ETNA Kent State University

Size: px
Start display at page:

Download "ETNA Kent State University"

Transcription

1 Elctronic Transactions on Numrical Analysis Volum 41, pp , 2014 Copyrigt 2014, Knt Stat Univrsity ISSN ETNA Knt Stat Univrsity ttp://tnamatkntdu A UNIFIED ANALYSIS OF THREE FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION MICHAEL NEILAN Abstract It was rcntly sown in S C Brnnr t al [Mat Comp, , pp ] tat Lagrang finit lmnts can b usd to approximat classical solutions of t Mong-Ampèr quation, a fully nonlinar scond ordr PDE W xpand on ts rsults and giv a unifid analysis for many finit lmnt mtods satisfying som mild structur conditions in two and tr dimnsions Aftr proving som abstract rsults, w lay out a bluprint to construct various finit lmnt mtods tat inrit ts conditions and sow ow C 1 finit lmnt mtods, C 0 finit lmnt mtods, and discontinuous Galrkin mtods fit into t framwork Ky words fully nonlinar PDEs, Mong-Ampèr quation, finit lmnt mtods, discontinuous Galrkin mtods AMS subjct classifications 65N30, 65N12, 35J60 1 Introduction In tis papr, w considr t finit lmnt approximations of t fully nonlinar Mong-Ampèr quation wit xact solution u and Diriclt boundary conditions [14, 15, 28, 32]: 11 { f dtd 0 Fu : 2 u, inω, u g, on Ω Hr, dtd 2 u dnots t dtrminant of t Hssian matrix D 2 u, Ω R n n 2,3 is a two or tr dimnsional, smoot, strictly convx domain, and f is a strictly positiv function T goal of tis papr is to build and analyz various numrical mtods to approximat classical convx solutions of t Mong-Ampèr quation In particular, w dvlop an abstract framwork to construct discrtizations, dnotd by F, of t nonlinar oprator F in ordr to build finit lmnt approximations ofu Tis work is motivatd by t rcnt rsults of Brnnr t al [10, 11] wr t autors dvlopd and analyzd Galrkin mtods on smoot domains using t wll-known and simpl Lagrang finit lmnts In ordr to build convrgnt mtods, t autors constructd consistnt numrical scms suc tat t rsulting discrt linarization is stabl As mpasizd in [10], tis simpl ida lads to an intricat drivation of a not-so-obvious discrtization In tis papr, w xpand on ts rsults and giv a unifid analysis of many finit lmnt mtods in two and tr dimnsions wic satisfy som gnral structur conditions Furtrmor, w lay out a simpl bluprint to construct suc scms wit ts proprtis T ky ida, as in [10], is to build consistnt and stabl in trms of t linarization discrtizations Assuming a fw mor mild conditions on t numrical scm, w us a rlativly simpl fixd-point argumnt to prov t xistnc of a solution providd t discrtization paramtr is sufficintly small Furtrmor, t rror stimats rduc to rror stimats of an auxiliary linar problm T proof of ts rsults ar t main objctivs of Sctions 2 and 4 Smingly powrful, t abstract tory dos not xplicitly tll us ow to build suc stabl and consistnt scms As prviously mntiond, t construction of t Lagrang finit Rcivd Jun 18, 2012 Accptd Jun 20, 2014 Publisd onlin on Sptmbr 30, 2014 Rcommndd by A Klawonn T work of t autor was supportd by t National Scinc Foundation undr grant numbr DMS Dpartmnt of Matmatics, Univrsity of Pittsburg, Pittsburg, PA nilan@pittdu 262

2 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 263 lmnt mtod in [10] involvs a convolutd drivation, and it is not immdiatly clar ow to xtnd tis mtodology to mor gnral scms Howvr, intuitivly w xpct tat t discrt linarization sould b consistnt wit t linarization of F a justification of tis assrtion is givn in Rmark 25 blow Wit tis in mind, to construct discrtization scms F tat satisfy t conditions prsntd in Sctions 2 and 4, w i considr t linarization of F, ii discrtiz t linarization, iii d-linariz to obtain discrtizations for F Using tis mtodology, in Sction 3 w ar abl to systmatically dvlop various numrical mtods including C 1 finit lmnt mtods, C 0 finit lmnt mtods, and discontinuous Galrkin DG mtods In t first cas, w rcovr som spcial cass of t rsults of Bömr [7, Torm 87] and driv H 2 rror stimats; s also [8] In addition, w driv L 2 and H 1 rror stimats wic ar nw in t litratur In t cas of C 0 finit lmnt mtods, w rcovr t rsults in [10], but again, in a mor compact and systmatic approac T dvlopmnt and analysis of DG mtods is compltly nw, and as far as t autor is awar, tis is t first tim DG mtods av bn itr dvlopd or analyzd for fully nonlinar scond ordr quations Du to tir important rol in many application aras suc as diffrntial gomtry and optimal transport [15, 44, 45], tr as bn a growing intrst in rcnt yars towards dvloping numrical scms for fully nonlinar scond ordr quations Hr, w giv a brif rviw in tis dirction T first numrical mtod for t Mong-Ampèr quation is du to Olikr and Prussnr [39] wo constructd a numrical scm for computing an Alksandrov masur inducd by D 2 u and obtaind t solution of problm 11 as a by-product Mor rcntly, Obrman [26, 38] constructd t first practical wid stncil diffrnc scms for nonlinar lliptic PDEs wic can b writtn as functions of ignvalus of t Hssian matrix, suc as t Mong-Ampèr quation It was provd tat t finit diffrnc scm satisfis t convrgnc critrion consistncy, stability, and monotonicity stablisd by Barls and Souganidis [4], altoug no rats of convrgnc wr givn T clar advantag of tis mtod is t ability to comput t convx solution vn if u is not smoot Howvr, t mtod also suffrs from low rats of convrgnc, vn if t solution is smoot Obrman t al as also constructd a simpl finit diffrnc mtod in two dimnsions in [5], altoug no convrgnc analysis was prsntd Dan and Glowinski [19] prsntd an augmntd Lagrang multiplir mtod and a last squars mtod for t Mong-Ampèr quation by trating t nonlinar quations as a constraint and using a variational principl to slct a particular solution T convrgnc analysis of t scm rmains opn Bömr [7] s also [8] introducd a projction mtod using C 1 finit lmnt functions for classical solutions of gnral fully nonlinar scond ordr lliptic PDEs including t Mong-Ampèr quation and analyzs t mtods using consistncy, stability and linarization argumnts As far as t autor is awar, tis is t first convrgnc proof of fully nonlinar scond ordr problms in a finit lmnt stting Fng and t autor considrd fourt ordr singular prturbations of 11 by adding a small multipl of t biarmonic oprator to t PDE [24, 25] Otr rlvant paprs includ [2, 20, 34, 35, 43, 46] Tr ar svral advantags of t C 0 and DG mtods compard to t mtods mntiond abov As xplaind in [10], t advantags of ts scms includ t rlativly simplicity of t mtod and t ability to asily implmnt t mtod wit svral finit lmnt softwar packags Tis tn allows on to us faturs suc as fast solvrs multigrid and domain dcomposition and adaptivity off-t-slf Furtrmor, in comparison to finit diffrnc mtods, bot typs of finit lmnt mtods can asily andl curvd boundaris wit littl modification of t finit lmnt cod Morovr, t advantags of t DG mtod for linar and mildly nonlinar problms carry ovr for t Mong-Ampèr quation as wll Ts includ t as of implmntation spcially in t contxt of

