Anisotropic mesh renement in stabilized Galerkin methods. Thomas Apel y Gert Lube z. February 13, 1995

Size: px
Start display at page:

Download "Anisotropic mesh renement in stabilized Galerkin methods. Thomas Apel y Gert Lube z. February 13, 1995"

Transcription

1 Anisotropic ms rnmnt in stabilizd Galrkin mtods Tomas Apl y Grt Lub z Fbruary 13, 1995 Abstract. T numrical solution of t convction-diusion-raction problm is considrd in two and tr dimnsions. A stabilizd nit lmnt mtod of Galrkin/Last-squars typ accomodats diusiondominatd as wll as convction- and/or raction-dominatd situations. T rsolution of boundary layrs occuring in t singularly prturbd cas is accomplisd using anisotropic ms rnmnt in boundary layr rgions. In tis papr, t standard analysis of t stabilizd Galrkin mtod on isotropic mss is xtndd to mor gnral mss wit boundary layr rnmnt. Simplicial Lagrangian lmnts of arbitrary ordr ar usd. Ky Words. Elliptic boundary valu problm, convction-diusion-raction problm, nit lmnt mtod, Galrkin/Last-squars, ms rnmnt, anisotropic nit lmnts AMS(MOS) subjct classication. 65N30, 65N50 Contnts 1 Introduction Notation and local stimats for gnral nit lmnts 3 3 A stabilizd Galrkin mtod on gnral mss Statmnt of t problm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5 3. Existnc and stability of discrt solutions : : : : : : : : : : : : : : : : : : : Convrgnc towards t wak solution : : : : : : : : : : : : : : : : : : : : : Convrgnc towards rgular solutions : : : : : : : : : : : : : : : : : : : : : : Coic of t numrical damping paramtrs : : : : : : : : : : : : : : : : : : 10 4 Anisotropic rnmnt Ncssity of boundary and intrior layr rnmnt : : : : : : : : : : : : : : : Ms gnration wit anisotropic boundary layr rnmnt : : : : : : : : : : Modid rror stimat on anisotropic lmnts : : : : : : : : : : : : : : : : : 13 5 Application to problms of cannl typ Dnition and proprtis of t solution : : : : : : : : : : : : : : : : : : : : : Gnration of t anisotropic ms in t boundary layr : : : : : : : : : : : Error stimats : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16 Rfrncs 17 T papr appard as Prprint SPC95 1 in t sris if t Cmnitz rsarc group \Scintic Paralll Computing". y Tcnisc Univrsitat Cmnitz-Zwickau, Fakultat fur Matmatik, D{09107 Cmnitz, Grmany; mail: na.apl@na-nt.ornl.gov z Gorg-August-Univrstat Gottingn, Facbric Matmatik, Institut fur Numrisc und Angwandt Matmatik, Lotzstr. 16{18, D{37083 Gottingn, Grmany; mail: lub@namu01.gwdg.d 1

2 1 Introduction Tis papr is concrnd wit t nit lmnt solution of t following lliptic boundary valu problm in a boundd polydral domain IR d, d = ; 3, wit Lipscitz L " u "u + b ru + cu = f in ; (1.1) u = 0 (1.) " (0; 1] is a paramtr. (1.1) (1.) is a linar(izd) diusion-convction-raction modl. In particular, arbitrary ratios P (x) " 1 kb(x); R d k (Pclt numbr) and (x) " 1 jc(x)j will b considrd. Hnc t wol rang from (locally) diusion-dominatd (P; 1) to (locally) convction- and/or raction-dominatd problms (P 1 and/or 1) is of intrst. In cas of P 1 and/or 1, (1.1) (1.) is of singularly prturbd typ and t solution u may gnrat sarp boundary or intrior layrs wr t solution of t limit problm wit " = 0 is not smoot or cannot satisfy t boundary condition (1.). T rsolution of suc layrs is oftn t main intrst in applications and will b considrd in tis papr. Standard Galrkin nit lmnt solutions may sur from numrical instabilitis wic ar gnratd by dominant convction and/or raction trms unlss t ms is sucintly rnd. As a rmdy, stabilizd Galrkin mtods av bn proposd: t stramlin diusion mtod (SD) [7, 1, 17], t Galrkin/Last-squars mtod (GLS), s for xampl [13], and sock-capturing variants of tm, s for xampl [9, 10, 14, 15]. In contrast to standard mtods of upwind typ, stabilizd Galrkin mtods av t advantag to b consistnt wit t wak formulation of (1.1) (1.). W will focus on t (GLS)-mtod. Up to now, stabilizd Galrkin mtods wr analyzd for isotropic mss, tat mans =% = O(1) for "! 0,! 0, wr and % dnot t diamtr of t nit lmnt and t diamtr of t largst inscribd ball in, rspctivly. But a rsolution of boundary and intrior layrs wit isotropic lmnts lads to an ovrrnmnt. An anisotropic ms rnmnt in t sns lim =% = 1 is muc mor cint in suc tin layrs. "!+0 W rmark tat t prmission of % = o ( ) for! 0 was alrady discussd in [6, 16, 18, 19] but ty did not driv an advantag (from t point of viw of numrical analysis) of using dirnt lmnt diamtrs in dirnt dirctions. Tis rmdy was rmovd in [3, 4, 5] by proving sarpr stimats on t rfrnc lmnt, and t improvd stimats wr applid to stablis a-priori ms rnmnt nar gomtrical singularitis (dgs) in t cas of diusion-dominatd quations (Poisson typ problms) [3, 5]. In tis cas anisotropy was usd in a sligtly dirnt sns tan w do r, namly lim =% = 1.!+0 But tis maks no dirnc for t anisotropic local stimats. W not tat anisotropic lmnts wr also considrd from otr points of viw in [0, 3, 4, 5, 6, 8, 9, 30]. In tis papr, w xtnd t numrical analysis of t Galrkin/Last-squars mtod to mss wic ar anisotropically rnd at last in boundary layrs. T aim is to driv rror stimats in t nrgy norm uniformly wit rspct to " (0; 1]. Suc an approac is tortically possibl also in intrior layrs. But, unfortunatly, it turns out tat t lmnts in t layr av to b orintd wit rspct to t manifold wr t layr is locatd; in gnral tis cannot b don a-priori. A numrical localization procdur for intrior layrs is dscribd in [30]. W rmark tat "-uniform stimats wr also drivd using xponntially ttd Galrkin mtods [1, ] or nit dirnc mtods on crtain ortogonal mss [7]. T outlin of t papr is as follows: In Sction w considr Lagrangian intrpolation on simplicial lmnts and rviw local inqualitis in t anisotropic cas. In Sction 3 w introduc t stabilizd Galrkin mtod (GLS) for problm (1.1) (1.). Undr wak conditions to t ms (maximal angl condition instad of minimal angl condition) w prov xistnc and stability of t discrt solution, as wll as convrgnc to t wak

