Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3

Size: px
Start display at page:

Download "Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3"

Transcription

1 ESAIM: MAN 4 008) DOI: /man: ESAIM: Matmatical Modlling and Numrical Analysis MORTAR FINITE ELEMENT DISCRETIZATION OF A MODEL COUPLING DARCY AND STOES EQUATIONS Cristin Brnardi 1, Tomás Cacón Rbollo 1,,Frédéric Hct 1 and Zoubida Mgazli 3 Abstract. As a first draft of a modl for a rivr flowing on a omognous porous ground, w considr a systm wr t Darcy and Stoks quations ar coupld via appropriat matcing conditions on t intrfac. W propos a discrtization of tis problm wic combins t mortar mtod wit standard finit lmnts, in ordr to andl sparatly t flow insid and outsid t porous mdium. W prov a priori and a postriori rror stimats for t rsulting discrt problm. Som numrical xprimnts confirm t intrst of t discrtization. Matmatics Subjct Classification. 65N30, 65N55, 76M10. Rcivd January 8, 007. Rvisd Octobr 3, 007. Publisd onlin April 1st, Introduction W first dscrib t modl w intnd to work wit. Lt Ω b a rctangl in dimnsion d = or a rctangular paralllpipd in dimnsion d = 3. W assum tat it is dividd witout ovrlap) into two connctd opn sts Ω P and Ω F wit Lipscitz-continuous boundaris, wr t indics P and F stand for porous and fluid, rspctivly. T fluid tat w considr is viscous and incomprssibl. So in t porous mdium, wic is assumd to b rigid and saturatd wit t fluid, w considr t following quations, du to Darcy, { α u + grad p = f in Ω P, 1.1) div u =0 inω P. In Ω F, t flow of tis sam fluid is govrnd by t Stoks quations { ν u + grad p = f in Ω F, div u =0 inω F. 1.) ywords and prass. Mortar mtod, finit lmnts, Darcy quations, Stoks quations. 1 Laboratoir Jacqus-Louis Lions, C.N.R.S. & Univrsité Pirr t Mari Curi, B.C. 187, 4 plac Jussiu, 755 Paris Cdx 05, Franc. brnardi@ann.jussiu.fr; ct@ann.jussiu.fr Dpartamnto d Ecuacions Difrncials y Análisis Numrico, Univrsidad d Svilla, Tarfia s/n, 4101 Svilla, Spain. cacon@numr.us.s 3 Équip d Ingéniri Matématiqu, LIRNE, Faculté ds Scincs, Univrsité Ibn Tofail, B.P. 133, énitra, Morocco. mgazli zoubida@yaoo.com Articl publisd by EDP Scincs c EDP Scincs, SMAI 008

2 376 C. BERNARDI ET AL. Figur 1. An xampl of tr-dimnsional domain Ω. T unknowns bot in 1.1) and 1.) ar t vlocity u and t prssur p of t fluid. T paramtrs ν and α ar positiv constants, rprsnting t viscosity of t fluid and t ratio of tis viscosity to t prmability of t mdium, rspctivly. T porous mdium is supposd to b omognous, so tat w tak α constant on t wol subdomain Ω P w rfr to [1] and[1] for andling t somwat mor ralistic cas wr α is picwis constant in a diffrnt framwork). Not also tat t dformation tnsor is rplacd by t gradint oprator in 1.) for matmatical simplicity tis simplification is standard in gopysics, s.g. [9], Sct. 1..3). Concrning t boundary conditions, as illustratd in Figur 1 d = 3) and also in Figur d = ) wit mor dtails, w dnot by Γ a t uppr dg d =)orfacd = 3) of Ω, wr t indx a mans in contact wit t atmospr. Lt Γ ap b t intrsction Γ a Ω P and Γ af t intrsction Γ a Ω F not tat Γ ap can b mpty in som practical situations). W st: Γ P = Ω Ω P ) \ Γ ap and Γ F = Ω Ω F ) \ Γ af. Lt n stand for t unit outward normal vctor to Ω on Ω andalsotoω P on Ω P. Wprovidtprvious partial diffrntial quations 1.1) and 1.) wit t conditions u n = k on Γ P and p = p a on Γ ap, 1.3) and u = g on Γ F and ν n u p n = t a on Γ af. 1.4) Not tat ts conditions ar of Diriclt typ on Ω \ Γ a, wil t condition on Γ ap only mans tat t prssur, r qual to p a, dpnds on t atmospric prssur. T condition on Γ af mans tat t variations of t fr surfac at t top of t flow ar nglctd in t modl. Tus t a mainly dpnds on t atmospric prssur and t wind on t rivr. Tis is standard in gopysics, s.g. [9], Sction 1.4; not owvr tat, wn t flux Γ F g n)τ )dτ + Γ P kτ )dτ is too larg, tis boundary condition is not compatibl wit t pysics of t problm. To conclud, lt Γ dnot t intrfac Ω P Ω F. On Γ w considr t matcing conditions u ΩP n = u ΩF n and p ΩP n = ν n u ΩF p ΩF n on Γ. 1.5)