3 Knt Stat Univrsity ttp://tnamatkntdu 264 M NEILAN p-adaptivity, t ability to asily andl inomognous boundary conditions and curvd boundaris, t ability to us igly nonuniform unstructurd mss wit anging nods, and t ability to accuratly captur socks and discontinuitis of t function and gradint Admittdly tr ar not many advantags of using C 1 finit lmnts du to tir computational complxity; w includ tis spcific cas to sow tat it fits witin our framwork and to simplify som of t analysis in [7] Tr ar svral notions of solutions for t Mong-Ampèr quation including classical, viscosity, and Alkandrov solutions [18, 32, 33, 42, 45] Solutions in gnral ar not smoot Howvr, if Ω, g, and f ar sufficintly rgular, Ω is strictly convx, and f is uniformly positiv in Ω tn all of ts notions of solutions ar quivalnt, and t rgularity of u follows from t rsults of Caffarlli, Nirnbrg, and Spruck [16] T mtods dvlopd in tis papr ar usful for svral applications in diffrntial gomtry suc as t prscribd Gauss curvatur quation and t affin maximal surfac quation [2, 28, 29, 30, 31, 44] In rgard to optimal transport, it is important to b abl to comput wak solutions Sinc t analysis blow rlis on t smootnss of u, it is not immdiatly obvious ow to xtnd t rsults to t cas of nonclassical solutions On way to ovrcom tis issu is to us t mtods dscribd blow in conjunction wit t vanising momnt mtodology [24, 25] Tis simpl procdur involvs computing a fourt ordr prturbation of 11 by adding a small multipl of t biarmonic oprator to t fully nonlinar PDE Numrical xprimnts in [10, 11, 24, 25] indicat tat tis is a powrful tool not only to comput wak solutions, but it also provids an avnu to obtain good initial gusss to start Nwton s mtod Unlik t discrtizations in [24, 25], t mtods in tis papr ar dsignd to b stabl witout rgularization As suc, w xpct our mtods in conjunction wit t vanising momnt mtod will b mor robust wit rspct to t prturbation paramtr Finally, w mntion tat tr ar svral discrtization mtods for t biarmonic problm using C 1, C 0, and DG spacs; s, g, [3, 13, 17, 22, 27, 36] Trfor, t formulation of our mtods wit t vanising momnt mtod is asily obtaind by adding a small multipl of ts biarmonic discrtizations to t discrt nonlinar oprator F Howvr, t convrgnc analysis of t rgularizd discrtization is byond t scop of tis articl T rsults blow sow tat tr xists a solution to t numrical scms providd tat t discrtization paramtr is sufficintly small, namly, 0 for som 0 0,1 T xact valu of 0 is not addrssd in tis papr and in gnral is not known a priori as it dpnds on t t xact solution u Tis issu as wll as t ffct of numrical rrors of t scms will b studid in futur work T rst of t papr is organizd as follows Sctions 2 and 3 ar dvotd to t dvlopmnt and analysis of finit lmnt mtods in two dimnsions In Sction 2 w stat and prov som abstract rsults, sowing tat tr xists a solution to t discrt problm if som conditions on t scm old W nd tis sction by driving L 2 stimats using a standard duality argumnt Aftr stting som notation, in Sction 3 w apply t abstract framwork to tr xampls, namly, C 1 finit lmnt mtods, C 0 finit lmnt mtods, and DG mtods In Sction 4, w xpand on t rsults of Sction 2 by driving som abstract convrgnc rsults in t tr dimnsional cas Finally, w nd t articl wit som concluding rmarks and discuss possibl xtnsions 2 Abstract rsults in two dimnsions Trougout t papr, w us H r Ω r 0 to dnot t st of all L 2 Ω functions wos distributional drivativs up to ordr r ar in L 2 Ω, andh r 0Ω to dnot t st of functions wos tracs vanis up to ordrr 1 at Ω For a normd linar spac Y, w dnot by Y its dual and, t pairing btwn Y and Y Lt X, X b a finit dimnsional spac suc tat t inclusion X L 2 Ω

4 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 265 olds W considr t following discrt vrsion of 11: find u X suc tat 21 F u,v 0, v X, wr F : X X is a smoot oprator W mak t following assumptions: a1 a Tr xists an auxiliary normd linar spac Y, Y wit X Y and u Y suc tat X is wll dfind ony b T oprator F can b xtndd to a smoot oprator F : Y X wit Fw,v F w,v, w,v X c Tr xists a constant α > 0, wic may dpnd on, suc tat t following invrs stimat olds: 22 v Y α v X, v X a2 a T nonlinar opratorf is consistnt witf in t sns tatfu 0 b F can b dcomposd as 23 F F 2 +F 1 +F 0, wr F 2 is quadratic i, F 2 tw t 2 F 2 w for all w Y and t R, F 1 is linar, and F 0 is constant in tir argumnts a3 Dfin t linar oprator 24 wr Fu+tw Fu Lw : DF[u]w : lim F 1 w+df 2 [u]w, t 0 t 25 DF 2 F 2 u+tw F 2 u [u]w : lim t 0 t Not tat, by dfinition of L and F, w av L : Y X Tn tr ar constants β,c cont > 0 suc tat β v 2 X L v,v, v X, Lw,v Ccont w X v X, w Y, v X, wr L : X X dnots t rstriction of L to X, tat is, L w,v Lw,v for allv,w X a4 Tr xists a constant γ > 0 suc tat for allv,w Y DF 2 [v]w X γ v Y w Y, wr DF 2 [v]w DF 2 [v]w,y X : sup y X y X

5 Knt Stat Univrsity ttp://tnamatkntdu 266 M NEILAN THEOREM 21 Suppos tat assumptions a1 a4 ar satisfid Ltu c L 1 Lu X, i, L u c,v Lu,v, v X 28 Assum furtr tat 29 u u c Y τ 0 β 2α γ for som τ 0 0,1 Tn tr xists a locally uniqu solution u X to 21 Morovr, tr olds 210 u u X u u c X + 1 α u u c Y, u u Y 2 u u c Y W prov Torm 21 using t Banac fixd-point torm as our main tool T ssntial ingrdints of t proof of Torm 21 is to construct a mapping suc tat i t mapping is a contraction in a subst in our cas, a ball B ρ wit radius ρ of X ; ii t mapping maps tis ball into itslf Bot of ts rsults ar drivd by t following lmma LEMMA 22 Suppos tat conditions a1 a4 old Dfin t mapping M : Y X by 211 Mw L 1 Lw Fw Tn for any v,w Y, w av 212 Mw Mv X γ 2β u w Y + u v Y w v Y Proof By t dcomposition 23, w avfw Fv F 2 w F 2 v+f 1 w v, wr w av usd t proprty tat F 1 is a linar oprator Morovr, by 24 tr olds Lw v F 1 w v+df 2 [u]w v Consquntly, w av Lw v Fw Fv DF 2 [u]w v F 2 w F 2 v DF 2 [u]w v 1 0 DF 2 [tw +1 tv]w vdt SincF 2 is smoot and quadratic, t mappingw,v DF 2 [w]v is bilinar It tn follows tat Lw v Fw Fv [ 213 DF 2 u 1 ]w 2 w +v v Trfor, by t dfinition of M 211 along wit t idntity 213, w arriv at Mw Mv L 1 Lw v Fw Fv L 1 DF [u 2 12 ] w +v w v

6 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 267 By t stability stimat in a3, w asily obtain Mw Mv X β 1 [ DF 2 u 1 2 w +v] w v X, and trfor by a4, w av Mw Mv X γ 2β u w Y + u v Y w v Y Proof of Torm 21 Dfin t closd discrt ball wit cntr u c as 214 B ρ u c {v X ; u c v X ρ}, and lt M : X X b t rstriction of M to X T proof procds by sowing tat M as a fixd point in a B ρ0 u c wit ρ 0 : 1 α u u c Y By t dfinition of M, 211, w clarly s tat tis fixd point is a solution to 21 First, by 212, a1c, 214, and t dfinition ofρ 0, w av for allv,w B ρ0 u c, M w M v X γ 2β u w Y + u v Y w v Y α γ β u uc Y +α ρ 0 w v X 2α γ β u u c Y w v X Hnc, by 29 w obtain 215 M w M v X τ 0 w v X for som τ 0 0,1 Nxt, it is clar from 28, 211, and t consistncy off tatu c Mu Trfor by 212, a1c, t dfinition of ρ 0, and 29, w av for any w B ρ0 u c, 216 uc M w X Mu Mw X γ u w 2 Y 2β γ β u uc 2 Y + u c w 2 Y γ β u uc 2 Y +α 2 ρ 2 0 2α γ β u u c Y ρ 0 ρ 0 From 215 and 216 it tn follows tat M as a uniqu fixd point u in t ball B ρ0 u c wic is a solution to 21 Also, by t triangl inquality w av u u X u u c X +ρ 0 u u c X + 1 α u u c Y Finally, to prov 210, w us t triangl inquality onc again, t invrs stimat 22, and t dfinition of ρ 0 to gt u u Y u u c Y +α ρ 0 2 u u c Y COROLLARY 23 Suppos tat assumptions a1 a4 old and dfin C : 1 + C cont /β Tn, tr olds providd u u X inf v X 2C u v X + 1 α u v Y, u u Y 2 inf v X u v Y +α C u v X, inf u v Y +α C u v X τ 0 β /2α γ for somτ 0 0,1 v X