3 ;3 ; ;1 E ; ;1 E Figur.1: Illustration of t dnition of t lmnt rlatd ms sizs. solution u W 1; () and to rgular solutions u W r+1; (), r 1. Morovr w driv t optimal coic of t numrical damping paramtrs. Sction 4 is dvotd to t analysis of anisotropic ms rnmnt in boundary layrs of problm (1.1) (1.) using t rsults of Sction. Howvr, t critical point is an assumption on t Sobolv norms of u wic ar ard to prov in gnral cass. For tis rason w apply ts quit gnral rsults to a spcial class of problms wr suc a priori knowldg on u is availabl and tus an almost optimal rnmnt stratgy can b proposd. Tis is don in Sction 5 by considring domains of cannl typ. In particular, t actual coic of t lmnt diamtrs in t rnmnt zon and t dtrmination of t numrical damping paramtrs is addrssd. T nal rror stimat is almost uniform wit rspct to t small paramtr ". Notation and local stimats for gnral nit lmnts W considr Lagrangian lmnts on simplics IR 3, d = ; 3; wit spacs P k of polynomials of maximal dgr k 1. T intrpolant of a continuous function v is uniquly dtrmind by (I (k) v)(x(i) ) = v(x (i) k+d ) (i = 1; : : :; n, n = dim(p k ) = d ), wr x (i) ar t nodal points of t lmnt. In tis sction, w summariz t local inqualitis and a dnsity rsult wic wr provd in [4]. For xploring t dirnt sizs of t lmnt in dirnt dirctions w introduc t following notation, compar Figur.1. For IR lt E b t longst dg of. Tn w dnot by 1; mas 1 (E ) its lngt and by ; mas ()= 1; t diamtr of prpndicularly to E. In t tr-dimnsional cas, w procd by analogy. Lt again E b t longst dg of, and lt F b t largr of t two facs of wit E F. Tn w dnot by 1; mas 1 (E ) t lngt of E, by ; mas (F )= 1; t diamtr of F prpndicularly to E, and by 3; 6 mas 3 ()=( 1; ; ) t diamtr of prpndicularly to F. Not tat for t lmnt sizs t rlation 1; : : : d; ; (.1) olds. Introduc furtr a Cartsian coordinat systm (x 1; ; x ; ; x 3; ) suc tat (0; 0; 0) is a vrtx of ^, E is part of t x 1; {axis, and F is part of t x 1; ; x ; {plan. T twodimnsional cas is tratd by analogy. Subsquntly, tis systm will b calld lmnt rlatd coordinat systm. By contrast w considr a discrtization indpndnt coordinat systm (x 1 ; x ) or (x 1 ; x ; x 3 ) wic may b global or rlatd to t boundary or it may b problm rlatd in any otr sns but indpndnt of t nit lmnt ms. For anisotropic intrpolation rror stimats w av to assum tat t lmnts fulll a maximal angl condition. Maximal angl condition (D): Tr is a constant < (indpndnt of and T ) suc tat t maximal intrior angl of any lmnt is boundd by : : 3

4 Maximal angl condition (3D): Tr is a constant < (indpndnt of and T ) suc tat t maximal intrior angl f; of t four facs as wll as t maximal angl E; btwn two facs of any lmnt is boundd by : f; ; E; : Morovr, w nd for all anisotropic stimats t coordinat systm condition. Coordinat systm condition (D): T lmnt rlatd coordinat systm (x 1; ; x ; ) can b transformd into t discrtization indpndnt coordinat systm (x 1 ; x ) via a translation and a rotation by an angl, wr j sin j C ; = 1; : Coordinat systm condition (3D): T transformation of t lmnt rlatd coordinat systm (x 1; ; x ; ; x 3; ) into t discrtization indpndnt systm (x 1 ; x ; x 3 ) can b dtrmind as a translation and tr rotations around t x j; -axs by angls j; (j = 1; ; 3), wr j sin 1; j C 3 = ; j sin ; j C 3 = 1 ; j sin 3; j C = 1 : (.) Not tat w us t symbol C for a gnric positiv constant, tat mans, C may b of dirnt valu at ac occurrnc. But C is always indpndnt of t function undr considration, of t nit lmnt ms, and particularly of ". On t contrary, som constants ar indxd wit a lttr for latr rfrnc to tm. Lt W m; (), m IN; b t usual Sobolv spacs wit t norm and t spcial sminorm kv; W m; ()k 8 < : Z jjm jd vj dx W us a multi-indx notation wit 9 = ; 1= ; jv; W m; ()j = ( 1 ; : : :; d ); jj = 1 + : : : + d ; D 1 t numbrs i (i = 1; : : :; d) ar non-ngativ < d d Z jj=m jd vj dx 9 = ; 1= ; = 1 1; d d; ; Lmma.1 (Invrs inquality) Assum tat for t lmnt t coordinat systm condition olds. Tn for v P k, k IN arbitrary, t stimat olds. T particular rsult kv; L ()k C d i=1 ; L i! 1= : (.3) kv; L ()k C s 1 d; jv; W 1; ()j (.4) is valid witout t coordinat systm condition. Morovr, tr is C s = 0 for k = 1. Lmma. (Anisotropic intrpolation rror stimats) Assum tat for an lmnt t maximal angl condition as wll as t coordinat systm condition old. Tn for v W k+1; () and m = 0; : : :; k t stimat jv I (k) v; W m; ()j C jj=k+1 m olds, if d = or m < k. If v W k+; (), tr olds jv I (k) for d = ; 3, m = 0; : : :; k. v; W m; ()j C k+1 mjjk+ m jd v; W m; ()j (.5) jd v; W m; ()j (.6) 4

5 Rmark.3 T siz of t constants C in t coordinat systm condition inuncs t siz of t constants in (.5) and (.6). Witout t coordinat systm condition w can only prov stimats witout driving advantag of t dirnt lmnt diamtrs, s t following lmma. Lmma.4 Assum tat t lmnt fullls t maximal angl condition. Tn for v W k+1; () and m = 0; : : :; k t stimat jv I (k) v; W m; ()j C k+1 m 1; jv; W k+1; ()j (.7) olds, if d = or m < k. If v W k+; () tr olds for d = ; 3, m = 0; : : :; k. jv I (k) v; W m; ()j C k+ `=k+1 ` m 1; jv; W `; ()j (.8) Not tat t coordinat systm condition is not ncssary for Lmma.4. Lt T = fg b an admissibl triangulation of = S, tat mans, lt proprtis (T 1) (T 5) of [8, Captr ] b fullld. Assum tat T satiss t maximal angl condition. Morovr, introduc t spacs V and V by V W 1; 0 () fv W 1; () : = 0g; (.9) V fv V : vj P k () 8 T g: (.10) T indx indicats tat w ar considring a family of spacs for! +0, itslf caractrizs t ms siz; w can for xampl tink of = max T 1;. Lmma.5 (Dnsity of V in V ) Lt u V b an arbitrary function, tn lim!+0 inf ku v ; W 1; ()k = 0: v V Rmark.6 If v as t proprty v W r+1; () wit r > k (or r > k + 1) tn t stimats (.5) and (.7) (or (.6) and (.8), rspctivly) old tru. If r < k (or r < k + 1) w sould us I (r) for intrpolation. Not tat I (r) u V, too. 3 A stabilizd Galrkin mtod on gnral mss 3.1 Statmnt of t problm W considr t scond ordr lliptic boundary valu problm wit t basic assumptions L " u "u + b ru + cu = f in IR d ; d = ; 3; (3.1) u = 0 (3.) (H.1) 0 < " 1, b [W 1;1 ()] d, c L 1 (), f L (), (H.) r b = 0, c 0 almost vrywr in. T variational formulation of (3.1) (3.) rads Find u V; suc tat B G (u; v) = L G (v) 8v V: (3.3) 5

