 Septemer 27 Availale olie 2 Feruary 28 Astract We defie the matrix U a,,s) of type s, whose elemets are defied y the geeral secod-order o-degeerated sequece ad itroduce the otio of the geeralized Fioacci matrix F a,,s), whose ozero elemets are geeralized Fioacci umers We oserve two regular cases of these matrices s ad s ) Geeralized Fioacci matrices i certai cases give the usual Fioacci matrix ad the Lucas matrix Iverse of the matrix U a,,s) is derived I partial case we get the iverse of the geeralized Fioacci matrix F a,,) ad later kow results from Gwag-Yeo Lee, Ji-Soo Kim, Sag-Gu Lee, Factorizatios ad eigevalues of Fioaci ad symmetric Fioaci matrices, Fioacci Quart 4 22) 23 2; P Stǎicǎ, Cholesky factorizatios of matrices associated with r-order recurret sequeces, Electro J Comi Numer Theory 5 2) 25) #A6] ad Z Zhag, Y Zhag, The Lucas matrix ad some comiatorial idetities, Idia J Pure Appl Math i press)] Correlatios etwee the matrices U a,,s), F a,,s) ad the geeralized Pascal matrices are cosidered I the case a, we get kow result for Fioacci matrices Gwag-Yeo Lee, Ji-Soo Kim, Seog-Hoo Cho, Some comiatorial idetities via Fioacci umers, Discrete Appl Math 3 23) ] Aalogous result for Lucas matrices, origiated i Z Zhag, Y Zhag, The Lucas matrix ad some comiatorial idetities, Idia J Pure Appl Math i press)], ca e derived i the partial case a 2, Some comiatorial idetities ivolvig geeralized Fioacci umers are derived c 27 Elsevier BV All rights reserved Keywords: Fioacci umer; Lucas umer; Fioacci matrix; Lucas matrix Itroductio The Fioacci umers {F } are the terms of the sequece,,, 2, 3, 5, where each term is the sum of the two precedig terms, ad we get thigs started with ad as F ad F You caot go very far i the lore of Fioacci umers without ecouterig the compaio sequece of Lucas umers {L }, which follows the same recursive patter as the Fioacci umers, ut egis with L 2 ad L The sequece of Lucas umers is therefore 2,, 3, 4, 7, 3] We also oserve so-called geeralized Fioacci umers, {F a,) }, which satisfy the same recursive formula F a,) 2 Fa,) Fa,),,,, ut startig with aritrary iitial values F a,) a ad F a,), see for example 9,6,2], ], Chapter 7)) Correspodig author Fax: addresses: pecko@pmfiacyu P Staimirović), JovaaNikolov@gmailcom J Nikolov), IvaStaimirovic@gmailcom I Staimirović) 66-28X/$ - see frot matter c 27 Elsevier BV All rights reserved doi:6/dam27928

2 P Staimirović et al / Discrete Applied Mathematics 56 28) The Fioacci matrix F f ],, ) is defied y 7]: f { Fi, i,, i < ) The iverse ad Cholesky factorizatio of the Fioacci matrix are give i 7] The relatios etwee the Pascal matrix ad the Fioacci matrix are studied i 8] As a aalogy of the Fioacci matrix, the Lucas matrix L l ],, ) is defied i 6]: l { Li, i,, i < 2) I the paper ] the author ivestigated the iverse ad Cholesky factorizatio of the matrix U with etries u { Ui, i,, i <, 3) where U is the o-degeerated secod order sequece U AU BU, δ A 2 4B real, ad where A, B, U are itegers ad U ie A B) I ] the author also geeralized these results to r-order recurret sequece satisfyig U U U 2r, U aritrary Results otaied i ] iclude kow facts aout the Fioacci matrix 7,8] i the case U, A B But, results aout the Lucas matrices from 6] are ot icluded Lucas sequece is geerated y the associated sequece V which satisfy V 2, V a Our goal i this paper is to geeralize all results aout the Fioacci ad Lucas matrices The purpose of this paper is to demostrate that kow properties of Fioacci, Lucas matrices ad the matrices defied i ] are valid for a more geeral class of matrices, itroduced i Sectio 2 Throughout the paper we adopt the followig two covetios: ad ) k for k >, eve i the case k By raka) we deote the rak of matrix A The paper is orgaized as follows I Sectio 2 we defie the matrix U a,,s) umers U a,) satisfyig the geeral secod order o-degeerated recurrece formula U a,) of type s, whose etries are a,) AU BU a,), δ A 2 4B real, ad iitial coditios U a,) a, U a,) I the case A B we itroduce the geeralized Fioacci matrix F a,,s) of type s, whose ozero elemets are geeralized Fioacci umers F a,) Oly two cases geeratig regular matrices are s ad s Geeralized Fioacci matrices reduce to kow defiitio of the usual Fioacci matrix i the cases s, a, ad s, a, I the case a 2,, s we otai the matrix whose ozero etries are Lucas umers, ad arraged as i the Fioacci matrix This matrix is called the Lucas matrix 6] At this momet we cosider the matrices U a,,) ad F a,,) Iverses of the geeralized Fioacci matrix ad for the matrix U a,,) are derived I the partial case a, we get kow result aout the iversio of the usual Fioacci matrix from 7] Similarly, i the case a 2, we otai the iverse of the Lucas matrix, origiated i 6] Moreover, i Sectio 2 we cosider the matrix U a,,) defied y meas of the geeral o-degeerated secod-order recurret sequece, ad geeralize Propositio 2 from ] Various correlatios etwee the matrix U a,,s) ad the Pascal matrix of the first ad the secod kid are cosidered i Sectio 3 Correspodig results for the geeralized Fioacci matrix F a,,) are give as corollaries Partial case a, produces kow result from 8] I the case a 2, we derive aalogous results for Lucas matrices, ivestigated i 6] I Sectio 4 we get some comiatorial idetities ivolvig geeralized Fioacci umers ad iomial coefficiets 2 Geeralized Fioacci matrix ad its iverse By F a,) we deote the -th geeralized Fioacci umer, geerated y the Fioacci recursive formula ad y the iitial values F a,) a, F a,) Notios of Fioacci ad Lucas matrix are geeralized i the followig defiitio Defiitio 2 Let F a,) e the -th geeralized Fioacci umer, where the startig memers of the Fioacci array are F a,) a ad F a,), ad where a, C The geeralized Fioacci matrix of type s ad of the order