7 Knt Stat Univrsity ttp://tnamatkntdu 268 M NEILAN 217 Proof In ligt of 26, 28, and 27, w find β u c v 2 X L u c v,u c v Lu v,u c v C cont u c v X u c v X, for any v X, and trfor u u c X C inf v X u v X Furtrmor, by 217 and 22 w av 218 u u c Y inf v X u v Y +α C u v X Hnc, by Torm 21 w obtain u u X inf v X 2C u v X + 1 α u v Y, u u Y 2 inf v X u v Y +α C u v X, providd tat t rigt-and sid of 218 is smallr tan τ 0 β /2α γ REMARK 24 In all t xampls considrd blow, X is a discrth 1 -typ norm, Y is a discrth 2 -typ norm, α O 1, β O1, and C O1 REMARK 25 Som practical considrations Torm 21 stats tat if t discrt linarization is stabl and if som otr mild conditions old, tn tr xists a solution to 21 clos to u Howvr, it dos not indicat ow to construct discrtizations wit stabl linarizations On natural way to do tis is to construct a scm suc tat t opratorl is consistnt witl, wr 219 Fu+tw Fu Lw : lim cofd 2 u : D 2 w cofd 2 u w t 0 t Hr, cofd 2 u dnots t cofactor matrix of D 2 u, cofd 2 u : D 2 w n cofd 2 u i,j D 2 w i,j, i,j1 and w av usd t divrgnc-fr row proprty of cofactor matrics cf Lmma 31 blow to obtain t last quality In otr words, it is dsirabl tat t diagram in Fig- Fu 0 linariz discrtiz Fu 0 linariz Id F u 0 linariz Lw 0 Lw 0 Id L w 0 discrtiz FIGURE 21 An abstract commuting diagram Hr, Id dnots t rstriction of an oprator to t finit lmnt spac X T pat w tak to driv convrgnt finit lmnt mtods is indicatd by t doubl-lind arrows ur 21 commuts Sinc u is a classical convx solution to t Mong-Ampèr quation, t matrix cofd 2 u is positiv dfinit, and so t oprator L is a uniformly lliptic As

8 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 269 discrtization scms for lliptic scond ordr linar PDEs ar wll undrstood and dvlopd namly, many stabl discrtizations of L xist, it is bttr to build t nonlinar discrtization F basd on t discrt linar problm L In fact w us tis proprty wn driving L 2 stimats blow; cf Assumption a5c Tis is t approac w tak in Sction 3 wn constructing finit lmnt scms 21 L 2 stimats W nd tis sction by driving som L 2 rror stimats Tis is acivd by using duality argumnts in conjunction wit t following additional st of assumptions a5 a T oprator L is symmtric and can b naturally xtndd suc tat L : H 2 Ω Y b T norm X is wll-dfind on H 2 Ω c T oprator L is consistnt witl dfind by 219 in t sns tat Lv,w Lv,w, v H 2 Ω H 1 0Ω, w Y d L is boundd in t sns tat tr xists anm > 0 suc tat Lv,w M v X w X, v,w X +H 2 Ω u is strictly convx and u W 3, Ω THEOREM 26 In addition to t assumptions of Torm 21, suppos tat condition a5 is satisfid Tn tr olds 220 u u L 2 Ω sup wr C E is dfind by 222 blow inf C E ϕ H 2 Ω ϕ X ϕ H 2 Ω Proof Lt ψ H 1 0Ω b t solution to M u u X ϕ ϕ X + γ 2 u u 2 Y ϕ X, 221 Lψ u u, ψ 0, inω, on Ω Sinc u is strictly convx in Ω and u W 3, Ω, by lliptic rgularity tr olds ψ H 2 Ω and 222 ψ H 2 Ω C E u u L 2 Ω for somc E > 0 It follows from a5a and 221 tat for any ψ X u u 2 L 2 Ω 223 Lψ,u u Lψ,u u Lu u,ψ ψ + Lu u,ψ Bounding t first trm in 223, w us a5d to obtain Lu u,ψ ψ M u u X ψ ψ X

9 Knt Stat Univrsity ttp://tnamatkntdu 270 M NEILAN To bound t scond trm in 223, w first not by 23 and 24 tat Lu u,ψ Lu u Fu Fu,ψ DF 2 [u]u u F 2 u F 2 u,ψ 1 2 F 2 [u]u u 1 DF 2 [u u ]u u,ψ, 0 F 2 [tu +1 tu]u udt,ψ wr w av again usd t fact tat t mapping w,v F 2 [w]v is bilinar Combining tis last idntity wit assumption a4, w obtain t stimat γ 224 Lu u,ψ 2 u u 2 Y ψ X Finally, combining , w av u u 2 L 2 Ω M u u X ψ ψ X + γ 2 u u 2 Y ψ X Dividing bot trms by u u L 2 Ω and using t lliptic rgularity stimat 222, w obtain Som spcific xampls in two dimnsions In tis sction w apply t abstract framwork st in t prvious sction to som concrt xampls, namly,c 1 finit lmnt, C 0 finit lmnt, and discontinuous Galrkin mtods In t first cas, w rcovr som of t rror stimats obtaind by Bömr in [7], but also obtain L 2 and H 1 rror stimats In t scond cas, w rcovr t sam rsults rcntly sown in [10], but in a mor compact form T mtod and rror analysis of DG mtods for t Mong-Ampèr quation is compltly nw Bfor procding, w first giv som notation and standard lmmas tat will b usd trougout t rst of t papr 31 Notation and som prliminary lmmas Lt T b a quasi-uniform, simplicial, and conforming triangulation [6, 12, 17] of t domain Ω wr ac triangl on t boundary as at most on curvd sid W dnot bye i t st of intrior dgs,eb t st of boundary dgs, and E E i Eb t st of all dgs in T W st T diamt for all T T, diam for all E, and not tat by t assumption of t quasiuniformity of t ms, T : max T T T Dfin t brokn Sobolv spac, norm, and smi-norm associatd wit t ms as H r T : H r T, v 2 H r T : v 2 H r T, v 2 H r T : v 2 H r T T T T T T T W dfin t jump of a vctor function w on an intrior dg T + T as follows: [w] w + n + +w n R, wr w ± w T ± and n ± is t outward unit normal of T ± On a boundary dg E b, w dfin [w] w n R T jump of a scalar function w is a vctor and is dfind as [w] w + n + +w n, T + T E i, [w] wn, T Ω E b

10 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 271 For a matrixw R 2 2, w dfin t avrag of w on T + T by {{ }} w 1 w + 2 +w R 2 2, and on a boundary dg E b w tak {{ w }} w R 2 2 Similarly, for a vctor w R 2, w dfin t avrag of w on by {{ }} w 1 w + 2 +w R 2, T + T E, i {{ w }} w R 2, E b W nd tis subsction wit som lmmas tat will b usd many tims trougout t papr T first stats t divrgnc-fr row proprty of cofactor matrics [23, p 440] LEMMA 31 For any smoot function v, cofd 2 v i n j1 x j cofd 2 v ij 0, fori 1,2,,n, wr cofd 2 v i and cofd 2 v ij dnot rspctivly t it row and t i,j-ntry of t cofactor matrixcofd 2 v Nxt, w stat som standard invrs inqualitis [12, 17], as wll as a discrt Sobolv inquality [9] LEMMA 32 Tr olds for all T T v Hm T q m T v Hq T, v P k T, 0 q m, wr P k T dnots t st of all polynomials up to dgr k rstrictd to T Furtrmor, for any picwis polynomial wit rspct to t partitiont, tr olds v 2 L Ω 1+ ln v 2 H 1 T + 1 [v ] 31 2 L 2 E REMARK 33 In ordr to avoid t prolifration of constants, w sall us t notation A B to rprsnt t rlation A constant B, wr t constant is indpndnt of t ms paramtr and any pnalty paramtrs 32 C 1 finit lmnt mtods As a primr for mor complicatd looking mtods to com, w considr a simpl xampl to us t abstract framwork st in Sction 2, namly C 1 finit lmnt mtods To simplify mattrs, w assum in tis subsction tat Ω is a polygonal domain and tat g 0 in 11 so tat t Diriclt boundary conditions can b imposd xactly in t finit lmnt spac T assumptions do not guarant t smootnss of u, but tis xampl as t advantag of bing simpl T issus of curvd boundaris and inomognous boundary data will b andld using pnalization tcniqus in t nxt two subsctions, and it is straigtforward to apply tis mtodology toc 1 finit lmnt mtods W tak our finit lmnt spac and auxiliary spac to b 32 X {v H 2 Ω H 1 0Ω; v T P k T T T }, Y H 2 Ω,

11 Knt Stat Univrsity ttp://tnamatkntdu 272 M NEILAN wit norms 33 v X v H 1 Ω, v Y v H 2 Ω REMARK 34 To nsur tat t inclusion X C 1 Ω olds, w rquir k > 4 in t dfinition 32; s [17] As discussd in Rmark 25, w first considr finit lmnt discrtizations of t linar oprator 219 To tis nd, w dfin 34 Lw,y cofd 2 u w y dx, w Y,y X Ω T goal now is to build F suc tat 24 olds If w intgrat by parts in 34 and us Lmma 31 and t C 1 continuity of t finit lmnt spac, w obtain t following idntity: 35 Lw,y cofd 2 u : D 2 w y dx Basd on 35, w tn dfin t nonlinar oprator F as Fw,v f dtd 2 w v dx Ω Ω REMARK 35 Tis is t sam discrtization on gts witout considring t linar problm, but tis will not b t cas for otr discrtization scms drivd blow THEOREM 36 Suppos tat u H s Ω wit s > 3 Tn tr xists an 0 > 0 dpnding on u suc tat for 0 tr xists a solution u X to 36 F u,v 0, v X, wr F is t rstriction of F tox Morovr, tr olds u u Y + u u X l 1 u Hl Ω, wr t norms X and Y ar dfind by 33 and l min{k +1,s} In addition, ifu W 3, Ω tn u u L2 Ω l u Hl Ω + 2l 4 1+ ln 1 2 u 2 H l Ω Proof T proof is acivd by vrifying tat conditions a1 a5 old and mploying Corollary 23 and Torm 26 First, by t dfinitions ofy, X, andf, and t assumptions onu, conditions a1a a1b ar satisfid Furtrmor, by t invrs inquality w av v X v H 1 Ω 1 v H 2 Ω v Y, and so a1c olds witα O 1 Nxt w obsrv tat F as t dcomposition 23 wit F 0,v fv dx, F 1 u,v 0, Ω 37 F 2 u,v dtd 2 u v dx, Ω