6 wr B G (u; v) "(ru; rv) + 1 f(b ru; v) (b rv; u) g + (cu; v) ; (3.4) L G (v) (f; v) ; (3.5) and (: ; :) G dnots t innr product in L (G), G. Morovr, t standard Galrkin mtod (G) of (3.3) is introducd by Find u V ; suc tat B G (u ; v ) = L G (v ) 8v V : (G) V and V ar introducd in Sction. W rmind t wll-known fact tat t solution u of (G) on isotropic mss may sur from non-pysical oscillations unlss t lmntwis numbrs P " 1 1; kb; [L 1 ()] d k; " 1 1;kc; L 1 ()k (3.6) ar sucintly small. As a rmdy, w considr t following stabilizd mtod of Galrkin/ Last-squars typ: wit Find U V ; suc tat B SG (U ; v ) = L SG (v ) 8v V : (GLS) B SG (u; v) B G (u; v) + (L " u; L " v) ; (3.7) L SG (v) L G (v) + (f; L " v) ; (3.8) and a st f g of non-ngativ numrical diusion paramtrs to b dtrmind blow. 3. Existnc and stability of discrt solutions First of all, w stat lowr and uppr bounds of t bilinar form B SG (: ; :). Lmma 3.1 Undr t assumptions (H.1), (H.), tr olds for v V wit vj L () 8 T tat B SG (v; v) = jjj v jjj "; wit jjj v jjj "; "krv; L ()k + k p cv; L ()k + kl " v; L ()k : (3.9) Proof St u = v in (3.7). Lmma 3. For v V and u V wit uj L () 8 T tr olds jb SG (u; v )j jjj v jjj "; 8 < : jjj u jjj "; + Z ku; L ()k! 1= 9 = ; (3.10) wit C s is t constant from (.4). Z minfb " 1 ; 1 + "C s d; + C g; (3.11) B kb; [L 1 ()] d k; C kc; L 1 ()k: (3.1) Proof Intgration by parts of t non-symmtric part of B SG (: ; :) togtr wit (H.) yilds for all u; v V nc wit (3.4), (3.7), and (3.9) 1 f(b ru; v) (b rv; u) g = (b rv; u) ; 6

7 jb SG (u; v)j "kru; [L ()] d k krv; [L ()] d k + k p c u; L ()k k p c v; L ()k + + kl " u; L ()k! 1= kl " v; L ()k! 1= + j(b rv; u) j jjj u jjj "; jjj v jjj "; + j(b rv; u) j: (3.13) Considr t last trm at t rigt and sid. W gt for v V via invrs inquality (.3) j(b rv ; u) j ku; L ()k minfkb rv ; L ()k; k "v + b rv + cv ; L ()k + k"v ; L ()k + kcv ; L ()kg ku; L ()k minfb krv ; [L ()] d k; kl " v ; L ()k + "C s 1 d; krv ; L ()k + p C k p c v ; L ()kg minfb " 1= ; maxf 1= ; " 1= C s 1 d; ; C1= g g jjj v jjj ku; L ()k (3.14) wr jjj v jjj is dnd in analogy to (3.9) by jjj v jjj "krv ; L ()k + k p cv ; L ()k + kl " v ; L ()k : (3.15) Using (3.13) { (3.15) w gt t assrtion by standard inqualitis. Furtrmor, w nd t following a-priori stability stimat. Lmma 3.3 For t solution U V and t rsidual L " U f of scm (GLS) tr olds jjj U jjj "; + kl " U f; L ()k D C(minfC F " 1 ; 1 g + )kf; L ()k (3.16) wit max, inf c(x) and Fridrics' constant C F. Proof St v = U in (GLS). Lmma 3.1, togtr wit Holdr's and Fridrics' inqualitis, implis jjj U jjj "; B SG (U ; U ) = L SG (U ) kf; L ()k ku ; L ()k + kf; L ()k! 1= kl " U ; L ()k! 1= nc kf; L ()k minf 1= k p cu ; L ()k; C F kru ; [L ()] d kg + + p kf; L ()k 1 jjj U jjj ";0 + 1 minf 1 ; " 1 C F gkf; L ()k kl " U ; L ()k! 1= kl " U ; L ()k + kf; L ()k ; jjj U jjj "; (minf 1 ; " 1 C F g + )kf; L ()k A sligt modication of t proof yilds t wigtd control of t discrt rsidual. Lmma 3.3 implis uniqunss and stability of t (GLS)-solution on an gnral admissibl ms (including anisotropic ms rnmnt). Torm 3.4 Undr assumptions (H.1), (H.) tr xists on and only on solution U V of scm (GLS) wic additionally satiss (3.16). 7

8 3.3 Convrgnc towards t wak solution Lt us considr now t strong convrgnc of t family fu g of solutions of (GLS) to t wak solution u V of (3.3). Not tat w us only data undr t assumptions (H.1), (H.) and a tcnical condition (H.3) on t paramtr st f g: (H.3) lim!+0 maxf ("C s d; + B " 1 + C )g = 0 Torm 3.5 Assum tat (H.1) { (H.3) ar valid. Tn t solution U V of (GLS) convrgs strongly in V to t solution u V of (3.3) according to Proof W split t rror u U as follows: lim jjj u U jjj ";0 = 0: (3.17)!+0 u U = (u u ) + (u U ) w 1 + w (3.18) wit t Galrkin solution u V of (G), tat mans of (GLS) wit = 0 8. Lt v b t bst approximat of v in V : jjj v v jjj ";0 = min v V jjj v v jjj ";0 : Dnoting by ~ u u t approximation rror, tr olds via (3.3) { (3.5) and (3.10) wit = 0 8: jjj u u jjj ";0 B G (u u; u u) = B G (u u; u u) jjj u u jjj ";0 4 jjj ~ jjj";0 + B " 1 k~; L ()k! 1= 3 5 ; nc jjj u u jjj ";0 jjj ~ jjj ";0 + B " 1 k~; L ()k! 1= F (~): Lmma.5 yilds tat for u V lim F (~) = 0 and!+0 lim jjj w 1 jjj ";0 lim (jjj u u jjj ";0 + jjj u u jjj ";0 ) = 0: (3.19)!+0!+0 For w = u U V w av by (3.4), (3.7), (3.8), (3.9), (3.18), (G), (GLS), and (3.16) jjj w jjj ";0 = B G (w ; w ) = (L " U f; L " w )! 1= kl " U f; L ()k kl " w ; L ()k! 1= D k "w + b rw + cw ; L ()k! 1= DT: (3.0) T invrs inquality (.3) yilds T " C s d; krw ; [L ()] d k + B krw ; [L ()] d k + C k p cw ; L ()k maxf ("C s d; + B " 1 + C )g jjj w jjj ";0 : (3.1) A sucint condition for lim jjj w jjj ";0 = 0 is tn (H.3), nc via (3.18), (3.19) w arriv!+0 at (3.17). 8