3 268 P Staimirović et al / Discrete Applied Mathematics 56 28) , deoted y F a,,s) f a,,s) { f a,,s) ], is defied y F a,) i, i s,,, 2), i s < It is clear that the iteger s meas the shift of o-zero elemets with respect to mai diagoal We also defie a geeralizatio U a,,s) u a,,s) ] of the matrix F a,,s) ad the matrix U from 3) Defiitio 22 The matrix U a,,s) u a,,s) { U a,) i, i s,, i s <, u a,,s) ] is defied y 22) where the secod order recurret sequece U a,) satisfies the followig coditios: U a,) AU a,) a,) BU 2, U a,) a, U a,), A 2 4B > 23) Remark 2 a) Geeralized Fioacci matrices F,,) ad F,,) are oth idetical to the usual Fioacci matrix defied i ) ) The geeralized Fioacci matrix F 2,,) correspods to Lucas matrix, defied i 2) c) The matrix U,,) reduces to the matrix U defied i 3) Example 2 The 6 6 geeralized Fioacci matrix of type is equal to a F a,,) a 2 a 6 2a 3 a 2 a 3a 5 2a 3 a 2 a 5a 8 3a 5 2a 3 a 2 a The 6 6 geeralized Fioacci matrix of type is defied y a a a F a,,) a 2 a a 6 2a 3 a 2 a a 3a 5 2a 3 a 2 a a 5a 8 3a 5 2a 3 a 2 a The matrix U a,,) 4 is equal to U a,,) 4 A ab B AA ab) A ab BA ab) AB AA ab)) B AA ab) A ab Propositio 2 The odegeerated secod-order recurret sequece U a,), defied i 23), satisfies the followig geeralizatio of the Biet s Fioacci umer formula U a,) c α c 2 β, 24)

4 P Staimirović et al / Discrete Applied Mathematics 56 28) where c aa2 4B) 2 a A) A 2 4B 2A 2, 25) 4B) c 2 aa2 4B) 2 a A) A 2 4B 2A 2, 26) 4B) α A A 2 4B 2, β A A 2 4B 27) 2 I the case s > it is ecessary to use geeralized Fioacci umers F a,) ad the umers U a,) with egative idices Recurret defiitio of the geeralized Fioacci umers ca e expaded for egative idices usig 24) 27), similarly as for the Fioacci umers i ] Lemma 2 The followig idetity is valid for the secod order o-degeerated recurret sequece U a,) ad for two aritrary itegers satisfyig i 2: a 2 B aa 2 ) Proof By usig 27) we otai αβ B, α β A, α β satisfyig ) k ak 2 B k U a,) k ik ab 2 U a,) i B U a,) i 28) By applyig 24) ad simple trasformatios, we otai the followig: Usig we get a 2 B aa 2 ) a 2 B aa 2 ) a2 B aa 2 3 ab α a 2 B aa 2 ) ) k ak 2 B k U k ) k 2 ab ) i α a2 B aa 2 3 A 2 4B 29) a,) ik ) k ak 2 Bk k c α ik c 2 β ik) ab ) k 2 Bα i c ab ) ) k 2 Bβ i c 2 α β ab α ) k ak 2 B k U k ab α c ab α With cosideratio of 29), we have a 2 B aa 2 ), )i ) k ak 2 B k U k a,) ik ab ) k 2 β α i ab β c 2 ab β a,) ik )i ab β ab β β i ) B ) i

5 26 P Staimirović et al / Discrete Applied Mathematics 56 28) a2 B aa 2 3 ab β) α i α ab )i ) c ab α) β i β ab )i ) c 2 a A a2 B 2 c ab αi α ab ) i Bα i B ab ) ) i ab c 2 βi β ab ) i Bβ i B ab ) )] i By groupig similar memers, usig c c 2 a, c α c 2 β U a,) ad usig 24) ad 29), oe ca verify the followig: a 2 B aa 2 ) ) k ak 2 B k U k ab c α i c 2 β i ) c α c 2 β) a,) ik ab B c α i c 2 β i ) Bc c 2 ) ab ab 2 U a,) i U a,) ab ) i B U a,) i ab ) i ) i ] ab ) i The proof ca e completed y usig U a,) I the partial case A B we otai the followig result for the geeralized Fioacci umers Corollary 2 For the geeralized Fioacci umers F a,), ad for two aritrary itegers satisfyig i 2 the followig is valid: a 2 a 2 ) ) k ak 2 k Fa,) ik a 2 Fa,) i I the case a 2,, from the previous corollary we get kow result from 6] Corollary 22 For the Lucas umers ad each i 2 the followig is valid: 5 ) k 2 k 2 L ik 2L i L i Fa,) i 2) Theorem 2 The iverse U a,,) u a,,) u a,,) ] of the matrix U a,,) u a,,) ] ) is equal to ) i a2 B aa 2 i a i 2 B i, i 2, ab A 2, i,, i,, i < 2) Proof Let k u a,,) i,k u a,,) k, c Oviously c for i < I the case i oe ca verify the followig: c i,i u a,,) i,i u a,,) i,i

6 P Staimirović et al / Discrete Applied Mathematics 56 28) I the case i we otai c, u a,,), u a,,), u a,,), u a,,), A Ba) ) ab A 2 For i 2, y applyig results of Lemma 2 ad 23) ad 2) we otai c k u a,,) i,k u a,,) k, u a,,) u a,,), u a,,) u a,,) U a,) i U a,) i ab A 2 U a,), u a,,) i,k u a,,) k, i a 2 B aa 2 ) ab A 2 U a,) i ab 2 U a,) i B U a,) i a,) a,) U i AU i BU a,) i ) Therefore, we verify U a,,) U a,,) U a,,) U a,,) I ) k ak 2 B k U k a,) ik I, where I is idetity matrix I a similar way oe ca verify Example 22 The iverse of the matrix U a,,) 4 is equal to A ab 2 B Ba 2 Aa 2) A ab 3 2 ab 2 Ba 2 Aa 2) B Ba 2 Aa 2) A ab Remark 22 Propositio 2 from ] ca e derived y placig a i 2) I the partial case A B from Theorem 2 we otai the iverse of the geeralized Fioacci matrix of type Corollary 23 Let F a,,) F a,,), deoted y F a,,) f a,,) ], is equal to f a,,) ],, e geeralized Fioacci matrix of type The iverse of ) i a2 a 2 i a i 2, i 2, f a,,) a 2, i,, i,, i < 22)