12 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 273 and sinc Fu 0, assumption a2 olds Continuing, w us 37 and 25 to conclud tat for any v,w Y and y X, DF 2 38 [v]w,y cofd 2 v : D 2 w y dx Trfor by 35, w av DF[u]w,y F 1 w+df 2 [u]w,y 39 Ω cofd 2 u : D 2 w y dx Lw,y Ω Sinc u is convx, t matrix cofd 2 u is positiv dfinit Trfor by 34 and an application of t Poincaré inquality, w av v 2 X v 2 L 2 Ω cofd 2 u v v dx L v,v Ω Morovr sinc u H s Ω, wits > 3, implis u W 2, Ω, w av Lv,w u W 2, Ω v H 1 Ω w H 1 Ω, v,w H 2 Ω+X Hnc bot assumptions a3 and a5d old Furtrmor, it is asy to s tat assumptions a5a a5c ar tru by t dfinitions of X, Y, and L T last assumption to vrify is a4; tat is, to bound t oprator DF 2 To tis nd, w us 38, t discrt Sobolv inquality 31, and t dfinition of t norms X and Y to bound DF 2 as follows: DF 2 [v]w,y v H 2 Ω w H 2 Ω y L Ω 1+ ln 1 2 v Y w Y y X Trfor, condition a4 olds witγ O1+ ln 1 2 It rmains to sow tat inf u v Y +α C u u X τ0 β /2αγ for somτ 0 0,1, v X in ordr to apply Corollary 21 and Torm 26 Hr, C 1+C cont /β O1 Tus, by 33 and sincα O 1 and γ O1+ ln 1/2, tis last xprssion rducs to inf u v H2 Ω v X u u H1 Ω O1+ ln 1/2 By standard approximation proprtis of X [12, 17], w av inf u v H2 Ω + 1 v X u u H1 Ω l 2 u H Ω l Trfor sinc s > 3 and k > 4 cf Rmark 34, condition 310 olds providd is sufficintly small Finally, applying Corollary 23 w obtain u u X inf v X u v X + u v Y l 1 u Hl Ω, u u Y inf v X u v Y + 1 u v X l 2 u Hl Ω,

13 Knt Stat Univrsity ttp://tnamatkntdu 274 M NEILAN and by applying Torm 26 w obtain u u L 2 Ω sup ϕ H 2 Ω inf ϕ 1 ϕ X H 2 Ω u u X ϕ ϕ X l u H l Ω +1+ ln 1 2 2l 4 u 2 H l Ω +1+ ln 1 2 u u 2 Y ϕ X 33 C 0 finit lmnt mtods T us of Lagrang finit lmnts and Nitsc s mtod [37] to comput t solution of t Mong-Ampèr quation was rcntly introducd and analyzd in [10] In tis sction, w sow ow tis mtod can fit into t abstract framwork st in Sction 2 To tis nd, w dfin t finit lmnt spac X H 1 Ω as follows: if T T dos not av a curvd dg, tn v T is a polynomial of total dgr k in t rctilinar coordinats fort ; if T T as on curvd dg, tn v T is a polynomial of dgr k in t curvilinar coordinats of T tat corrspond to t rctilinar coordinats on t rfrnc triangl s [6, Exampl 2, p 1216] W sty H 3 T, and dfin t norms v 2 X v 2 H 1 Ω + 1 v 2 L 2 + v 2, L 2 E b v 2 Y v 2 H 2 T + E b 1 3 v 2 L [ v] 2 + {{ L 2 D 2 v }} 2 L 2 E Applying Nitsc s mtod to t linar oprator L, w dfin L as 313 Lw,y cofd 2 u w y dx Ω + η wy [[ cofd 2 u w ]] y [[ cofd 2 ]] u y w ds, E b wr η is a positiv pnalization paramtr Hr, t tird trm in t rigt-and sid of 313 nsurs consistncy of t oprator, wil t fourt trm imposs symmtry W now driv t discrtization F basd on 313 Intgrating by parts and using t divrgnc-fr row proprty of cofactor matrics, w obtain Lw,y cofd 2 u : D 2 w y dx 314 T T T + [[{{ cofd 2 u }} w ]] y ds E i + η wy [[ cofd 2 ]] u y w ds E b

14 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 275 Basd on t idntity 314, w dfin t discrt nonlinar oprator as Fw,v f dtd 2 w v dx+ [[{{ 315 cofd 2 w }} w ]] v ds T T E i + η w gv [[ cofd 2 ]] w v w g ds E b REMARK 37 T oprator F can b dcomposd as in 23 wit F 0,v fv dx η gv ds, T T T E b F 1 η w,v wv + [[ cofd 2 ]] 316 w v g ds, 317 E b F 2 w,v T T E b dtd 2 wv dx+ T E i [[ cofd 2 ]] w v wds [[{{ cofd 2 w }} w ]] v ds THEOREM 38 Suppos tatu H s Ω for soms > 3 and tatk 3 in t dfinition of X Tn tr xists an η 0 > 0 and 0 0 η suc tat for η η 0 and 0 η tr xists a solution to 318 F u,v 0, v X, wr F is t rstriction to X of F dfind by 315 Morovr, tr olds t following rror stimats u u Y + u u X 1+η l 1 u Hl Ω, wr l min{k +1,s} Ifu W 3, Ω, tn u u L 2 Ω 1+η 2 l u Hl Ω +1+ ln 1 2 2l 4 u 2 H l Ω Proof T proof is vry similar to tat of t proof of Torm 36; tat is, w vrify tat conditions a1 a5 old and apply t abstract rsults st in Sction 2 First, w obsrv tat a1a a1b and a2 old by t dfinitions off, X, Y, Rmark 37, and t assumptions ofu Morovr, by scaling argumnts, v Y 1 v X, and so assumption a1c olds witα O 1 Nxt, w us t dfinition of F and DF 2 25, to conclud tat for any v,w Y and y X, tr olds 319 DF 2 [v]w,y cofd 2 v : D 2 w y dx T T T [[{{cofd 2 v }} w ]] + [[{{ cofd 2 w }} v ]] y ds + E i E b [[cofd 2 ]] [[ w y v + cofd 2 ]] v y w ds

15 Knt Stat Univrsity ttp://tnamatkntdu 276 M NEILAN In particular, by sttingv u, noting t boundary condition 11 and [[{{ cofd 2 w }} u ]] y ds 0, E i w av DF 2 [u]w,y cofd 2 u : D 2 w y dx 320 T T Trfor by 24, 316, 320, and 314, w obtain DF[u]w,y DF 2 [u]w+f 1 w,y T + [[{{ cofd 2 u }} w ]] y ds E i [[cofd 2 ]] [[ w y g + cofd 2 ]] u y w ds E b T T T cofd 2 u : D 2 w y dx + [[{{ cofd 2 u }} w ]] y ds E i + η wy [[ cofd 2 ]] u y w ds Lw,y E b By using standard finit lmnt tcniqus cf [10, Lmma 31] and [37], t rstriction L of L to X is corciv on X providd η 0 is sufficintly larg and is boundd in t sns of assumption a5d wit M C cont 1 + η Tus, assumptions a3 and a5 old Nxt by 319, 311, t invrs inquality, and t discrt Sobolv inquality 31, w av for v,w Y and y X, DF 2 {{ [v]w,y D 2 v }} 2 L [ w] L 2 E i + {{ D 2 w }} L2 [ v] L2 y L Ω + D 2 w v L 2 L 2 + D 2 v L 2 w L 2 y L Ω E b + v H 2 T w H 2 T y L Ω 1+ ln 1 2 {{ D 2 v }} L2 [ w] L2 E i + {{ D 2 w }} L 2 [ v] L 2 + E b 1 D 2 w v L 2 L 2 + D 2 v L2 w L2 + v H2 T w H2 T y X