9 Rmark 3.6 W conjctur tat t asymptotic rror stimat (3.17) rmains valid undr t wakr condition (H.3') j "C s d; j 1 8 T and lim!+0 maxf (B " 1 + C )g = 0. Tis assrtion is clar in t cas of picwis linar, simplicial lmnts (k = 1) bcaus tr olds C s = 0. In t gnral cas k 1 w wr not abl to prov tis, vn if w assumd t wak rgularity assumption L " u = f in L () 8 T. W found only a simplication of t proof of (3.17) but w wr not abl to avoid (H.3). 3.4 Convrgnc towards rgular solutions W considr now t cas of smoot solutions of (3.3) according to (H.4) u V \ W r+1; () for som r IN, r 1. Consquntly, w av B SG (u U ; v) = 0 8v V : (3.) Not tat (H.4) is valid wit r = 1 if is convx. In ordr to simplify t fortcoming analysis w assum tat t following modication of (H.3') olds: (H.3") 1 "C s d; + C, wic is wit 1 1; d; and " 1 1; C quivalnt to Hnc w rplac Z in (3.11) by 1; "( C s + ) : ~Z minfb " 1 ; 1 g: (3.3) Torm 3.7 Lt (H.1), (H.), (H.3"), (H.4), as wll as t maximal angl condition b satisd. Tn tr old for t rror u U jjj u U jjj "; C A E minfk;rg 1; ju; W 1+minfk;rg; ()j (3.4) if minfk; rg 3 or d =, and jjj u U jjj "; C A witout ts conditions. E is dnd by minfk;r 1g E `=minfk;r 1g 1 ` 1;ju; W `+; ()j ; (3.5) E " + C 1; + (" 1; + B + C 1;) + 1; minf" 1 B ; 1 g: (3.6) Proof Using t rror splitting u U = (u I (minfk;rg) u) + (I (minfk;rg) u U ) + ; w conclud from Lmmata 3.1, 3. and (3.), (3.3) tat jjj jjj "; B SG (; ) = B SG ( ; ) = B SG (; ) jjj jjj "; 8 < : jjj jjj "; + ~Z k; L ()k! 1= 9 = ; ; (3.7) jjj u U jjj "; jjj jjj "; + ~Z k; L ()k! 1= : (3.8) 9

10 T local intrpolation rror stimat (.7) yilds (3.4). Not tat in t two-dimnsional cas m = k is allowd. Furtrmor, for k = 1 tr is v j = 0 8v V, tat mans, (.7) is usd only for m = 0; 1. For (3.5) w us I (minfk;r 1g) instad of I (minfk;rg) and (.8) instad of (.7) in ordr to b abl to trat also linar and quadratic lmnts in t tr-dimnsional cas. 3.5 Coic of t numrical damping paramtrs A suitabl stratgy is to coos t numrical damping paramtrs in suc a way, tat t trms E in (3.4) and (3.5) ar minimizd wit rspct to. Lmma 3.8 T trm E dnd in (3.6) is minimal for 1; = p q if P " 1 + P + P ~ 1 + P + (3.9) (convction-raction dominatd cas), and ( " 1; = min ; B " 1 + P P + ) if 0 P ~ P (3.30) (diusion dominatd cas). Hnc tr olds E C"(1 + P + ) = C(" + 1; B + 1;C ); (3.31) d = ; 3, 1 r k. For t dnition of P and s (3.6). Proof Lt rst b P " 1 1 1; suc tat minf" 1 B ; 1 g = 1. Tn E is minimizd for Tn t condition P 1; = p : (3.3) " 1 + P + " 1 1 1; is quivalnt by (3.3) to P p 1 + P +, tat mans P (1 + p )=, and w av E = "(1 + + p 1 + P + ) and tus (3.31). Considr now t cas tat 1; minf" 1 B ; 1 g = "P. If w dmand tat t trm (" 1; + B + C 1; ) in (3.6) is not gratr tan t otr trm " + C 1; + 1; " 1 B tn w nd for t inquality " + C 1; + 1; B " 1 " 1; + B + C 1; = 1; " 1 + P + : (3.33) 1 + P + A simpl calculation givs via (3.6) tat E C"(1+P + ) C"(1+ p 1 + P + + ), nc (3.31). Rmark 3.9 Not tat assumption (H.3) in Subsction 3.3 is not guarantd by (3.9) (3.30) if k, s also Rmark 3.6. Rmark 3.10 T analysis of Lmma 3.8 is valid only modulo multiplicativ constants in (3.4) (3.5) wic ar indpndnt of ", 1;, and. Trfor it is possibl to improv formula (3.9) (3.30). Lt us considr picwis linar lmnts (k = 1) and t cas c = 0. In cas of d = 1 wit constant cocints " and b, w av t wll-known suprconvrgnc rsult of nodally xact solutions for = 1; cot P P : (3.34) 10

11 T proposd tuning approac rsults in = 1; B P p P < : 1; B if P 1 P 1; 1B if P 1 (3.35) wic rcts t asymptotic baviour of (3.34) for bot P! +1 and P! Anisotropic rnmnt 4.1 Ncssity of boundary and intrior layr rnmnt A critical inspction sows tat rror stimats (3.4){(3.6) may b uslss in boundary or intrior layr rgions R " unlss t ms is sucintly n: ju; W r+1; ()j = O(1) for "! +0 if 6 R " ; ju; W r+1; ()j! +1 for "! +0 if R " : Practical calculations undrlin tis and sow t occurrnc of so-calld wiggls in t cas of larg numbrs P 1 and/or 1, for tir dnition s (3.6). Typically, ty occur globally in for t standard Galrkin mtod, but ty ar rstrictd to a numrical layr rgion R of widt O( j ln j) for t (GLS)-scm. It turns out tat t layrs R ar in gnral largr tan t boundary and intrior layrs R " of widt O(" 1j ln "j). T sizs of 1 and dpnd on t problm and caractriz t layr, for 1 s t xampl blow, dpnds on t discrtization and is not known in gnral. Nvrtlss, a rsolution of sarp layr gradints is oftn t main intrst in applications, and improvd mtods ar ncssary. Usually tis is accomplisd by using xponntially ttd mtods [1] or isotropic ms rnmnt. W try to rsolv R " by mans of anisotropic ms rnmnt in ordr to dcras t complxity of t discrt problm. T anisotropic ms in t boundary layr sould giv uniform bounds for jjj u U jjj "; wit rspct to " and contain a minimal numbr of nit lmnts. In ordr to xploit t anisotropic intrpolation rsults, s Sction, w nd sarp local Sobolv norm stimats of u. Suc stimats dpnd strongly on t asymptotic structur of u for 0 < " 1, for xampl on t typ of t boundary and intrior layrs, on t xistnc of turning points wit kbk = 0, or on priodic caractristics. In t cas of sucintly smoot data w can tak advantag of asymptotic xpansions, s [7]. Unfortunatly, suc stimats ar rar in t litratur for t cas of Lipscitzian domains IR d, d, and lss rgular data, s [] for t problms apparing. Futur rsarc sould xtnd t knowldg about t solutions. T rst task is to dtct t location of t manifolds wr boundary and intrior layrs manat. Tis could b accomplisd in an adaptiv mtod, s [30]. Nvrtlss, w focus r on incomprssibl ow lds b. In contrast to comprssibl ow problms, intrior layrs (as socks) ar rar, and t location of boundary layrs is wll-known. To gt an xampl w considr a simpl but typical boundary layr problm for t diusion-convction-raction modl (3.1) (3.) in a squar or cub = (0; 1) d : L " u "u d i=1 cos( i + cu = f in ; (4.1) u = g (4.) wit i [0; ]. In cas of i (0; ) tr occur only ordinary (or outow) boundary layrs of ticknss O(" ln 1 " ) at x i = 0, i = 1; : : :; d. In t cas of i =, i = 1; : : :; d, (no convction) and c > 0 tr xists a boundary layr of ticknss O( p " ln 1 " ) along t For 1 = 0 and (= 3 ) = parabolic (or caractristic) layrs of ticknss 11