7 262 P Staimirović et al / Discrete Applied Mathematics 56 28) Example 23 The iverse of the geeralized Fioacci matrix F a,,) 6 is equal to a 2 a 2 a 2 3 a 2 aa2 a 2 ) a 2 a a 2 a 2 a 2 a 2 ) 5 aa2 a 2 ) a 2 a a3 a 2 a 2 ) a 2 a 2 a 2 ) 6 5 aa2 a 2 ) a 2 a I the case a 2, we get the iverse Lucas matrix, derived i 6] Corollary 24 The iverse of the Lucas matrix L 5) i 2 i 2, i 2, l i, 3, i,, i,, otherwise l i, ],, ) is equal to a 2 a 2 I the case a, we get the iverse Fioacci matrix, which is the kow result from 7] Corollary 25 The iverse Fioacci matrix F f i, ],, ) is equal to, i 2, f i,, i,, otherwise I the followig theorem we study rak of the matrix U a,,s) ): Theorem 22 Matrices U a,,s) of the order > 2 of a aritrary type s > or s < are sigular The geeralized ad U a,,) are regular Fioacci matrices U a,,s) 2 are always regular I the case matrices U a,,) Proof I the case s < the proof is trivial, sice s diagoal parallels elow the mai diagoal i U a,,s) are filled ) s < Deote y R i the i-th I the case s the last s rows ie the rows R s,, R ) i U a,,s) are completely For these rows it is ot difficult to verify from 23) y zeros ie the last s colums are zero colums), ad therefore raku a,,s) row of the matrix U a,,s) filled y the elemets U a,) i R i AR i B R i2, i s 2,, Therefore, etwee the rows R s,, R there is oly oe liearly idepedet row i the case s, ad oly two liearly idepedet i the case s > O the other had, it is clear that rows R,, R s are liearly idepedet Hece, i the case s > raku a,,s) ) { s <, s, 2, s > so the matrix U a,,s) is sigular From the previous argumetatio, it is ot difficult to verify that oth U a,,) matrices ad U a,,) are regular

8 P Staimirović et al / Discrete Applied Mathematics 56 28) Example 24 The last two colums of the matrix U a,,2) 4 A 2 a AB B A 3 a A 2 B 2A B ab 2 A 2 a AB B are the zero colums, ad raku a,,2) 4 ) 2 O the other had, the rak of the matrix U a,,2) 4 is 3, ecause of R 4 AR 3 B R 2 a a A B A ab a a A B A 2 ab A B A ab a A 3 ab A 2 2B A ab 2 A 2 ab A B A ab 3 Geeralized Fioacci matrix ad Pascal matrices Various types of Pascal matrices are ivestigated i,2,4,5,4,5] The geeralized Pascal matrix of the first kid P x] p x; )],,, is defied i 4]: ) i x i, i, p x; ) 3), i < I the case x, the geeralized Pascal matrix of the first kid reduces to ther well-kow Pascal matrix P p )],,,, which is defied i 3,4]: ) i, i, p ) 32), i < I the followig theorem we defie the matrix G x; a, ] g x; a, )],,, which gives a correlatio etwee the matrix U a,,) ad the geeralized Pascal matrix of the first kid: Theorem 3 The matrix G x; a, ] x, ), whose etries are defied y ) ) g x; a, ) x i ab A i 2 xi 2 x i satisfies i2 ) ik a2 B aa 2 ik a ik2 B ik x k k ) ] k, 33) P x] U a,,) G x; a, ] 34) Proof It is sufficiet to verify U a,,) P x] G x; a, ] It is evidet that g x; a, ) for i <, which is of the form 33) So, it remais to verify all the other cases The cases i ad i ca e simply verified:

9 264 P Staimirović et al / Discrete Applied Mathematics 56 28) g, x; a, ) u a,,), p x;, ) x ) x ; g, x; a, ) u a,,), p x;, ) u a,,), p x;, ) ab A 2 x ) )] 2 x x ab A 2 x I the last case, i 2, y applyig results of Theorem 2 we get g x; a, ) u a,,) i,i p x; ) u a,,) i,i p x; i, ) ) i xi i2 k which is also of the form 33) ab A 2 x i ) ik a2 B aa 2 ik i 2 ) i2 k a ik2 B ik x k u a,,) i,k p x; k, ) ) k, I the case A B we get aalogous result for the geeralized Fioacci matrix Corollary 3 The matrix G x; a, ] x, ), whose etries are defied y ) ) g x; a, ) x i i 2 i2 xi satisfies P x] F a,,) G x; a, ] a 2 x i k ) ik a2 a 2 ik a ik2 x k Moreover, the last corollary produces a kow result from 8] i partial case a, ad x : Corollary 32 Let M e the matrix with elemets defied y ) ) ) i i 2 i 3 m i The Pascal matrix ad the Fioacci matrix are related with P F M Proof The proof follows from M G ;, ] I the case a 2,, from Corollary 3 we give a correspodig result for Lucas matrices 6]: ) ] k, Corollary 33 The geeralized Pascal matrix of the first kid ad the Lucas matrix satisfy P x] L G x; 2, ], where ) ) i i 2 g x; 2, ) x x i 3x i 5) i i2 ) ] i2 k x ) k 2 ) k 2 After the sustitutio x i the previous result, the followig result immediately follows: Corollary 34 The Pascal matrix ad the Lucas matrix satisfy P L G ; 2, ], where ) ) i i 2 i2 ) i2 k g ; 2, ) 3 52) 2) k k k