16 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 277 Tus by 312 and many applications of t Caucy-Scwarz inquality, w conclud DF 2 [v ]w,y 1+ ln 1 2 v Y w Y y X From tis calculation, condition a4 olds witγ 1+ ln 1 2 As all of conditions a1 a5 av bn vrifid, it rmains to sow tat inf u v Y + 1 β η u v X O v X α γ O 1+ ln 1 2 to apply Corollary 23 and Torm 26 By approximation proprtis of t finit lmnt spac X [6] and scaling, w av inf v X u v Y η u v X 1+η l 2 u Hl Ω Tus, by t dfinition of l, w s tat 321 olds providd s > 3, k 3, and is sufficintly small Finally, applying Corollary 23 and Torm 26, w obtain u u X inf v X 1+η u v X + u v Y 1+η l 1 u Hl Ω, u u Y inf u v Y η u v X 1+η l 2 u Hl Ω, v X u u L 2 Ω sup ϕ H 2 Ω inf ϕ 1 ϕ X H 2 Ω 1+η u u X ϕ ϕ X +1+ ln 1 2 u u 2 Y ϕ X 1+η 2 l u H l Ω +1+ ln 1 2 2l 4 u 2 H l Ω 34 Discontinuous Galrkin mtods As our last xampl, w construct and analyz discontinuous Galrkin mtods for t Mong-Ampèr quation W tak our finit lmnt spac to consist of totally discontinuous picwis polynomial functions In particular, w dfin X L 2 Ω to consist of functions v suc tat if T T dos not av a curvd dg, tn v T is a polynomial of total dgr k in t rctilinar coordinats fort ; if T T as on curvd dg, tn v T is a polynomial of dgr k in t curvilinar coordinats of T tat corrspond to t rctilinar coordinats on t rfrnc triangl W sty H 3 T and dfin t norms 322 v 2 X v 2 H 1 T + 1 [v] 2 L 2 + {{ v }} 2, L 2 E v 2 Y v 2 H 2 T + E 1 3 [v] 2 L [ v] 2 L 2 {{ + D 2 v }} 2 L 2

17 Knt Stat Univrsity ttp://tnamatkntdu 278 M NEILAN REMARK 39 By t discrt Sobolv inquality 31 and t dfinition of X, w av v L Ω 1+ ln 1 2 v X, v X Similarly to t prvious two subsctions, w bas t nonlinar mtod F on t corrsponding discrt linar problm In tis cas, w dfin t discrt linar problm corrsponding to t linar oprator 219 as 323 Lw,y cofd 2 u w y dx T T T {{cofd 2 u w }} [y ] E +γ {{ cofd 2 u y }} [w] η [w] [y ] ds, wr γ is a paramtr tat can tak t valus {1, 1,0}, wic corrspond to t SIPG mtod γ 1, NIPG mtod γ 1, and IIPG mtod γ 0 [1, 8, 21, 40, 41] T constant η > 0 is again a pnalty paramtr Intgrating by parts of t first trm in 323 givs us 324 cofd Lw,y 2 u : D 2 w y dx T T [[{{ cofd 2 u }} w ]]{{ }} y ds + E i E γ {{ cofd 2 u y }} [w] η [w] [y ] ds Basd on t idntity 324, w dfin F suc tat Fw,v f dtd 2 w v dx+ η [w] [v ] T T T E i + [[{{ cofd 2 w }} w ]]{{ }} {{ v γ cofd 2 w v }} [w] ds + η w gv γ [[ cofd 2 ]] w v w g ds E b

18 Knt Stat Univrsity ttp://tnamatkntdu 325 ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 279 REMARK 310 T dcomposition 23 olds wit F 0,v T T F 1 w,v E fv dx gv ds, E b η [w] [v ] ds [[ cofd 2 ]] w v gds, T 326 F 2 w,v T T T +γ E b dtd 2 wv dx [[{{cofd 2 w }} w ]]{{ }} v + E i γ E {{ cofd 2 w v }} [w] ds THEOREM 311 Suppos tat u H s Ω for som s > 3 and tat k 3 in t dfinition of X Tn tr xists an η 1 η 1 γ > 0 and 1 1 η > 0 suc tat for η η 1 and 1 η, tr xists a solution u X satisfying 327 F u,v 0, v X Morovr, tr olds u u Y + u u X 1+η l 1 u Hl Ω, wr l min{k +1,s} Ifu W 3, Ω and γ 1, tn u u L2 Ω 1+η 2 l u H l Ω +1+ ln 1 2 2l 4 u 2 H l Ω REMARK 312 For t NIPG cas γ 1, t pnalization paramtr can b takn to b any positiv numbr Proof T proof follows t sam argumnts as t proof of Torms 36 and 38 First, by 326 and 25 for any v,w Y and y X, w av 328 DF 2 [v]w,y cofd 2 v : D 2 w y dx T T T [[{{cofd 2 v }} w ]] + [[{{ cofd 2 w }} v ]] {{ }} y + E i γ E [[{{cofd 2 v }} y ]] [w]+ [[{{ cofd 2 w }} y ]] [v] ds

19 Knt Stat Univrsity ttp://tnamatkntdu 280 M NEILAN Trfor, sttingv u in 328 w av by 24, , and 324, DF[u]w,y DF 2 [u]w+f 1 w,y T T T cofd 2 u : D 2 w y dx γ {{ cofd 2 u y }} [w] E η [w] [y ] ds+ [[{{cofd 2 u }} w ]]{{ }} y ds E i Lw,y Furtrmor, using standard DG tcniqus g [40], conditions a3 and a5d corcivity and continuity olds wit C cont M 1+η and β indpndnt of providd tat η 1 is sufficintly larg for t cas γ 1, η 1 can b takn to b any positiv numbr Nxt, it is asy to s tat assumptions a1a a1b, a2, and a5b a5c old by t dfinition of Y, X, L, Rmark 310, and t assumptions on u Furtrmor by t dfinitions of t norms 322 and t invrs inquality, assumption a1c olds as wll wit α O 1 Lastly, by t dfinition of L, assumption a5a symmtry olds providd γ 1 It rmains to sow tat assumption a4 olds Tis is acivd by using 328, t invrs inquality, 31, and t Caucy-Scwarz inquality as follows: DF 2 [v]w,y v H 2 T w H 2 T y L Ω + {{ D 2 v }} 2 L [ w] + {{ L D 2 w }} 2 L 2 [ v] L y 2 L Ω E i + {{ D 2 v }} L2 [w] L2 + {{ D 2 w }} L2 [v] L2 y L Ω E 1+ ln E i [ v H 2 T w H 2 T {{ D 2 v }} L2 [ w] + {{ L2 D 2 w }} L2 [ v] L2 + E 1 {{ D 2 v }} 2 L [w] + {{ L D 2 w }} ] 2 L 2 [v] L y 2 X 1+ ln 1 2 v Y w Y y X Trfor assumption a4 olds witγ 1+ ln 1 2 To apply Corollary 23 w must vrify tat inf u v Y η u v X Oβ /α γ v X O 1+ ln 1 2 By standard approximation proprtis ofx, tis rquirmnt rducs to 1+η l 2 u Hl Ω O 1+ ln 1 2,

20 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 281 wic olds providd s > 3, k 3, and is sufficintly small Trfor by Corollary 23, w av u u X inf v X 1+η u uc X + u u c Y 1+η l 1 u Hl Ω, u u Y inf v X u v Y η u v X 1+η l 2 u Hl Ω Ifγ 1, tn by Torm 26 tr olds u u L2 Ω sup ϕ H 2 Ω inf ϕ 1 ϕ X H 2 Ω 1+η u u X ϕ ϕ X +1+ln 1 2 u u Y ϕ X 1+η 2 l u Hl Ω +1+ ln 1 2 2l 4 u 2 H l Ω 4 Abstract rsults in tr dimnsions In tis sction, w xtnd t abstract rsults of Sction 2 to t tr dimnsional cas As bfor, w lt X, X b a finit dimnsional spac and w considr t problm of findingu X suc tat 21 olds W mak similar assumptions as for t two dimnsional countrpart, but tr ar som subtl diffrncs First, sinc t PDE 11 is cubic in 3D, t dcomposition 23 nds to cang to rflct tis fatur Anotr diffrnc is tat w must introduc two auxiliary normd linar spacs to ffctivly analyz t mtod Tis in turn will allow us to ffctivly stimat t scond Gâtaux drivativ of t nonlinar componnt off, wic is a ky lmnt in t proof of Torm 41 blow Spcifically, w mak t following assumptions: A1 a Tr xists two auxiliary normd linar spacs Y 1, Y 1, Y 2, Y 2 wit X Y 2 Y 1 and u Y 2 suc tat X is wll-dfind on Y 1 b T opratorf can b xtndd to a smoot opratorf : Y 1 X wit Fw,v F w,v, w,v X c Tr xist constants a 1,a2 > 0 suc tat for all v X, 41 v Y 1 a 1 v X, v 2 Y a 2 v X A2 a T nonlinar opratorf is consistnt witf in t sns tatfu 0 b F can b dcomposd as 42 F F 3 +F 1 +F 0, wrf 3 is cubic,f 1 is linar, andf 0 is constant in tir argumnts A3 Dfin t linar oprator L : Y 1 X as 43 Fu+tw Fu Lw : DF[u]w lim F 1 w+df 3 [u]w, t 0 t and dnot by L t rstriction of L to X Tn tr xists a constant b > 0 suc tat t following corcivity condition olds: 44 b v 2 X L v,v, v X