12 T ) anisotropic lmnt K K T = T ) ;K Figur 4.1: Anisotropic ms in t boundary layr rgion O( p " ln 1 " ) ar locatd wit t xcption of t inow boundary part at x 1 = 1 (no layr) and t outow boundary part at x 1 = 0 wr again ordinary boundary layrs of ticknss O(" ln 1 " ) occur [1]. In Sction 5 w considr a mor gnral typ of domain, but only in t two-dimnsional cas. 4. Ms gnration wit anisotropic boundary layr rnmnt T ida is now to construct a xd ms in t boundary layr rgion wit anisotropic rnmnt and to us an isotropic ms away from t boundary layrs, possibly constructd by an advancing front tcniqu and (isotropically) rnd via standard adaptiv mtods (including intrior layr rnmnt). Witout loss of gnrality w assum tat a boundary layr of ticknss O(" ln 1 ") is locatd at som lin or W av = 1 or = 1 in xampl abov but it can b mor gnral. W introduc local coordinats (; ) or (; ; ) wit = 0 T. As a starting point, w gnrat an ortogonal ms via lins (plans) = i, = j, ( = k ) wit ral numbrs i, j, k (i = 0; : : :; M, j = 0; : : :; j 0, k = 0; : : :; k 0 ) and particularly 0 = 0, M = d(") " ln 1 ". W assum tat for a boundary layr rctangl (rctangular cub) K = [ i ; i+1 ] [ i ; i+1 ] or K = [ i ; i+1 ] [ i ; i+1 ] [ i ; i+1 ] t following rlation olds clos to t boundary: ;K i+1 i K maxf ;K ; ;K g maxf j+1 j ; k+1 k g: (4.3) T xcptions ar gomtric singularitis (cornrs, dgs) of t wr possibly dirnt boundary layr parts intrsct. Not tat our approac guarants an strongr rnmnt tr. T lmnts K ar split into simplicial lmnts ( triangls or 6 ttradra) wic satisfy t maximal angl condition and t coordinat systm condition wit rspct to t boundary ttd coordinat systm, s Figur 4.1. T ms outsid t (xd) boundary layr rgions sould b of isotropic typ. T rsults of Sction on invrs and intrpolation rror stimats ar tn applicabl. Not tat an isotropic ms rnmnt is possibl via standard rror stimators in t rgion away from t boundary layrs. Tis is vn dsirabl in t cas of intrior layrs. Bcaus of t diculty wit t coordinat systm condition, no attmpt will b mad r to rsolv intrior layrs (wic ar in gnral locatd at caractristic lins or surfacs) wit anisotropic lmnts. Howvr, tis problm was attackd xprimntally in [30]. W rfr also to t tst in [4] wr a numrical xampl is givn for t snsibility of t solution wit rspct to t coordinat systm condition. 1

13 4.3 Modid rror stimat on anisotropic lmnts W try to rn t rror analysis of Torm 3.7 on anisotropic boundary lmnts R. In ordr to apply t anisotropic intrpolation rsults of Sction, it is ssntial tat ac lmnt R satiss t maximum angl condition and t coordinat systm condition wit rspct to t boundary ttd systm, s gur 4.1. Starting again from (3.8) and using Lmma., w nd jjj u U jjj "; I (u) wit I (u) "kr; L ()k + C k; L ()k + + " k; L ()k + B kr; L ()k + C k; L ()k + + minfb " 1 ; 1 gk; L ()k (4.4) C " jd u; W ; ()j + (" + B ) jd u; W 1; ()j + jj=r 1 + C + C + min C jj=r 1 jj=1 jj=1 n B " 1 ; 1 oi jj=r+1 jj=r jd u; L ()j ; E an ;; (+) kd ++ u; L ()k (4.5) E;; an " + C + (" + B + C ) + minf" 1 B ; 1 g (4.6) providd tat u W r+1; () and d =, 1 r k, or d = 3, 3 r k. In t otr cas d = 3, k = 1;, w conclud from (4.4) and (.6) I (u) C E;; an (+) kd ++ u; L ()k + jj=r 1 jj=1 jj=1 + s kd +++s u; L ()k (4.7) s=1 A suitabl stratgy is now to gnrat t anisotropic ms (via coic of ; = d; ) and to coos t numrical damping paramtrs in suc a way, tat t rror trm I (u) is minimizd. Tat mans, tat t task is to minimiz t dirnt trms E;; an, but t problm is tat tr is only on fr paramtr. On account of t prsumably largst u u, w propos as a rst attmpt to minimiz r+1 ;; an in t cas d = = (0; 1) for d = and = = (0; 0; 1) for d = 3, rspctivly. Considring E an " + C d; + (" d; + B + C d;) + d; min n B " 1 ; 1 o ; (4.8) w procd as in t proof of Lmma 3.8 and coos according to (3.9), (3.30) wit, P and rplacd by d;, P an and an, P an d;kb; [L 1 ()] d k ; an " d; kc; L1 ()k ; (4.9) " rspctivly. But for a conclusiv rror stimat w must also considr t trms (+) kd ++ u; L ()k : Tat is wy w giv a mor rnd analysis for a spcial cas in t nxt sction. 13

14 Figur 5.1: Problms of cannl typ. 5 Application to problms of cannl typ 5.1 Dnition and proprtis of t solution In viw of t dicultis to gt a priori information on t solution u w rstrict our considration in tis sction to a crtain class of problms wic sould b introducd in t following. T main point is a corrspondnc of t domain and t ow ld b considrd. Givn a subdomain G and a ow ld b w dnot by (@G), (@G) +, and (@G) 0 t inow, outow and caractristic parts t indx dnots t sign of (b G )(x) wr G is t outward unit normal Lt x () b t solution of _() = b(()); (0) = x ; t stramlin of b passing troug x. Dnoting for any point x G [ (@G) by G + (x) inff > 0 : x () 6 Gg t rst xit tim of x () from G, w dn t domain of inunc of any by E( 0 ) f x () G : x 0 ; 0 G + (x)g: W say now tat a domain G is of cannl typ wit rspct to a ow ld b if t following tr conditions ar satisd: (i) G = E((@G) ), (ii) E((@G) 0 ) (@G) 0, E((@G) \ (@G) + ) \ G = ;, (iii) j(b G )(x)j > 0 on (@G) [ (@G) +. In particular, tis implis tat all stramlins x (), x G, lav G in nit tim. Hnc turning points wit kb; IR d k = 0 and priodic caractristics ar xcludd. For an illustration of cannl typ problms s Figur 5.1, wras Figur 5. sows som situations not allowd. On t otr and, boundary layrs will appar in t cas G = at (@) + and (@) 0. W av t following rsult of [1, Torm.3] wic givs a localization of t boundary layrs R ". Lmma 5.1 Lt and i, i = 1;, b simply connctd domains of cannl typ, and assum tat 1, (@ 1 ) (@ ) (@) and tat (@ ) is sucintly smoot. For givn numbrs s > 0 and r IN 0 tr xist C i (r; s; i ), i = 1;, and C( ; ) suc tat if dist( 1 ; (@ ) + ) C 1 "j ln "j; dist( 1 ; (@ ) 0 ) C p "j ln "j; 14