10 P Staimirović et al / Discrete Applied Mathematics 56 28) I the followig theorem we defie the matrix H x; a, ] h x; a, )],,, which gives a similar correlatio etwee the matrix U a,,) ad the geeralized Pascal matrix of the first kid: Theorem 32 The matrix H x; a, ], ), defied y ) h x; a, ) x i i x ab A 2 x satisfies ) k a2 B aa 2 a k 2 B k x k k ) ] i 35) k P x] H x; a, ]U a,,) 36) Proof Similar as the proof of Theorem 3 A aalogous result for the geeralized Fioacci matrix ca e derived i the case A B Corollary 35 The matrix H x; a, ], ), defied y ) h x; a, ) x i i x a ) i 2 x ) k a2 a 2 ) ] i a k 2 x k k k satisfies P x] H x; a, ]F a,,) A aalogous result for Lucas matrices is 6]: Corollary 36 The Lucas matrix satisfies P x] H x; 2, ]L, where ) ) i i h x; 2, ) x x i 5x 3 ) 2 2 ) ] i ) k 2 k x k k The geeralized Pascal matrix of the secod kid Q x] q x; )],,, is defied y 4]: ) i x i 2, i, q x; ), i < 37) Theorem 33 The matrices S x; a, ] s x; a, )] ad T x; a, ] t x; a, )],,,, ) whose etries are defied y ) ) s x; a, ) x i ab A i 2 xi2 2 x i3 i2 ) ik a2 B aa 2 ik k a ik2 B ik x k2 ) ] k, 38)

11 266 P Staimirović et al / Discrete Applied Mathematics 56 28) ) ) t x; a, ) x i i x 2 ab A i 2 x satisfy Q x] U a,,) S x; a, ], Q x] T x; a, ]U a,,) ) k a2 B aa 2 a k 2 B k x k2 k ) ] i 39) k 3) 3) Proof Similar as the proof of Theorem 3 Corollary 37 The matrices S x; a, ] s x; a, )] ad T x; a, ] t x; a, )],,,, ) whose etries are defied y ) s x; a, ) x i xi2 a ) i 2 2 x i3 satisfy i2 ) ik a2 a 2 ik k t x; a, ) x i x 2 Q x] F a,,) S x; a, ], Q x] T x; a, ]F a,,) ) i a ik2 x k2 a 2 x ) k a2 a 2 a k ) i k 2 x k2 ) ] k, ) ] i k Theorem 34 I the case the matrix G a ; a, ] is defied y g a ; a, ) a)i 2 i ad satisfies P a ] F a,,) G a ] ; a, ) i a 2 a )a ) i 2 a 2 a 2 ) )] i 2 32) 33) Proof Follows from Corollary 3 ad the followig simple comiatorial idetity: i2 ) ) k i 2 k I a similar way as Theorem 34, the followig result ca e proved: Theorem 35 The matrix S a ; a, ] ) is defied y s a ; a, ) a)i 4 i ) i a 2 a 2 a) i ) )] i )

12 P Staimirović et al / Discrete Applied Mathematics 56 28) ad satisfies Q a ] F a,,) S a ] ; a, 35) I the partial case a 2, Theorems 34, 35 ad Corollary 37 yield the followig results: Corollary 38 The Lucas matrix satisfies: P 2] L G 2; 2, ], Q 2] L S 2; 2, ], P 2] H 2; 2, ]L, Q 2] T 2; 2, ]L, where ) ) )] i i 2 i 2 g 2; 2, ) 2) 4 i 2 6 5, ) ) )] i i 2 i 2 s 2; 2, ) 2) 4 i 4 6, ) ) i i ) h 2; 2, ) 2) 4 ] i i 2 6 5, k t 2; 2, ) 2) i 4 4 ) i 6 i ) ) i 5 5 k 3 ) ] i 2 2 2k k 4 Some comiatorial idetities I this sectio we ivestigate some comiatorial idetities ivolvig the geeralized Fioacci umers Theorem 4 If are positive itegers satisfyig i 2, ad, we have a ) i i ) Fa,) i a 2 F a,) )a i 2 ) k a )a 2 Proof From 32) we derive the followig idetities: g, a ; a, ), g, a ; a, ) a) 2 ) a 2 a )a ) k 2 F a,) ik a 2 a Now, the proof ca e derived y applyig idetities 42) ad the ext idetity p a ) ; a ) ) i i, i,, i < together with 32), 33) ad 2) a) k 2 k ) a2 a 2 k 2 2 )] 4) )a 2 42)

13 268 P Staimirović et al / Discrete Applied Mathematics 56 28) Theorem 42 If are positive itegers satisfyig i 2 ad, we have a ) ) i 2 i F a,) a 2 2 a 2 2 i Fa,) 2 i 2 )a ] ) ) k k k 2 a 2 a 2 a) 2 Proof From 34) we derive the followig idetities: s, a ) ; a, a2 2 2, F a,) ik a) k 4 k )] 43) s, a ) ; a, a2 2 2 )a ] 44) Now, the proof ca e derived y usig 44), the ext idetity q a ; ) ad 34), 35) ad 2) a ) ) i 2 i, i, i < Theorem 43 For r ad we have ) F a,) l r l r lr ) a 2 ) l 2 r k l2 kr ) lk a2 a 2 lk Proof I the partial case x from Corollary 3 we get g ; a, ) ) i a ) i 2 i2 2 ) ik a2 a 2 ik Now, the proof follows from ) p, r) r lr F a,) l g l,r ; a, ) I the partial case a, Theorem 43 reduces to Corollary 22 from 8] Corollary 4 For r ) k 3)! rk ) 2r ) k r) 2) F k r r )!k r)! kr a ik2 a lk2 ) k ) ] k r 45) Proof The proof ca e completed usig Theorem 43 ad Corollary 32, i the same way as i 8] 5 Coclusio I the preset paper we itroduce the matrix U a,,s) of type s, whose etries are umers U a,) satisfyig the geeral secod order o-degeerated recurrece formula U AU BU, δ A 2 4B real, ad iitial coditios U a,) a, U a,) I the case A B we defie the geeralized Fioacci matrix F a,,s) of type s, whose etries are geeralized Fioacci umers satisfyig kow recursive formula ad iitial coditios F a,) a, F a,) We oserve two regular cases s ad s ) of these matrices Geeralized Fioacci