3 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 377 Γ af Γ ap Γ af Ω F Γ F Ω F Γ F Γ P Γ P Γ P Γ P Ω P Ω P Γ P Γ P Figur. Two xampls of two-dimnsional domains Ω. Indd, from a pysical point of viw, consrvation of mass nforcs continuity of t normal vlocitis at t intrfac. Similarly, consrvation of momntum nforcs continuity of t normal strsss. Suc intrfac conditions ar studid for instanc in [1,8] and[17], Sction 4.5. Not tat a lot of rcnt works dal wit t coupling of Darcy and Stoks quations in diffrnt framworks, nc wit otr typs of matcing conditions suc as t Bavr-Josp-Saffman conditions, s [10,16,1,3,8,35] and t rfrncs trin. Systm 1.1) 1.5) is only a first draft of a modl for t laminar flow of a rivr ovr a porous rock suc as limston, owvr it sms tat its discrtization as not bn considrd bfor. Of cours, in mor ralistic modls, t Stoks quations must b rplacd by t Navir-Stoks quations for instanc wn t rivr mts obstacls) and t Darcy quations must b rplacd by mor complx modls as proposd in [33] salso[4] or [0]). Howvr w ar intrstd wit tis systm. W first writ an quivalnt variational formulation of it and prov tat it admits a uniqu solution. T discrtization tat w propos rlis on t mortar lmnt mtod, a domain dcomposition tcniqu introducd in [7] salso[11] for t nw trnds). Indd it sms convnint to us a subdomain for t fluid and anotr on for t porous mdium. Morovr, owing to t flxibility of t mortar mtod, indpndnt mss can b usd on t diffrnt parts of t domain. On ac subdomain, w considr a finit lmnt discrtization, rlying on standard finit lmnts bot for t Stoks problm t lmnt first introducd in [] and analyzd in [6]) and t Darcy quations t Raviart-Tomas lmnt [34]). Ts coics can b justifid as follows: T Raviart-Tomas lmnt is t simplst and lss xpnsiv lmnt wic is conforming in t domain of t divrgnc oprator, so tat w us it on Ω P. It is usually associatd wit picwis constant prssurs, in ordr tat t inf-sup condition linking t two spacs on Ω P is optimal wr optimal mans wit a constant indpndnt of t discrtization paramtr ). Tus, for simplicity, picwis constant prssurs ar usd on t wol domain. T Brnardi-Raugl lmnt is t lss xpnsiv lmnt wic, wn associatd wit t spac of picwis constant prssurs, lads to an optimal inf-sup condition on Ω F. W construct a discrt problm and w cck tat it as a uniqu solution. W tn prov optimal apriori and a postriori uppr bounds for t rror, dspit t lack of conformity of t mortar mtod. Tanks to t rror indicators issud from t a postriori analysis, w ar in a position to prform ms adaptivity indpndntly in t porous and fluid domain. W dscrib t adaptivity stratgy tat w us. Nxt w prsnt numrical xprimnts. T rsults ar in good agrmnt wit t rror stimats, so ty justify our coic of discrtization.