15 Violats r b = 0 Violats (i) Violats (ii) Violats (iii) Figur 5.: Not allowd situations. tn n o ku; W r+1; ( 1 )k C kf; W r+1; ( )k + " s kf; L ()k : So w dnot by R " fx : dist(x; (@) + ) C 1 "j ln "j; dist(x; (@) 0 ) C p "j ln "jg (5.1) t boundary layr rgion of a domain of cannl typ. Furtrmor w dn R + " fx R " : dist(x; (@) + ) C 1 "j ln "jg R 0 " fx R " : dist(x; (@) 0 ) C p "j ln "jg (5.) R c " R + " \ R 0 " 5. Gnration of t anisotropic ms in t boundary layr T mss ar constructd as introducd in Subsction 4.. W coos 1; = ; = g 1 ("); and ; = ; = g ("); (5.3) wit g 1 (") = O(1); g (") = " if R + " n R c "; g 1 (") = O(1); g (") = p " if R 0 " n R c " ; g 1 (") = p "; g (") = " if R c "; (5.4) 15

16 R + " b R c " R 0 " Figur 5.3: Gnration of t anisotropic ms, s xampl (4.1) (4.) wit 1 = 0, =. and obsrv tat g (") = o(g 1 (")) and g 1 (") O(1): (5.5) Not tat by construction a condnsd ms occurs around t cornrs of (@) + [ (@) 0 wr t layrs intrsct, compar Figur 5.3. Outsid R " w doubl ; in -dirction (prpndicularly to (@) + and (@) 0, rspctivly) until ;. W s asily tat t numbr of lmnts is of t ordr j ln "j 1. In rgard of lacking Sobolv norm stimats of u in R ", w assum t following ypotsis to b satisd: (H.6) kd ; u; L ()k p mas() [(g 1 (")) 1 + (g (")) + (g1 (")) 1 (g (")) ] K(f) wit g 1, g as in (5.4). T manifold wit = 0 corrsponds to (@) + for R + " n R c " and to (@) 0 lswr in R ". Rmark 5. As in Siskin mss [11, 7] w could omit t transition layr wr w doubl t prvious ms sizs; our fortcoming analysis is not actd. Howvr, w xpct a mor rgular baviour of t discrt solution and bttr algbraic proprtis of t rlatd systm of quations wit our approac. 5.3 Error stimats Wit I (u) as in (4.4), w split t rror as follows: jjj u U jjj "; I (u) = I (u) + nr " R " I (u): (5.6) In viw of Lmma 5.1 w can considr t lmnts in t rst sum as in Sction 3 and it rmains to trat t anisotropic lmnts R ". Lmma 5.3 T rror trm I (u) for R " is minimal (up to multiplicativ constants) for t following coic of : wit P an ; = p if (P an " 1 + (P an ) + ( an ) ) ( P ~ an ) ( ) " ; = min ; B " 1 + (P an ) + an 1 + (P an ) + ( an ) and an dnd in (4.9). Hnc tr olds q if 0 P an 1 + (P an I (u) C r+ K (f) 1; 1 an ; "(1 + P + an ) C r+ K (f)(" 1; 1 ; + C 1; ; + B 1; ) ) + ( an ) ; (5.7) ~ P an ; (5.8) (5.9) 16

17 Proof T rlations (4.5), (5.3), (5.5) as wll as assumption (H.6) imply I (u) = C E;; an (+) kd ++ u; L ()k C jj=r 1 jj=1 jj=1 jj=r 1 jj=1 jj=1 E an ;; (g 1 (") ) ( 1+ 1 )+1 (g (") ) ( + )+1 g ( ) 1 + g ( + + ) + g ( ) K (f) C r+ K (f) E;; an g ;; ; (5.10) jj=1 jj=1 1 g ( + + ) g ;; g g +1 + g g +1 + g g +1 : (5.11) Exprssing g ;; via (5.3) in trms of, 1;, and ;, and using ; = o( 1; ), 1; O(1), w nd g ;; 1; 1 ; ; g ;; 1; ; ; g ;; 1; 3 ; ; jj=1 jj=1 tat mans wit (4.6) tat jj=1 jj=1 I (u) C r+ K (f) 1; 1 ; Ean jj=1 jj=1 wit E an from (4.8), and tus w gt wit t sam argumnts as in Subsction 4.3 t xprssions (5.7) (5.8) for and (5.9) for I (u). Not tat tis rsult dos not old for gnral anisotropic mss or gnral convctiondiusion-raction problms bcaus t assrtion is mainly basd on assumption (H.6) and a ms satisfying (5.3). As a rsult of t analysis in Lmmata 3.8 and 5.3 w propos t dsign of t numrical damping paramtrs as in (5.7) (5.8) in all cass. Tat mans, as wll as t local numbrs P and ar dpndnt only on ;, wic is quivalnt to t radius of t innr circl. Using (5.6) w can summariz t rror stimats as follows. Corollary 5.4 Undr t assumptions (H.1) : : : (H.6), u H r+1; (), 1 r k, and using t anisotropically rnd boundary layr ms (5.3) (5.4) and t paramtr dsign (5.7) (5.8) w gt t almost uniform (wit rspct to ") rror stimat jjj u U jjj "; C r j ln "jk (f)(1 + C 1; ; + B 1; ): (5.1) Rmark 5.5 T paramtrs ar vry small in t boundary layr, but = 0 dos not giv t optimal rsult: In parabolic boundary layrs w would gt instad jjj u U jjj "; C r j ln "jk (f) p "(1 + (C + " 1 B ): Rmark 5.6 W conjctur tat t analysis of tis sction can b rnd in ordr to avoid t factor j ln "j in (5.1) if w usd a sarpr stimat on t xponntial dcay of t solution tan in Lmma 5.1 and Assumption (H.6). i T rst autor was supportd by DFG (Grman Rsarc Founda- Acknowldgmnt. tion), No. La 767-3/1. 17