14 P Staimirović et al / Discrete Applied Mathematics 56 28) matrices of type s or s correspod to kow defiitio of the usual Fioacci matrix, i the case a, I the case a 2,, s we otai defiitio of the Lucas matrix from 6] Iversio of the matrix U a,,s) ad geeralized Fioacci matrix is cosidered I certai cases we get kow results from 7,,6] A correlatio etwee the geeralized Fioacci matrix ad the Pascal matrix of the first ad the secod kid is cosidered I two partial cases a,, s ad a,, s ) we get kow result from 8] We get some comiatorial idetities ivolvig geeralized Fioacci umers I the partial case a 2,, s we derive aalogous result for Lucas matrices, itroduced i 6] Refereces ] R Aggarwala, MP Lamoureux, Ivertig the Pascal matrix plus oe, Amer Math Mothly 9 22) ] A Ashrafi, PM Giso, A ivolutory Pascal matrix, Liear Algera Appl ) ] R Brawer, M Pirovio, The liear algera of Pascal matrix, Liear Algera Appl ) ] GS Call, DJ Vellma, Pascal matrices, Amer Math Mothly 993) ] Gi-Cheo, Ji-Soo Kim, Stirlig matrix via Pascal matrix, Liear Algera Appl 329 2) ] AF Horadam, A geeralized Fioacci sequece, Amer Math Mothly 68 96) ] Gwag-Yeo Lee, Ji-Soo Kim, Sag-Gu Lee, Factorizatios ad eigevalues of Fioaci ad symmetric Fioaci matrices, Fioacci Quart 4 22) ] Gwag-Yeo Lee, Ji-Soo Kim, Seog-Hoo Cho, Some comiatorial idetities via Fioacci umers, Discrete Appl Math 3 23) ] D Kalma, R Mea, The Fioacci umers exposed, Math Magazie 76 23) 67 8 ] T Koshy, Fioacci ad Lucas Numers with Applicatios, Wiley, New York, 2 ] P Stǎicǎ, Cholesky factorizatios of matrices associated with r-order recurret sequeces, Electro J Comi Numer Theory 5 2) 25) #A6 2] JE Walto, AF Horadam, Some further idetities for the geeralized Fioacci sequece {H }, Fioacci Quart 2 974) ] Eric W Weisstei, Lucas Numer, i: MathWorld A Wolfram We Resource 4] Z Zhag, The liear algera of geeralized Pascal matrix, Liear Algera Appl ) 5 6 5] Z Zhag, J Wag, Beroulli matrix ad its algeraic properties, Discrete Appl Math 54 26) ] Z Zhag, Y Zhag, The Lucas matrix ad some comiatorial idetities, Idia J Pure Appl Math i press)

A NOTE ON PASCAL S MATRIX. Gi-Sang Cheon, Jin-Soo Kim and Haeng-Won Yoon

A NOTE ON PASCAL S MATRIX. Gi-Sang Cheon, Jin-Soo Kim and Haeng-Won Yoon J Korea Soc Math Educ Ser B: Pure Appl Math 6(1999), o 2 121 127 A NOTE ON PASCAL S MATRIX Gi-Sag Cheo, Ji-Soo Kim ad Haeg-Wo Yoo Abstract We ca get the Pascal s matrix of order by takig the first rows

More information

On Generalized Fibonacci Numbers

On Generalized Fibonacci Numbers Applied Mathematical Scieces, Vol. 9, 215, o. 73, 3611-3622 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.5299 O Geeralized Fiboacci Numbers Jerico B. Bacai ad Julius Fergy T. Rabago Departmet

More information

General Properties Involving Reciprocals of Binomial Coefficients

General Properties Involving Reciprocals of Binomial Coefficients 3 47 6 3 Joural of Iteger Sequeces, Vol. 9 006, Article 06.4.5 Geeral Properties Ivolvig Reciprocals of Biomial Coefficiets Athoy Sofo School of Computer Sciece ad Mathematics Victoria Uiversity P. O.

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

Matrix representations of Fibonacci-like sequences

Matrix representations of Fibonacci-like sequences NTMSCI 6, No. 4, 03-0 08 03 New Treds i Mathematical Scieces http://dx.doi.org/0.085/tmsci.09.33 Matrix represetatios of Fiboacci-like sequeces Yasemi Tasyurdu Departmet of Mathematics, Faculty of Sciece

More information

On the Jacobsthal-Lucas Numbers by Matrix Method 1

On the Jacobsthal-Lucas Numbers by Matrix Method 1 It J Cotemp Math Scieces, Vol 3, 2008, o 33, 1629-1633 O the Jacobsthal-Lucas Numbers by Matrix Method 1 Fikri Köke ad Durmuş Bozkurt Selçuk Uiversity, Faculty of Art ad Sciece Departmet of Mathematics,

More information

Decoupling Zeros of Positive Discrete-Time Linear Systems*

Decoupling Zeros of Positive Discrete-Time Linear Systems* Circuits ad Systems,,, 4-48 doi:.436/cs..7 Published Olie October (http://www.scirp.org/oural/cs) Decouplig Zeros of Positive Discrete-Time Liear Systems* bstract Tadeusz Kaczorek Faculty of Electrical

More information

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun Korea J. Math. 23 2015) No. 3 pp. 371 377 http://dx.doi.org/10.11568/kjm.2015.23.3.371 COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q } Sag Pyo Ju Abstract. I this ote we cosider a geeralized

More information

A Note On The Exponential Of A Matrix Whose Elements Are All 1

A Note On The Exponential Of A Matrix Whose Elements Are All 1 Applied Mathematics E-Notes, 8(208), 92-99 c ISSN 607-250 Available free at mirror sites of http://wwwmaththuedutw/ ame/ A Note O The Expoetial Of A Matrix Whose Elemets Are All Reza Farhadia Received

More information

On the Number of 1-factors of Bipartite Graphs

On the Number of 1-factors of Bipartite Graphs Math Sci Lett 2 No 3 181-187 (2013) 181 Mathematical Scieces Letters A Iteratioal Joural http://dxdoiorg/1012785/msl/020306 O the Number of 1-factors of Bipartite Graphs Mehmet Akbulak 1 ad Ahmet Öteleş

More information

ON THE HADAMARD PRODUCT OF BALANCING Q n B AND BALANCING Q n

ON THE HADAMARD PRODUCT OF BALANCING Q n B AND BALANCING Q n TWMS J App Eg Math V5, N, 015, pp 01-07 ON THE HADAMARD PRODUCT OF ALANCING Q AND ALANCING Q MATRIX MATRIX PRASANTA KUMAR RAY 1, SUJATA SWAIN, Abstract I this paper, the matrix Q Q which is the Hadamard

More information

A Study on Some Integer Sequences

A Study on Some Integer Sequences It. J. Cotemp. Math. Scieces, Vol. 3, 008, o. 3, 03-09 A Study o Some Iteger Sequeces Serpil Halıcı Sakarya Uiversity, Departmet of Mathematics Esetepe Campus, Sakarya, Turkey shalici@sakarya.edu.tr Abstract.