21 Knt Stat Univrsity ttp://tnamatkntdu 282 M NEILAN A4 Dfin D 2 F 3 DF 3 [v +tz]w DF 3 [v]w [v]w,z : lim t 0 t Tn tr xists a constant c suc tat for all v,w Y 1, 45 D 2 F 3 [u]w,v X c v Y 1 w Y 1, and for allv,w,z Y 2, D 2 F 3 [v]w,z X c v Y 2 w Y 2 z Y 2 A5 a T oprator L is symmtric and can b naturally xtndd suc tat L : H 2 Ω Y 1 b T norm X is wll-dfind on H 2 Ω c T oprator L is consistnt witl dfind by 219 in t sns tat Lv,w Lv,w, v H 2 Ω H 1 0Ω, w Y 1 d L is boundd in t sns tat tr xists anm > 0 suc tat Lv,w M v X w X, v,w X +H 2 Ω u is strictly convx inωand u W 3, Ω THEOREM 41 Suppos tat assumptions A1 A4 old, and lt u c X b t uniqu solution to L u c,v Lu,v, v X Suppos tat 46 u u c 2 Y 1 + u u c 3 Y 2 τ 1 b 4c min { 1 a 1 u u c Y 1, 1 a 2 u u c Y 2 for somτ 1 0,1 Tn tr xists a solutionu X to 21 satisfying { } u u X u u c X +min u u c Y 1, u u c Y 2, u u Y 1 2 u u c Y 1, u u Y 2 2 u u c Y 2 If in addition assumption A5 olds, tn u u c L 2 Ω sup inf a 1 C E ϕ H 2 Ω ϕ X ϕ H 2 Ω a 2 M u u X ϕ ϕ X +c 1 2 u u 2 Y u u 3 Y 2 ϕ X, }

22 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 283 witc E dfind by 222 REMARK 42 As in Corollary 23, it is asy to sow tat t quantity u u c X can b boundd by Cinf v X u v X for som constant C > 0 Proof T proof procds by using similar argumnts to tos of Torm 21 Namly, w considr t mapping M : Y 1 X dfind in Lmma 22, tat is, Mw L Lw Fw T goal is to sow tat M, wn rstrictd tox, as a fixd point First, w not tat, by 42, 43, and t consistncy of F, Fw F 0 +F 1 w+f 3 w F 1 u F 3 u+lw DF 3 [u]w+f 3 w 1 Lw u+ DF 3 [tw +1 tu]w u DF 3 [u]w u dt Lw u D 2 F 3[ stw u+u ] w u,tw u dtds Sinc F 3 is cubic, t mapping w,v,z D 2 F 3 [w]v,z is trilinar It tn follows tat D 2 F 3[ stw u+u ] w u,tw u dtds D 2 F 3 [w u]w u,w u +D 2 F 3 [u]w u,w u st 2 dtds tdtds 1 2 D2 F 3 [u]w u,w u+ 1 6 D2 F 3 [w u]w u,w u Substituting tis idntity into 411 w obtain 412 Fw Lw u 1 2 D2 F 3 [u]w u,u D 2 F 3 [tw+1 tu]w u,tw +1 tudt Lw u+ 1 2 D2 F 3 [u]w u,w u D2 F 3 [w u]w u,w u, and using tis last idntity in 411, w arriv at Mw L 1 Lu 1 2 D2 F 3 [u]w u,w u 1 6 D2 F 3 [w u]w u,w u

23 Knt Stat Univrsity ttp://tnamatkntdu 284 M NEILAN Hnc, for any v,w Y 1 w av Mw Mv L 1 L D 2 F 3 [u]v u,v u D 2 F 3 [u]w u,w u D 2 F 3 [v u]v u,v u D 2 F 3 [w u]w u,w u D 2 F 3 [u]v w,v u+d 2 F 3 [u]w u,v w D 2 F 3 [v w]v u,v u+d 2 F 3 [w u]v w,v u +D 2 F 3 [w u]w u,v w Nxt w apply 44 and 45 to obtain 413 Mw Mv X 1 1 D 2 F 3 [u]v w,v u b 2 X + 1 D 2 F 3 [u]w u,v w 2 X + 1 D 2 F 3 [v w]v u,v u 6 X + 1 D 2 F 3 [w u]v w,v u 6 X + 1 D 2 F 3 [w u]w u,v w 6 X c u v 2b Y 1 + u w Y 1 w v Y 1 + c u v 2 Y + u v 6b 2 Y 2 u w Y 2 c 2b + u w 2 Y w v 2 Y 2 [ u v Y 1 + u w Y w v Y 1 ] u v 2Y + u w 2Y w v 2 2 Y 2 In particular, sincu c Mu, w av uc Mw X c 2b u w 2 Y u w 3 Y 2 Lt M b t rstriction of M tox, ltb ρ u c b dfind by 214, and st ρ 1 : min { 1 a 1 u u c Y 1, 1 a 2 u u c Y 2 }

24 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 285 Tn by 413, 41, and 415 forv,w B ρ1 u c, [ M w M v X c a 1 u u c b Y 1 +a 1 ρ 1 2c b +a 2 u u c 2 Y + a 2 2 ρ 2 1 ] w v X [ ] a 1 u u c Y 1 +a 2 u u c 2 Y 2 T condition 46 tn implis 416 M w M v X τ 1 w v X, τ 1 0,1 Nxt, by 414, 41, 415, and 46, for w B ρ1 u c, uc M w X c u u c 2 Y + a 1 b 1 ρ u u c 3 Y + a 2 2 ρ 3 1 2c u u c 2 Y + u u b 1 c 3 Y 2 { 1 1 min a 1 u u c Y 1, a 2 u u c Y 2 w v X } ρ 1 It tn follows from tat M as a fixd point u in B ρ1 u c wic is a solution to 21 To driv t rror stimats 47 49, w us t triangl inquality, 415, and a1b to gt u u X u u c X +ρ 1 u u c X { } 1 1 +min u u c Y 1, u u c Y 2, a 1 a 2 u u Y 1 u u Y 1 +a 1 ρ 1 2 u u c Y 1, u u Y 2 u u Y 2 +a 2 ρ 1 2 u u c Y 2 To driv t L 2 stimat 410, w lt ψ solv t auxiliary problm 221 Using similar argumnts to tat of t proof of Torm 26, w av for any ψ X, u u 2 L 2 Ω 418 Lu u,ψ ψ + Lu u,ψ Lu u,ψ ψ + Lu u +Fu,ψ M u u X ψ ψ X + Lu u +Fu,ψ Using t idntity 412 witw u, w obtain 1 Lu u +Fu,ψ D 2 F 3 [u]u u,u u,ψ D 2 F 3 [u u]u u,u u,ψ, 6

25 Knt Stat Univrsity ttp://tnamatkntdu 286 M NEILAN Trfor by applying t stimats statd in assumption A4, w av Lu u +Fu,ψ c 1 2 u u 2 Y u u 3 Y 2 ψ X Using tis last stimat in 418, w av u u 2 L 2 Ω M u u X ψ ψ X +c 1 2 u u 2 Y u u 3 Y 2 ψ X Dividing by u u L2 Ω and using t lliptic rgularity stimat 222, w obtain 410 T proof is complt REMARK 43 It was rcntly sown in [11] tat t C 0 finit lmnt mtod 318 satisfis assumptions A1 A5 wit a 1 O 1, a 2 O b O1, c O As a rsult, t autors sowd tr xists a solution u to t mtod 318 in tr dimnsions and drivd quasi-optimal rror stimats providd tat u H s Ω, s > 7/2, and cubic polynomials or igr ar usd W xpct tat similar rsults will old for t C 1 finit lmnt mtod 36 and t discontinuous Galrkin mtod 327 as wll 5 Som concluding rmarks In tis papr, w av dvlopd and analyzd various numrical mtods for t two and tr dimnsional Mong-Ampèr quation undr a gnral framwork T ky ida to build convrgnt numrical scms is to construct discrtizations suc tat t rsulting discrt linarization is stabl and consistnt wit t continuous linarization Wit tis in and, and wit a fw mor mild conditions, w provd xistnc of t numrical solution as wll as som abstract rror stimats using a simpl fixd-point tcniqu W xpct tat t analysis prsntd r can b xtndd to gnral Mong-Ampèr quations, in wic t function f dpnds on u and u, as wll as parabolic Mong-Ampèr quations Furtrmor, w conjctur tat t abstract framwork can b xpandd so tat otr numrical mtods including mixd finit lmnt mtods, local discontinuous Galrkin mtods, and Ptrov-Galrkin mtods can naturally fit into t stting, REFERENCES [1] D N ARNOLD, F BREZZI, B COCKBURN, AND L D MARINI, Unifid analysis of discontinuous Galrkin mtods for lliptic problms, SIAM J Numr Anal, , pp [2] F E BAGINSKI AND N WHITAKER, Numrical solutions of boundary valu problms fork-surfacs inr 3, Numr Mtods Partial Diffrntial Equations, , pp [3] G BAKER, Finit lmnt mtods for lliptic quations using nonconforming lmnts, Mat Comp, , pp [4] G BARLES AND P E SOUGANIDIS, Convrgnc of approximation scms for fully nonlinar scond ordr quations, Asymptotic Anal, , pp [5] J D BENAMOU, B D FROESE, AND A M OBERMAN, Two numrical mtods for t lliptic Mong- Ampèr quation, M2AN Mat Modl Numr Anal, , pp [6] C BERNARDI, Optimal finit lmnt intrpolation on curvd domains, SIAM J Numr Anal, , pp [7] K BÖHMER, On finit lmnt mtods for fully nonlinar lliptic quations of scond ordr, SIAM J Numr Anal, , pp