4 378 C. BERNARDI ET AL. T outlin of t papr is as follows. In Sction, w writ t variational formulation of t problm and prov its wll-posdnss. Sction 3 is dvotd to t dscription of t discrt problm and to t proof of its wll-posdnss. W prov t aprioriand a postriori stimats in Sctions 4 and 5, rspctivly. T adaptivity stratgy and numrical xprimnts ar prsntd in Sction 6.. Analysis of t modl W first intnd to writ a variational formulation of systm 1.1) 1.5). From now on, for ac domain O in R d wit a Lipscitz-continuous boundary, w us t full scal of Sobolv spacs H s O) andh0o), s s 0, tir trac spacs on O and tir dual spacs. W dnot by C O) t spac of rstrictions to O of indfinitly diffrntiabl functions on R d and by DO) its subspac mad of functions wit a compact support in O. Lt also Hdiv, Ω) dnot t spac of functions v in L Ω) d suc tat div v blongs to L Ω), quippd wit t norm v Hdiv,Ω) = v L Ω) d + div v L Ω) ) 1..1) W rcall t Stoks formula, valid for smoot noug functions v and q, div v)x) qx)dx + vx) grad q)x)dx = v n)τ )qτ )dτ. Ω Ω Ω Sinc C Ω) d is dns in Hdiv, Ω) [4], Captr I, Torm.4, w driv from tis formula tat t normal trac oprator: v v n is dfind and continuous from Hdiv, Ω) into H 1 Ω). Tis lads to dfin H 0 div, Ω) = { } v Hdiv, Ω); v n =0on Ω..) Tn DΩ) d is dns in H 0 div, Ω) [4], Captr I, Torm.6, and bot Hdiv, Ω) and H 0 div, Ω) ar Hilbrt spacs for t scalar product associatd wit t norm dfind in.1). Rmark.1. Lt Γ b any part of Ω wit positiv masur. W rfr to [30], Captr 1, Sction 11, for t dfinition of H 1 00 Γ ) as t spac of functions in H 1 Γ ) suc tat tir xtnsion by zro blongs to H 1 Ω). T normal trac on Γ of a function v in Hdiv, Ω) maks sns in H 1 00 Γ ), owing to t following formula q H 1 00 Γ ), v n)τ )qτ )dτ = Γ Ω div v)x) qx)dx + Ω vx) grad q)x)dx, wr q is any lifting in H 1 Ω) of t xtnsion by zro of q to Ω clarly t intgral in t lft-and sid of t prvious quality rprsnts a duality pairing). Not morovr tat H 1 Γ ) is imbddd in H 1 00 Γ ). W now introduc t variational spacs { XΩ) = v Hdiv, Ω); v ΩF H 1 Ω F ) d}, } X 0 Ω) = {v XΩ); v n =0 onγ P and v = 0 on Γ F..3) Bot of tm ar quippd wit t norm v XΩ) = v Hdiv,Ω P ) + v H 1 Ω F ) ) 1,.4)

5 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 379 and ar Hilbrt spacs for t corrsponding scalar product. W also considr t bilinar forms au, v) =a P u, v)+a F u, v), wit a P u, v) =α ux) vx)dx, Ω P a F u, v) =ν grad u)x) :grad v)x)dx,.5) Ω F bv,q)= div v)x)qx)dx. Ω It is radily cckd tat t first tr forms ar continuous on XΩ) XΩ), wil t last on is continuous on XΩ) L Ω). T variational problm tat w considr now rads: Find u,p) in XΩ) L Ω) suc tat and tat u n = k on Γ P and u = g on Γ F,.6) v X 0 Ω), au, v)+bv,p)=lv), q L Ω), bu,q)=0,.7) wr t linar form L ) is dfind by Lv) = fx) vx)dx Ω v n)τ )p a τ )dτ + Γ ap vτ ) t a τ )dτ. Γ af.8) Not tat, in tis dfinition, w av usd intgrals for t sak of clarity, owvr ty ar most oftn rplacd by duality pairings. Indd, from now on, w mak t following assumption on t fiv data k H 1 ΓP ), g H 1 ΓF ) d, f X 0 Ω), p a H 1 00 Γ ap ), t a H 1 ΓaF ) d,.9) wr H 1 Γ P )andh 1 Γ af ) stand for t dual spacs of H 1 Γ P )andh 1 Γ af ), rspctivly. Wit tis coic, t boundary conditions.6) maks sns s Rm..1) and t form L ) is continuous on X 0 Ω). Standard argumnts lad to t quivalnc of problms 1.1) 1.5) and.6).7). Proposition.. Any smoot noug pair of functions u,p) is a solution of problm.6).7) if and only if it is a solution of problm 1.1) 1.5). To prov t wll-posdnss of problm.6).7), w first construct a lifting of t boundary conditions.6). Lmma.3. Tr xists a divrgnc-fr function u b in XΩ) wic satisfis u b n = k on Γ P and u b = g on Γ F,.10) and ) u b XΩ) c k H 1 + g ΓP ) H 1..11) ΓF )d