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math E-2b Lecture #8 Notes This week is all about determiats. We ll discuss how to defie them, how to calculate them, lear the allimportat property kow as multiliearity, ad show that a square matrix A

More information

Chapter 6: Determinants and the Inverse Matrix 1

Chapter 6: Determinants and the Inverse Matrix 1 Chapter 6: Determiats ad the Iverse Matrix SECTION E pplicatios of Determiat By the ed of this sectio you will e ale to apply Cramer s rule to solve liear equatios ermie the umer of solutios of a give

More information

The inverse eigenvalue problem for symmetric doubly stochastic matrices

The inverse eigenvalue problem for symmetric doubly stochastic matrices Liear Algebra ad its Applicatios 379 (004) 77 83 www.elsevier.com/locate/laa The iverse eigevalue problem for symmetric doubly stochastic matrices Suk-Geu Hwag a,,, Sug-Soo Pyo b, a Departmet of Mathematics

More information

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca Idia J Pure Appl Math 45): 75-89 February 204 c Idia Natioal Sciece Academy A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS Mircea Merca Departmet of Mathematics Uiversity

More information

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction Math Appl 6 2017, 143 150 DOI: 1013164/ma201709 TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES PANKAJ KUMAR DAS ad LALIT K VASHISHT Abstract We preset some iequality/equality for traces of Hadamard

More information

Fibonacci numbers and orthogonal polynomials

Fibonacci numbers and orthogonal polynomials Fiboacci umbers ad orthogoal polyomials Christia Berg April 10, 2006 Abstract We prove that the sequece (1/F +2 0 of reciprocals of the Fiboacci umbers is a momet sequece of a certai discrete probability,

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

Applied Mathematics Letters. On the properties of Lucas numbers with binomial coefficients

Applied Mathematics Letters. On the properties of Lucas numbers with binomial coefficients Applied Mathematics Letters 3 (1 68 7 Cotets lists available at ScieceDirect Applied Mathematics Letters joural homepage: wwwelseviercom/locate/aml O the properties of Lucas umbers with biomial coefficiets

More information

1 Last time: similar and diagonalizable matrices

1 Last time: similar and diagonalizable matrices Last time: similar ad diagoalizable matrices Let be a positive iteger Suppose A is a matrix, v R, ad λ R Recall that v a eigevector for A with eigevalue λ if v ad Av λv, or equivaletly if v is a ozero

More information

ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS

ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS Ordu Üiv. Bil. Tek. Derg., Cilt:6, Sayı:1, 016,8-18/Ordu Uiv. J. Sci. Tech., Vol:6, No:1,016,8-18 ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS Serpil Halıcı *1 Sia Öz 1 Pamukkale Ui., Sciece ad Arts Faculty,Dept.

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Some Results on Certain Symmetric Circulant Matrices

Some Results on Certain Symmetric Circulant Matrices Joural of Iformatics ad Mathematical Scieces Vol 7, No, pp 81 86, 015 ISSN 0975-5748 olie; 0974-875X prit Pulished y RGN Pulicatios http://wwwrgpulicatioscom Some Results o Certai Symmetric Circulat Matrices

More information

On the Fibonacci-like Sequences of Higher Order

On the Fibonacci-like Sequences of Higher Order Article Iteratioal Joural of oder atheatical Scieces, 05, 3(): 5-59 Iteratioal Joural of oder atheatical Scieces Joural hoepage: wwwoderscietificpressco/jourals/ijsaspx O the Fiboacci-like Sequeces of

More information

Hoggatt and King [lo] defined a complete sequence of natural numbers

Hoggatt and King [lo] defined a complete sequence of natural numbers REPRESENTATIONS OF N AS A SUM OF DISTINCT ELEMENTS FROM SPECIAL SEQUENCES DAVID A. KLARNER, Uiversity of Alberta, Edmoto, Caada 1. INTRODUCTION Let a, I deote a sequece of atural umbers which satisfies

More information

The Binet formula, sums and representations of generalized Fibonacci p-numbers

The Binet formula, sums and representations of generalized Fibonacci p-numbers Europea Joural of Combiatorics 9 (008) 70 7 wwwelseviercom/locate/ec The Biet formula, sums ad represetatios of geeralized Fiboacci p-umbers Emrah Kilic TOBB ETU Uiversity of Ecoomics ad Techology, Mathematics

More information

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The r-generalized Fibonacci Numbers and Polynomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 2008, o. 24, 1157-1163 The r-geeralized Fiboacci Numbers ad Polyomial Coefficiets Matthias Schork Camillo-Sitte-Weg 25 60488 Frakfurt, Germay mschork@member.ams.org,

More information

On Matrices Over Semirings

On Matrices Over Semirings Aals of Pure ad Applied Mathematics Vol. 6, No. 1, 14, 1-1 ISSN: 79-87X (P, 79-888(olie Pulished o 16 April 14 www.researchmathsci.org Aals of O Matrices Over Semirigs K. R.Chowdhury 1, Aeda Sultaa, N.K.Mitra

More information

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc. 2 Matrix Algebra 2.2 THE INVERSE OF A MATRIX MATRIX OPERATIONS A matrix A is said to be ivertible if there is a matrix C such that CA = I ad AC = I where, the idetity matrix. I = I I this case, C is a

More information

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1) 5. Determiats 5.. Itroductio 5.2. Motivatio for the Choice of Axioms for a Determiat Fuctios 5.3. A Set of Axioms for a Determiat Fuctio 5.4. The Determiat of a Diagoal Matrix 5.5. The Determiat of a Upper

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS H. W. Gould Departmet of Mathematics, West Virgiia Uiversity, Morgatow, WV

More information

Fibonacci polynomials, generalized Stirling numbers, and Bernoulli, Genocchi and tangent numbers