26 Knt Stat Univrsity ttp://tnamatkntdu ANALYSIS OF FINITE ELEMENT METHODS FOR THE MONGE-AMPÈRE EQUATION 287 [8], Numrical Mtods for Nonlinar Elliptic Diffrntial Equations A Synopsis, Oxford Univrsity Prss, Oxford, 2010 [9] S C BRENNER, Discrt Sobolv and Poincaré inqualitis for picwis polynomial functions, Elctron Trans Numr Anal, , pp ttp://tnamcskntdu/vol182004/pp42-48dir [10] S C BRENNER, T GUDI, M NEILAN, AND L-Y SUNG, C 0 pnalty mtods for t fully nonlinar Mong-Ampèr quation, Mat Comp, , pp [11] S C BRENNER AND M NEILAN, Finit lmnt approximations of t tr dimnsional Mong-Ampèr quation, ESAIM Mat Modl Numr Anal, , pp [12] S C BRENNER AND L R SCOTT, T Matmatical Tory of Finit Elmnt Mtods, 3rd d, Springr, Nw York, 2008 [13] S C BRENNER AND L-Y SUNG, C 0 intrior pnalty mtods for fourt ordr lliptic boundary valu problms on polygonal domains, J Sci Comput, 22/ , pp [14] X CABRÉ AND L A CAFFARELLI, Fully Nonlinar Elliptic Equations, AMS, Providnc, 1995 [15] L A CAFFARELLI AND M MILMAN ds, Mong-Ampèr Equation: Applications to Gomtry and Optimization, AMS, Providnc, 1999 [16] L A CAFFARELLI, L NIRENBERG, AND J SPRUCK, T Diriclt problm for nonlinar scond-ordr lliptic quations I Mong-Ampèr quation, Comm Pur Appl Mat, , pp [17] P G CIARLET, T Finit Elmnt Mtod for Elliptic Problms, Nort-Holland, Amstrdam, 1978 [18] M G CRANDALL, H ISHII, AND P L LIONS, Usr s guid to viscosity solutions of scond ordr partial diffrntial quations, Bull Amr Mat Soc, , pp 1 67 [19] E J DEAN AND R GLOWINSKI, Numrical mtods for fully nonlinar lliptic quations of t Mong- Ampèr typ, Comput Mtods Appl Mc Engrg, , pp [20] G L DELZANNO, L CHACÓN, J M FINN, Y CHUNG, AND G LAPENTA, An optimal robust quidistribution mtod for two-dimnsional grid adaptation basd on Mong-Kantorovic optimization, J Comput Pys, , pp [21] J DOUGLAS AND T DUPONT, Intrior Pnalty Procdurs for Elliptic and Parabolic Galrkin Mtods, Lctur Nots in Pys 58, Springr, Brlin, 1976 [22] G ENGEL, K GARIKIPATI, T HUGHES, M LARSON, L MAZZEI, AND R TAYLOR, Continuous/discontinuous finit lmnt approximations of fourt-ordr lliptic problms in structural and continuum mcanics wit applications to tin bams and plats, and strain gradint lasticity, Comput Mtods Appl Mc Eng, , pp [23] L C EVANS, Partial Diffrntial Equations, AMS, Providnc, 1998 [24] X FENG AND M NEILAN, Mixd finit lmnt mtods for t fully nonlinar Mong-Ampèr quation basd on t vanising momnt mtod, SIAM J Numr Anal, , pp [25], Vanising momnt mtod and momnt solutions for scond ordr fully nonlinar partial diffrntial quations, J Sci Comput, , pp [26] B D FROESE AND A M OBERMAN, Fast finit diffrnc solvrs for singular solutions of t lliptic Mong-Ampèr quation, J Comput Pys, , pp [27] E H GEORGOULIS AND P HOUSTON, Discontinuous Galrkin mtods for t biarmonic problm, IMA J Numr Anal, , pp [28] D GILBARG AND NS TRUDINGER, Elliptic Partial Diffrntial Equations of Scond Ordr, Springr, Brlin, 2001 [29] B GUAN, T Diriclt problm for Mong-Ampèr quations in non-convx domains and spaclik yprsurfacs of constant Gauss curvatur, Trans Amr Mat Soc, , pp [30] B GUAN AND J SPRUCK, Boundary-valu problms on S n for surfacs of constant Gauss curvatur, Ann of Mat 2, , pp [31], T xistnc of yprsurfacs of constant Gauss curvatur wit prscribd boundary, J Diffrntial Gom, , pp [32] C E GUTIERREZ, T Mong-Ampèr Equation, Birkäusr, Boston, 2001 [33] N M IVOCHKINA, Solution of t Diriclt problm for crtain quations of Mong-Ampèr typ, Mat Sb NS, , pp [34] H J KUO AND N S TRUDINGER, Discrt mtods for fully nonlinar lliptic quations, SIAM J Numr Anal, , pp [35], Scaudr stimats for fully nonlinar lliptic diffrnc oprators, Proc Roy Soc Edinburg Sct A, , pp [36] I MOZOLEVSKI, E SÜLI, AND P R BÖSING, p-vrsion a priori rror analysis of intrior pnalty discontinuous Galrkin finit lmnt approximations to t biarmonic quation, J Sci Comput, , pp [37] J A NITSCHE, Übr in Variationsprinzip zur Lösung von Diriclt-Problmn bi Vrwndung von Tilräumn, di kinn Randbdingungn untworfn sind, Ab Mat Sm Univ Hamburg, , pp 9 15

27 Knt Stat Univrsity ttp://tnamatkntdu 288 M NEILAN [38] A M OBERMAN, Wid stncil finit diffrnc scms for t lliptic Mong-Ampèr quation and functions of t ignvalus of t Hssian, Discrt Contin Dyn Syst Sr B, , pp [39] V I OLIKER AND L D PRUSSNER, On t numrical solution of t quation 2 z 2 z x 2 y 2 2 z x y 2 f and its discrtizations, Numr Mat, , pp [40] B RIVIÉRE, Discontinuous Galrkin Mtods for Solving Elliptic and Parabolic Equations: Tory and Implmntation, SIAM, Piladlpia, 2008 [41] B RIVIÉRE, M F WHEELER, AND V GIRAULT, Improvd nrgy stimats for intrior pnalty, constraind and discontinuous Galrkin mtods for lliptic problms I, Comput Gosci, , pp [42] M V SAFONOV, Classical solution of scond-ordr nonlinar lliptic quations, Izv Akad Nauk SSSR Sr Mat, , pp [43] D C SORENSEN AND R GLOWINSKI, A quadratically constraind minimization problm arising from PDE of Mong-Ampèr typ, Numr Algoritms, , pp [44] N S TRUDINGER AND X-J WANG, T Mong-Ampèr quation and its gomtric applications, in Handbook of Gomtric Analysis Vol I, L Ji, P Li, R Scon, and L Simon, ds, Advancd Lcturs in Matmatics, 7, Intrnational Prss, Somrvill, pp [45] C VILLANI, Topics in Optimal Transportation, AMS, Providnc, 2003 [46] V ZHELIGOVSKY, O PODVIGINA, AND U FRISCH, T Mong-Ampèr quation: various forms and numrical solution, J Comput Pys, , pp

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM A C 0 INERIOR PENALY MEHOD FOR A FOURH ORDER ELLIPIC SINGULAR PERURBAION PROBLEM SUSANNE C. BRENNER AND MICHAEL NEILAN Abstract. In tis papr, w dvlop a C 0 intrior pnalty mtod for a fourt ordr singular

More information

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

arxiv: v1 [math.na] 22 Oct 2010

arxiv: v1 [math.na] 22 Oct 2010 arxiv:10104563v1 [matna] 22 Oct 2010 ABSOLUTELY STABLE LOCAL DSCONTNUOUS GALERKN METHODS FOR THE HELMHOLTZ EQUATON WTH LARGE WAVE NUMBER XAOBNG FENG AND YULONG XNG Abstract Two local discontinuous Galrkin