18 Rfrncs [1] D. Adam, A. Flgnaur, and H.-G. Roos. A nonconforming xponntially ttd nit lmnt mtod II: T discrtization rror. Rport MATH-NM , TU Drsdn, [] D. Adam and H.-G. Roos. A nonconforming xponntially ttd nit lmnt mtod I: T intrpolation rror. Rport MATH-NM , TU Drsdn, [3] T. Apl and M. Dobrowolski. Anisotropic intrpolation wit applications to t nit lmnt mtod. Computing, 47:77{93, 199. [4] T. Apl and G. Lub. Local inqualitis for anisotropic nit lmnts and tir application to convction-diusion problms. Prprint SPC94 6, TU Cmnitz-Zwickau, Submittd to Computing. [5] T. Apl and S. Nicais. Elliptic problms in domains wit dgs: anisotropic rgularity and anisotropic nit lmnt mss. Prprint SPC94 16, TU Cmnitz-Zwickau, Submittd to SIAM J. Numr. Anal. [6] I. Babuska and A.K. Aziz. On t angl condition in t nit lmnt mtod. SIAM J. Numr. Anal., 13:14{6, [7] A. Brooks and T. J. R. Hugs. Stramlin Upwind Ptrov{Galrkin formulations for convction dominatd ows wit particular mpasis on t incomprssibl Navir{ Stoks quations. Comput. Mt. Appl. Mc. Engrg., 13:199{59, 198. [8] P. Ciarlt. T nit lmnt mtod for lliptic problms. Nort-Holland Publising Company, Amstrdam, [9] R. Codina. A discontinuity-capturing crosswind-dissipation for t nit lmnt solution of t convction-diusion quation. Comput. Mt. Appl. Mc. Engrg., 110:35{ 34, [10] K. Eriksson and C. Jonson. Adaptiv stramlin diusion nit lmnt mtods for convction-diusion problms. Tcnical rport, Dpt. Mat., Calmrs Univ. of Tcnology, Gotborg, [11] W. Guo and M. Styns. Pointwis rror stimats for a stramlin diusion scm on a Siskin ms for a convction-diusion problm. Submittd for publication. [1] T. J. R. Hugs. Rcnt progrss in t dvlopmnt and undrstanding of SUPG mtods wit spcial rfrnc to t comprssibl ulr and navir stoks quations. J. Numr. Mt. Fluids, 7:161{175, [13] T. J. R. Hugs, L. P. Franca, and G. M. Hulbrt. A nw nit lmnt formulation for computational uid dynamics VIII: T Galrkin/Last squars mtod for t advctiv diusiv quation. Comput. Mt. Appl. Mc. Engrg., 73:173{189, [14] T. J. R. Hugs and M. Mallt. A nw nit lmnt formulation for computational uid dynamics IV: A discontinuity capturing oprator for multidimnsional advctivdiusiv systms. Comput. Mt. Appl. Mc. Engrg., 58:39{339, [15] T. J. R. Hugs, M. Mallt, and A. Mizukami. A nw nit lmnt formulation for computational uid dynamics II: Byond SUPG. Comput. Mt. Appl. Mc. Engrg., 54:341{355, [16] P. Jamt. Estimations d'rrur pour ds lmnts nis droits prsqu dgnrs. R.A.I.R.O. Anal. Numr., 10:43{61,

19 [17] C. Jonson, U. Navrt, and J. Pitkaranta. Finit lmnt mtods for linar yprbolic problms. Comput. Mt. Appl. Mc. Engrg., 45:85{31, [18] M. Krzk. On smirgular familis of triangulations and linar intrpolation. Appl. Mat., 36:3{3, [19] M. Krzk. On t maximum angl condition for linar ttradral lmnts. SIAM J. Num. Anal., 9:513{50, 199. [0] J. Lang. An adaptiv nit lmnt mtod for convction-diusion problms by intrpolation tcniqus. Tcnical Rport TR 91{4, ZIB Brlin, [1] U. Navrt. A nit lmnt mtod for convction-diusion problms. PD tsis, Calmrs Univrsity of Tcnology, Gotborg, 198. [] E. O'Riordan and M. Styns. A globally uniformly convrgnt nit lmnt mtod for a singularly prturbd lliptic problm in two dimnsions. Mat. Comp., 57:47{6, [3] J. Prair, M. Vadati, K. Morgan, and O. C. Zinkiwicz. Adaptiv rmsing for comprssibl ow computation. J. Comp. Pys., 7:449{466, [4] T. von Ptrsdor. Randwrtproblm dr Elastizitatstori fur Polydr Singularitatn und Approximationn mit Randlmntmtodn. PD tsis, TH Darmstadt, [5] W. Racowicz. An anisotropic -typ ms rnmnt stratgy. Comput. Mtods Appl. Mc. Engrg., 109:169{181, [6] N. A. Snk. Uniform rror stimats for crtain narrow Lagrangian nit lmnts. Mat. Comp., 63:105{119, [7] G. I. Siskin. Ms approximations of singularly prturbd lliptic and parabolic problms. Russ. Acad. Sci., Ekatrinburg, 199. (Russian). [8] K. Sibrt. An a postriori rror stimator for anisotropic rnmnt. Prprint 313, Univrsitat Bonn, SFB 56, [9] G. Zou and R. Rannacr. Ms orintation and anisotropic rnmnt in t stramlin diusion mtod. Prprint 93-57, Univrsitat Hidlbrg, IWR, SFB 359, [30] O. C. Zinkiwicz and J. Wu. Automatic dirctional rnmnt in adaptiv analysis of comprssibl ows. Int. J. Num. Mt. Eng., 37:189{10,

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM A C 0 INERIOR PENALY MEHOD FOR A FOURH ORDER ELLIPIC SINGULAR PERURBAION PROBLEM SUSANNE C. BRENNER AND MICHAEL NEILAN Abstract. In tis papr, w dvlop a C 0 intrior pnalty mtod for a fourt ordr singular

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Discontinuous Galerkin Approximations for Elliptic Problems

Discontinuous Galerkin Approximations for Elliptic Problems Discontinuous Galrkin Approximations for lliptic Problms F. Brzzi, 1,2 G. Manzini, 2 D. Marini, 1,2 P. Pitra, 2 A. Russo 2 1 Dipartimnto di Matmatica Univrsità di Pavia via Frrata 1 27100 Pavia, Italy

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. In tis papr, t autors stablisd a unifid framwork for driving and

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems Journal of Computational and Applid Matmatics 235 (2011) 5422 5431 Contnts lists availabl at ScincDirct Journal of Computational and Applid Matmatics journal ompag: www.lsvir.com/locat/cam An adaptiv discontinuous

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

arxiv: v1 [math.na] 8 Oct 2008

arxiv: v1 [math.na] 8 Oct 2008 DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER XIAOBING FENG AND HAIJUN WU arxiv:080.475v [mat.na] 8 Oct 008 Abstract. Tis papr dvlops and analyzs som intrior pnalty discontinuous

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems Convrgnc analysis of a discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of Hlmoltz problms Moamd Amara Laboratoir d Matématiqus Appliqués Univrsité d Pau t ds Pays d l Adour

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains Finit lmnt approximation of Diriclt boundary control for lliptic PDEs on two- and tr-dimnsional curvd domains Klaus Dcklnick, Andras Güntr & Mical Hinz Abstract: W considr t variational discrtization of

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

ruhr.pad An entropy stable spacetime discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations

ruhr.pad An entropy stable spacetime discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations Bild on Scrift: rur.pad UA Rur Zntrum für partill Diffrntialglicungn Bild mit Scrift: rur.pad UA Rur Zntrum für partill Diffrntialglicungn An ntropy stabl spactim discontinuous Galrkin mtod for t two-dimnsional

More information

arxiv: v1 [math.na] 22 Oct 2010

arxiv: v1 [math.na] 22 Oct 2010 arxiv:10104563v1 [matna] 22 Oct 2010 ABSOLUTELY STABLE LOCAL DSCONTNUOUS GALERKN METHODS FOR THE HELMHOLTZ EQUATON WTH LARGE WAVE NUMBER XAOBNG FENG AND YULONG XNG Abstract Two local discontinuous Galrkin