Fibonacci polynomials, generalized Stirling numbers, and Bernoulli, Genocchi and tangent numbers Fiboacci polyomials, geeralied Stirlig umbers, ad Beroulli, Geocchi ad taget umbers Joha Cigler oha.cigler@uivie.ac.at Abstract We study matrices hich trasform the sequece of Fiboacci or Lucas polyomials

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS Joural of Algebra, Number Theory: Advaces ad Applicatios Volume, Number, 00, Pages 7-89 ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS OLCAY KARAATLI ad REFİK KESKİN Departmet

More information

On Second Order Additive Coupled Fibonacci Sequences

On Second Order Additive Coupled Fibonacci Sequences MAYFEB Joural of Mathematics O Secod Order Additive Coupled Fiboacci Sequeces Shikha Bhatagar School of Studies i Mathematics Vikram Uiversity Ujjai (M P) Idia suhai_bhatagar@rediffmailcom Omprakash Sikhwal

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M Abstract ad Applied Aalysis Volume 2011, Article ID 527360, 5 pages doi:10.1155/2011/527360 Research Article Some E-J Geeralized Hausdorff Matrices Not of Type M T. Selmaogullari, 1 E. Savaş, 2 ad B. E.

More information

HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS. Vinko Petričević University of Zagreb, Croatia

HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS. Vinko Petričević University of Zagreb, Croatia HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS Viko Petričević Uiversity of Zagre, Croatia Astract There are umerous methods for ratioal approximatio of real umers

More information

On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers

On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers WSEAS TRANSACTIONS o MATHEMATICS Yu Gao Zhaoli Jiag Yapeg Gog O the Determiats ad Iverses of Skew Circulat ad Skew Left Circulat Matrices with Fiboacci ad Lucas Numbers YUN GAO Liyi Uiversity Departmet

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

Weak Laws of Large Numbers for Sequences or Arrays of Correlated Random Variables

Weak Laws of Large Numbers for Sequences or Arrays of Correlated Random Variables Iteratioal Mathematical Forum, Vol., 5, o. 4, 65-73 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/imf.5.5 Weak Laws of Large Numers for Sequeces or Arrays of Correlated Radom Variales Yutig Lu School

More information

Some identities involving Fibonacci, Lucas polynomials and their applications

Some identities involving Fibonacci, Lucas polynomials and their applications Bull. Math. Soc. Sci. Math. Roumaie Tome 55103 No. 1, 2012, 95 103 Some idetities ivolvig Fiboacci, Lucas polyomials ad their applicatios by Wag Tigtig ad Zhag Wepeg Abstract The mai purpose of this paper

More information

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp. 3 24 doi: 0.448/208.73.. EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for

More information

ON SOME RELATIONSHIPS AMONG PELL, PELL-LUCAS AND MODIFIED PELL SEQUENCES

ON SOME RELATIONSHIPS AMONG PELL, PELL-LUCAS AND MODIFIED PELL SEQUENCES SAÜ Fe Bilimleri Dergisi, Cilt, Sayı, s-5, 00 O Some Relatioships Amog ell, ell-lucas ad Modified ell Seueces ON SOME RELATIONSHIS AMONG ELL, ELL-LUCAS AND MODIFIED ELL SEQUENCES, Ahmet DAŞDEMİR Sakarya

More information

A 2nTH ORDER LINEAR DIFFERENCE EQUATION

A 2nTH ORDER LINEAR DIFFERENCE EQUATION A 2TH ORDER LINEAR DIFFERENCE EQUATION Doug Aderso Departmet of Mathematics ad Computer Sciece, Cocordia College Moorhead, MN 56562, USA ABSTRACT: We give a formulatio of geeralized zeros ad (, )-discojugacy

More information

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES #A5 INTEGERS 4 (24) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES Kohtaro Imatomi Graduate School of Mathematics, Kyushu Uiversity, Nishi-ku, Fukuoka, Japa k-imatomi@math.kyushu-u.ac.p

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

Some Trigonometric Identities Involving Fibonacci and Lucas Numbers

Some Trigonometric Identities Involving Fibonacci and Lucas Numbers 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 (2009), Article 09.8.4 Some Trigoometric Idetities Ivolvig Fiboacci ad Lucas Numbers Kh. Bibak ad M. H. Shirdareh Haghighi Departmet of Mathematics Shiraz

More information

On the Linear Complexity of Feedback Registers

On the Linear Complexity of Feedback Registers O the Liear Complexity of Feedback Registers A. H. Cha M. Goresky A. Klapper Northeaster Uiversity Abstract I this paper, we study sequeces geerated by arbitrary feedback registers (ot ecessarily feedback

More information

LECTURE NOTES, 11/10/04

LECTURE NOTES, 11/10/04 18.700 LECTURE NOTES, 11/10/04 Cotets 1. Direct sum decompositios 1 2. Geeralized eigespaces 3 3. The Chiese remaider theorem 5 4. Liear idepedece of geeralized eigespaces 8 1. Direct sum decompositios

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

A Combinatoric Proof and Generalization of Ferguson s Formula for k-generalized Fibonacci Numbers

A Combinatoric Proof and Generalization of Ferguson s Formula for k-generalized Fibonacci Numbers Jue 5 00 A Combiatoric Proof ad Geeralizatio of Ferguso s Formula for k-geeralized Fiboacci Numbers David Kessler 1 ad Jeremy Schiff 1 Departmet of Physics Departmet of Mathematics Bar-Ila Uiversity, Ramat

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences Aales Mathematicae et Iformaticae 43 2014 pp. 3 12 http://ami.etf.hu The log-cocavity ad log-covexity properties associated to hyperpell ad hyperpell-lucas sequeces Moussa Ahmia ab, Hacèe Belbachir b,

More information

HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS. Vinko Petričević University of Zagreb, Croatia

HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS. Vinko Petričević University of Zagreb, Croatia HOUSEHOLDER S APPROXIMANTS AND CONTINUED FRACTION EXPANSION OF QUADRATIC IRRATIONALS Viko Petričević Uiversity of Zagre, Croatia Astract There are umerous methods for ratioal approximatio of real umers

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile.  s: / THE GELIN-CESÀRO IDENTITY IN SOME THIRD-ORDER JACOBSTHAL SEQUENCES arxiv:1810.08863v1 [math.co] 20 Oct 2018 GAMALIEL CERDA-MORALES 1 1 Istituto de Matemáticas Potificia Uiversidad Católica de Valparaíso

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 7, No. 3, pp. 851 860 c 006 Society for Idustrial ad Applied Mathematics EXTREMAL EIGENVALUES OF REAL SYMMETRIC MATRICES WITH ENTRIES IN AN INTERVAL XINGZHI ZHAN Abstract.