More information

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems Journal of Computational and Applid Matmatics 235 (2011) 5422 5431 Contnts lists availabl at ScincDirct Journal of Computational and Applid Matmatics journal ompag: www.lsvir.com/locat/cam An adaptiv discontinuous

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem www.oaw.ac.at Uniformly stabl discontinuous Galrin discrtization and robust itrativ solution mtods for t Brinman problm Q. Hong, J. Kraus RICAM-Rport 2014-36 www.ricam.oaw.ac.at UNIFORMLY STABLE DISCONTINUOUS

More information

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems Convrgnc analysis of a discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of Hlmoltz problms Moamd Amara Laboratoir d Matématiqus Appliqués Univrsité d Pau t ds Pays d l Adour

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations www.oaw.ac.at A robust multigrid mtod for discontinuous Galrin discrtizations of Stos and linar lasticity quations Q. Hong, J. Kraus, J. Xu, L. Ziatanov RICAM-Rport 2013-19 www.ricam.oaw.ac.at A ROBUST

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. In tis papr, t autors stablisd a unifid framwork for driving and

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

arxiv: v1 [math.na] 8 Oct 2008

arxiv: v1 [math.na] 8 Oct 2008 DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER XIAOBING FENG AND HAIJUN WU arxiv:080.475v [mat.na] 8 Oct 008 Abstract. Tis papr dvlops and analyzs som intrior pnalty discontinuous

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

Discontinuous Galerkin Approximations for Elliptic Problems

Discontinuous Galerkin Approximations for Elliptic Problems Discontinuous Galrkin Approximations for lliptic Problms F. Brzzi, 1,2 G. Manzini, 2 D. Marini, 1,2 P. Pitra, 2 A. Russo 2 1 Dipartimnto di Matmatica Univrsità di Pavia via Frrata 1 27100 Pavia, Italy

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

An interior penalty method for a two dimensional curl-curl and grad-div problem

An interior penalty method for a two dimensional curl-curl and grad-div problem ANZIAM J. 50 (CTAC2008) pp.c947 C975, 2009 C947 An intrior pnalty mthod for a two dimnsional curl-curl and grad-div problm S. C. Brnnr 1 J. Cui 2 L.-Y. Sung 3 (Rcivd 30 Octobr 2008; rvisd 30 April 2009)

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains Finit lmnt approximation of Diriclt boundary control for lliptic PDEs on two- and tr-dimnsional curvd domains Klaus Dcklnick, Andras Güntr & Mical Hinz Abstract: W considr t variational discrtization of

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

ruhr.pad An entropy stable spacetime discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations

ruhr.pad An entropy stable spacetime discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations Bild on Scrift: rur.pad UA Rur Zntrum für partill Diffrntialglicungn Bild mit Scrift: rur.pad UA Rur Zntrum für partill Diffrntialglicungn An ntropy stabl spactim discontinuous Galrkin mtod for t two-dimnsional

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

Rational Approximation for the one-dimensional Bratu Equation

Rational Approximation for the one-dimensional Bratu Equation Intrnational Journal of Enginring & Tchnology IJET-IJES Vol:3 o:05 5 Rational Approximation for th on-dimnsional Bratu Equation Moustafa Aly Soliman Chmical Enginring Dpartmnt, Th British Univrsity in

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

H(curl; Ω) : n v = n

H(curl; Ω) : n v = n A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations DOI 10.1007/s10915-016-0264-z Dirct Discontinuous Galrkin Mthod and Its Variations for Scond Ordr Elliptic Equations Hongying Huang 1,2 Zhng Chn 3 Jin Li 4 Ju Yan 3 Rcivd: 15 Dcmbr 2015 / Rvisd: 10 Jun

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 16, Numbr 1, Pags 49 62 c 2019 Institut for Scintific Computing and Information RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Space-Time Discontinuous Galerkin Method for Maxwell s Equations

Space-Time Discontinuous Galerkin Method for Maxwell s Equations Commun. Comput. Pys. doi: 0.4208/cicp.23042.2722a Vol. 4, No. 4, pp. 96-939 Octobr 203 Spac-Tim Discontinuous Galrkin Mtod for Maxwll s Equations Ziqing Xi,2, Bo Wang 3,4, and Zimin Zang 5,6 Scool of Matmatics

More information

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3 ESAIM: MAN 4 008) 375 410 DOI: 10.1051/man:008009 ESAIM: Matmatical Modlling and Numrical Analysis www.saim-man.org MORTAR FINITE ELEMENT DISCRETIZATION OF A MODEL COUPLING DARCY AND STOES EQUATIONS Cristin

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr is concrnd with rsidual typ a postriori rror stimators

More information

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle CHPTER 1 Introductory Concpts Elmnts of Vctor nalysis Nwton s Laws Units Th basis of Nwtonian Mchanics D lmbrt s Principl 1 Scinc of Mchanics: It is concrnd with th motion of matrial bodis. odis hav diffrnt

More information

arxiv: v1 [math.na] 11 Dec 2014

arxiv: v1 [math.na] 11 Dec 2014 DISCRETE KORN S INEQUALITY FOR SHELLS SHENG ZHANG arxiv:14123654v1 [matna] 11 Dc 2014 Abstract W prov Korn s inqualitis for Nagdi and Koitr sll modls dfind on spacs of discontinuous picwis functions Ty

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

Numerische Mathematik

Numerische Mathematik Numr. Math. 04 6:3 360 DOI 0.007/s00-03-0563-3 Numrisch Mathmatik Discontinuous Galrkin and mimtic finit diffrnc mthods for coupld Stoks Darcy flows on polygonal and polyhdral grids Konstantin Lipnikov

More information

Symmetric centrosymmetric matrix vector multiplication

Symmetric centrosymmetric matrix vector multiplication Linar Algbra and its Applications 320 (2000) 193 198 www.lsvir.com/locat/laa Symmtric cntrosymmtric matrix vctor multiplication A. Mlman 1 Dpartmnt of Mathmatics, Univrsity of San Francisco, San Francisco,

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems Portland Stat Univrsity PDXScolar Matmatics and Statistics Faculty Publications and Prsntations Fariborz Mas Dpartmnt of Matmatics and Statistics 2004 A Caractrization of Hybridizd Mixd Mtods for Scond

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind World Applid Scincs Journal 9 (9): 8-, ISSN 88-495 IDOSI Publications, Lgndr Wavlts for Systs of Frdhol Intgral Equations of th Scond Kind a,b tb (t)= a, a,b a R, a. J. Biazar and H. Ebrahii Dpartnt of

More information

A ROBUST NONCONFORMING H 2 -ELEMENT

A ROBUST NONCONFORMING H 2 -ELEMENT MAHEMAICS OF COMPUAION Volum 70, Numbr 234, Pags 489 505 S 0025-5718(00)01230-8 Articl lctronically publishd on Fbruary 23, 2000 A ROBUS NONCONFORMING H 2 -ELEMEN RYGVE K. NILSSEN, XUE-CHENG AI, AND RAGNAR

More information

State-space behaviours 2 using eigenvalues

State-space behaviours 2 using eigenvalues 1 Stat-spac bhaviours 2 using ignvalus J A Rossitr Slids by Anthony Rossitr Introduction Th first vido dmonstratd that on can solv 2 x x( ( x(0) Th stat transition matrix Φ( can b computd using Laplac

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ESAIM: MAN Vol. 39, N o 6, 005, pp. 5 47 DOI: 0.05/man:005048 ESAIM: Mathmatical Modlling and Numrical Analysis A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Discontinuous Galerkin methods

Discontinuous Galerkin methods ZAMM Z. Angw. Mat. Mc. 83, No. 11, 731 754 2003 / DOI 10.1002/zamm.200310088 Discontinuous Galrkin mtods Plnary lctur prsntd at t 80t Annual GAMM Confrnc, Augsburg, 25 28 Marc 2002 Brnardo Cockburn Univrsity

More information

Discontinuous Galerkin approximation of flows in fractured porous media

Discontinuous Galerkin approximation of flows in fractured porous media MOX-Rport No. 22/2016 Discontinuous Galrkin approximation of flows in fracturd porous mdia Antonitti, P.F.; Facciola', C.; Russo, A.;Vrani, M. MOX, Dipartimnto di Matmatica Politcnico di Milano, Via Bonardi

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient Full Wavform Invrsion Using an Enrgy-Basd Objctiv Function with Efficint Calculation of th Gradint Itm yp Confrnc Papr Authors Choi, Yun Sok; Alkhalifah, ariq Ali Citation Choi Y, Alkhalifah (217) Full

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling

Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling Port Hamiltonian Formulation of Infinit Dimnsional Systms I. Modling Alssandro Macchlli, Arjan J. van dr Schaft and Claudio Mlchiorri Abstract In this papr, som nw rsults concrning th modling of distributd

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information