More information

arxiv: v1 [math.na] 3 Mar 2016

arxiv: v1 [math.na] 3 Mar 2016 MATHEMATICS OF COMPUTATION Volum 00, Numbr 0, Pags 000 000 S 0025-5718(XX)0000-0 arxiv:1603.01024v1 [math.na] 3 Mar 2016 RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative MAT 7 Tst Rviw (Spring ) Tst on April in PSA Sction.7 Implicit Drivativ Rmmbr: Equation of t tangnt lin troug t point ( ab, ) aving slop m is y b m( a ). dy Find t drivativ y d. y y. y y y. y 4. y sin(

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1 wald s Mthod Rvisitd: Rapidly Convrgnt Sris Rprsntations of Crtain Grn s Functions Vassilis G. Papanicolaou 1 Suggstd Running Had: wald s Mthod Rvisitd Complt Mailing Addrss of Contact Author for offic

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME ABSTRACT J Ettanfoui and O Kadir Laboratory of Matmatics, Cryptograpy and Mcanics, Fstm, Univrsity Hassan II of Casablanca, Morocco In tis papr,

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

Space-Time Discontinuous Galerkin Method for Maxwell s Equations

Space-Time Discontinuous Galerkin Method for Maxwell s Equations Commun. Comput. Pys. doi: 0.4208/cicp.23042.2722a Vol. 4, No. 4, pp. 96-939 Octobr 203 Spac-Tim Discontinuous Galrkin Mtod for Maxwll s Equations Ziqing Xi,2, Bo Wang 3,4, and Zimin Zang 5,6 Scool of Matmatics

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Boundary layers for cellular flows at high Péclet numbers

Boundary layers for cellular flows at high Péclet numbers Boundary layrs for cllular flows at high Péclt numbrs Alxi Novikov Gorg Papanicolaou Lnya Ryzhik January 0, 004 Abstract W analyz bhavior of solutions of th stady advction-diffusion problms in boundd domains

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem www.oaw.ac.at Uniformly stabl discontinuous Galrin discrtization and robust itrativ solution mtods for t Brinman problm Q. Hong, J. Kraus RICAM-Rport 2014-36 www.ricam.oaw.ac.at UNIFORMLY STABLE DISCONTINUOUS

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

Heat/Di usion Equation. 2 = 0 k constant w(x; 0) = '(x) initial condition. ( w2 2 ) t (kww x ) x + k(w x ) 2 dx. (w x ) 2 dx 0.

Heat/Di usion Equation.  2 = 0 k constant w(x; 0) = '(x) initial condition. ( w2 2 ) t (kww x ) x + k(w x ) 2 dx. (w x ) 2 dx 0. Hat/Di usion Equation @w @t k @ w @x k constant w(x; ) '(x) initial condition w(; t) w(l; t) boundary conditions Enrgy stimat: So w(w t kw xx ) ( w ) t (kww x ) x + k(w x ) or and thrfor E(t) R l Z l Z

More information

ETNA Kent State University

ETNA Kent State University Elctronic Transactions on Numrical Analysis Volum 41, pp 262-288, 2014 Copyrigt 2014, Knt Stat Univrsity ISSN 1068-9613 ETNA Knt Stat Univrsity ttp://tnamatkntdu A UNIFIED ANALYSIS OF THREE FINITE ELEMENT

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations www.oaw.ac.at A robust multigrid mtod for discontinuous Galrin discrtizations of Stos and linar lasticity quations Q. Hong, J. Kraus, J. Xu, L. Ziatanov RICAM-Rport 2013-19 www.ricam.oaw.ac.at A ROBUST

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

A ROBUST NONCONFORMING H 2 -ELEMENT

A ROBUST NONCONFORMING H 2 -ELEMENT MAHEMAICS OF COMPUAION Volum 70, Numbr 234, Pags 489 505 S 0025-5718(00)01230-8 Articl lctronically publishd on Fbruary 23, 2000 A ROBUS NONCONFORMING H 2 -ELEMEN RYGVE K. NILSSEN, XUE-CHENG AI, AND RAGNAR

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand Onlin Supplmnt Avanc Slling in a Supply Cain unr Uncrtain Supply an Dman. Proos o Analytical sults Proo o Lmma. Using a = minl 0 ; x g; w can rwrit () as ollows (x ; w ; x ; w ) = a +(m0 w )a +( +" x w

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Boundary layers for cellular flows at high Péclet numbers

Boundary layers for cellular flows at high Péclet numbers Boundary layrs for cllular flows at high Péclt numbrs Alxi Novikov Dpartmnt of Mathmatics, Pnnsylvania Stat Univrsity, Univrsity Park, PA 16802 Gorg Papanicolaou Dpartmnt of Mathmatics, Stanford Univrsity,

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ESAIM: MAN Vol. 39, N o 6, 005, pp. 5 47 DOI: 0.05/man:005048 ESAIM: Mathmatical Modlling and Numrical Analysis A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES

More information

Rational Approximation for the one-dimensional Bratu Equation

Rational Approximation for the one-dimensional Bratu Equation Intrnational Journal of Enginring & Tchnology IJET-IJES Vol:3 o:05 5 Rational Approximation for th on-dimnsional Bratu Equation Moustafa Aly Soliman Chmical Enginring Dpartmnt, Th British Univrsity in

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 47 No. 3 pp. 2132 2156 c 2009 Socity for Industrial and Applid Mathmatics RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS ZHIQIANG CAI AND SHUN

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3 ESAIM: MAN 4 008) 375 410 DOI: 10.1051/man:008009 ESAIM: Matmatical Modlling and Numrical Analysis www.saim-man.org MORTAR FINITE ELEMENT DISCRETIZATION OF A MODEL COUPLING DARCY AND STOES EQUATIONS Cristin

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France Error stimation Adaptiv rmsing Rmapping Lionl Fourmnt Mins ParisTc CEMEF Sopia Antipolis, Franc Error stimation Wic masur? L 2 H Enrgy 2 = u 2 u dω Ω Error stimation / Adaptiv rmsing / Rmapping 2 i i (

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Discontinuous Galerkin methods

Discontinuous Galerkin methods ZAMM Z. Angw. Mat. Mc. 83, No. 11, 731 754 2003 / DOI 10.1002/zamm.200310088 Discontinuous Galrkin mtods Plnary lctur prsntd at t 80t Annual GAMM Confrnc, Augsburg, 25 28 Marc 2002 Brnardo Cockburn Univrsity

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function

Lagrangian Analysis of a Class of Quadratic Liénard-Type Oscillator Equations with Exponential-Type Restoring Force function agrangian Analysis of a Class of Quadratic iénard-ty Oscillator Equations wit Eonntial-Ty Rstoring Forc function J. Akand, D. K. K. Adjaï,.. Koudaoun,Y. J. F. Komaou,. D. onsia. Dartmnt of Pysics, Univrsity

More information

Exponential inequalities and the law of the iterated logarithm in the unbounded forecasting game

Exponential inequalities and the law of the iterated logarithm in the unbounded forecasting game Ann Inst Stat Math (01 64:615 63 DOI 101007/s10463-010-03-5 Exponntial inqualitis and th law of th itratd logarithm in th unboundd forcasting gam Shin-ichiro Takazawa Rcivd: 14 Dcmbr 009 / Rvisd: 5 Octobr

More information

H(curl; Ω) : n v = n

H(curl; Ω) : n v = n A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information