More information

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco EXTENDING THE BERNOULLI-EULER METHOD FOR FINDING ZEROS OF HOLOMORPHIC FUNCTIONS Beaissa Beroussi Uiversité Abdelmalek Essaadi, ENSAT de Tager, B.P. 416, Tager, Morocco e-mail: Beaissa@fstt.ac.ma Mustapha

More information

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples arxiv:10021383v2 [mathnt] 9 Feb 2010 A aalog of the arithmetic triagle obtaied by replacig the products by the least commo multiples Bair FARHI bairfarhi@gmailcom MSC: 11A05 Keywords: Al-Karaji s triagle;

More information

Bounds for the Extreme Eigenvalues Using the Trace and Determinant

Bounds for the Extreme Eigenvalues Using the Trace and Determinant ISSN 746-7659, Eglad, UK Joural of Iformatio ad Computig Sciece Vol 4, No, 9, pp 49-55 Bouds for the Etreme Eigevalues Usig the Trace ad Determiat Qi Zhog, +, Tig-Zhu Huag School of pplied Mathematics,

More information

On Summability Factors for N, p n k

On Summability Factors for N, p n k Advaces i Dyamical Systems ad Applicatios. ISSN 0973-532 Volume Number 2006, pp. 79 89 c Research Idia Publicatios http://www.ripublicatio.com/adsa.htm O Summability Factors for N, p B.E. Rhoades Departmet

More information

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication MATH 37 Matrices Dr. Neal, WKU A m matrix A = (a i j ) is a array of m umbers arraged ito m rows ad colums, where a i j is the etry i the ith row, jth colum. The values m are called the dimesios (or size)

More information

arxiv: v1 [math.nt] 10 Dec 2014

arxiv: v1 [math.nt] 10 Dec 2014 A DIGITAL BINOMIAL THEOREM HIEU D. NGUYEN arxiv:42.38v [math.nt] 0 Dec 204 Abstract. We preset a triagle of coectios betwee the Sierpisi triagle, the sum-of-digits fuctio, ad the Biomial Theorem via a

More information

arxiv: v1 [math.co] 23 Mar 2016

arxiv: v1 [math.co] 23 Mar 2016 The umber of direct-sum decompositios of a fiite vector space arxiv:603.0769v [math.co] 23 Mar 206 David Ellerma Uiversity of Califoria at Riverside August 3, 208 Abstract The theory of q-aalogs develops

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

Roger Apéry's proof that zeta(3) is irrational

Roger Apéry's proof that zeta(3) is irrational Cliff Bott cliffbott@hotmail.com 11 October 2011 Roger Apéry's proof that zeta(3) is irratioal Roger Apéry developed a method for searchig for cotiued fractio represetatios of umbers that have a form such

More information

On the Inverse of a Certain Matrix Involving Binomial Coefficients

On the Inverse of a Certain Matrix Involving Binomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 008, o. 3, 5-56 O the Iverse of a Certai Matrix Ivolvig Biomial Coefficiets Yoshiari Iaba Kitakuwada Seior High School Keihokushimoyuge, Ukyo-ku, Kyoto, 60-0534, Japa

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Notes 4 Sprig 2003 Much of the eumerative combiatorics of sets ad fuctios ca be geeralised i a maer which, at first sight, seems a bit umotivated I this chapter,

More information

Some Tauberian theorems for weighted means of bounded double sequences

Some Tauberian theorems for weighted means of bounded double sequences A. Ştiiţ. Uiv. Al. I. Cuza Iaşi. Mat. N.S. Tomul LXIII, 207, f. Some Tauberia theorems for weighted meas of bouded double sequeces Cemal Bele Received: 22.XII.202 / Revised: 24.VII.203/ Accepted: 3.VII.203

More information

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones Iteratioal Joural of Algebra, Vol. 2, 2008, o. 4, 197-204 O Nosigularity of Saddle Poit Matrices with Vectors of Oes Tadeusz Ostrowski Istitute of Maagemet The State Vocatioal Uiversity -400 Gorzów, Polad

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

Estimation of Backward Perturbation Bounds For Linear Least Squares Problem

Estimation of Backward Perturbation Bounds For Linear Least Squares Problem dvaced Sciece ad Techology Letters Vol.53 (ITS 4), pp.47-476 http://dx.doi.org/.457/astl.4.53.96 Estimatio of Bacward Perturbatio Bouds For Liear Least Squares Problem Xixiu Li School of Natural Scieces,

More information

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 1 4 / 1 0 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #4 CORRECTION Algebra I 1 4 / 1 0 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O P r o f e s s o r : D r o r B a r - N a t a Correctio Homework Assigmet

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math S-b Lecture # Notes This wee is all about determiats We ll discuss how to defie them, how to calculate them, lear the allimportat property ow as multiliearity, ad show that a square matrix A is ivertible

More information

The 4-Nicol Numbers Having Five Different Prime Divisors

The 4-Nicol Numbers Having Five Different Prime Divisors 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 14 (2011), Article 11.7.2 The 4-Nicol Numbers Havig Five Differet Prime Divisors Qiao-Xiao Ji ad Mi Tag 1 Departmet of Mathematics Ahui Normal Uiversity

More information

Householder s approximants and continued fraction expansion of quadratic irrationals

Householder s approximants and continued fraction expansion of quadratic irrationals Householder s approximats ad cotiued fractio expasio of quadratic irratioals Viko Petričević Departmet of Mathematics, Uiversity of Zagre Bijeička cesta 30, 0000 Zagre, Croatia E-mail: vpetrice@mathhr

More information

A Note on Matrix Rigidity

A Note on Matrix Rigidity A Note o Matrix Rigidity Joel Friedma Departmet of Computer Sciece Priceto Uiversity Priceto, NJ 08544 Jue 25, 1990 Revised October 25, 1991 Abstract I this paper we give a explicit costructio of matrices

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information