6 380 C. BERNARDI ET AL. Proof. It is prformd in tr stps. 1) Lt g b an xtnsion of g into H 1 Ω F ) d. W introduc a fixd smoot vctor fild ϕ wit support in Γ and st g Ω = g F g n)τ )dτ ϕ. Γ ϕ n)τ )dτ So t function g blongs to H 1 Ω F ) d and satisfis g n)τ )dτ =0 and g 1 c g H ΩF ) Ω d H 1 Γ F ) d. F Tus, t Stoks problm { ν ubf + grad p bf = 0 in Ω F, div u bf =0 inω F,.1) u bf = g on Ω F, as a solution in H 1 Ω F ) L Ω F ), wic is uniqu up to an additiv constant on t prssur [4], Captr I, Torm 5.1. Morovr, tanks to t prvious inquality, tis solution satisfis ) W now dnot by Y Ω P )tspac u bf H 1 Ω F ) c g d H 1 Γ F ) d..13) Y Ω P )= { µ H 1 Ω P ); µ =0 onγ ap }. Wn Γ ap as a positiv masur, w considr t problm: Find λ in Y Ω P ) suc tat µ Y Ω P ), grad λ)x) grad µ)x) = kτ )µτ )dτ + u bf n)τ )µτ )dτ..14) Ω P Γ P Γ Tis problm as a uniqu solution. Morovr t function u bp = grad λ is divrgnc-fr on Ω P as follows by taking µ in DΩ) in t prvious problm) and satisfis and u bp n = k on Γ P and u bp n = u bf n on Γ,.15) u bp Hdiv,ΩP ) c k H 1 Γ P ) + g H 1 Γ F ) d )..16) 3) Wn Γ ap as a zro masur, it follows from t dfinition of Γ ap and Γ af tat Γ af as a positiv masur. Tus, w introduc a furtr function g in H 1 Γ) d suc tat g n)τ )dτ = kτ )dτ, Γ Γ P and tr xists a function g in H 1 Ω F ) d qual to g on Γ F and to g on Γ not tat tis rquirs som compatibility conditions btwn g and g on Γ F Γ wn tis last st is not mpty). By adding to g a constant tims a fixd smoot function now wit support in Γ af, w construct a function g in H 1 Ω F )wic satisfis g n)τ )dτ =0. Ω F

7 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 381 Tn t Stoks problm.1) wit tis modifid function g still admits a solution, and tis solution satisfis ) u bf H 1 Ω F ) d c k H 1 + g Γ P ) H 1..17) Γ F ) d Nxt, sinc t function qual to k on Γ P and to u bf n = g n on Γ as a null intgral on Ω P, problm.14) admits a solution λ, uniqu up to an additiv constant not tat Y Ω P ) now coincids wit H 1 Ω P )). T function u bp = grad λ is divrgnc-fr on Ω P and still satisfis.15) and.16). To conclud, w obsrv from itr.13) or.17) and.16) tat t function u b qual to u bp on Ω P and to u bf on Ω F satisfis all t dsird proprtis. Rmark.4. Not tat t first assumption in.9) could b rplacd by t wakr on k H 1 00 Γ P ), s Rmark.1. Howvr, t prvious proof dos not work wit only tis assumption wn, for instanc, Γ P Γ is not mpty, s.14). So w do not andl tis modifid assumption sinc w av no dirct application for it. To go furtr, w st: u 0 = u u b,wru b is t function xibitd in Lmma.3. W obsrv tat problm.6).7) admits a solution if t following problm as on: Find u 0,p) in X 0 Ω) L Ω) suc tat It is radily cckd tat t krnl v X 0 Ω), au 0, v)+bv,p)= au b, v)+lv), q L Ω), bu 0,q)=0..18) V Ω) = { } v X 0 Ω); q L Ω), bv,q)=0,.19) coincids wit t spac of functions in X 0 Ω) wic ar divrgnc-fr on Ω. W first cck t llipticity of t form a, ) onv Ω). Lmma.5. Assum tat i) itr Γ F as a positiv masur in Ω F, ii) or t normal vctor nx) runs troug a basis of R d wn x runs troug Γ. Tr xists a constant α > 0 suc tat t following llipticity proprty olds Proof. Lt us obsrv tat, for all v in V Ω), v V Ω), av, v) α v XΩ)..0) av, v) min{α, ν} v L Ω P ) d + v H 1 Ω F ) d ),.1) and v XΩ) = v L Ω P ) d + v H 1 Ω F ) d + v L Ω F ) d ) 1..) Lt now v b a function in V Ω) suc tat v L Ω P ) d and v H 1 Ω F ) d ar qual to zro. Tus, v is zro on Ω P and is qual to a constant c on Ω F. Wn assumption i) olds, it follows from t dfinition of X 0 Ω) tat tis constant is zro. Wn assumption ii) olds, sinc v is zro on Ω P, c n is zro on Γ and, sinc n runs troug a basis of R d, c is zro. Tn v is zro on Ω. Tanks to t Ptr-Tartar lmma [4], Captr I, Torm.1, it follows from tis proprty,.) and t compactnss of t imbdding of H 1 Ω F )intol Ω F )tat v V Ω), v L Ω P ) d + v H 1 Ω F ) d ) 1 c v XΩ).

8 38 C. BERNARDI ET AL. Tis, combind wit.1), givs t dsird llipticity proprty. Lmma.6. Tr xists a constant β>0 suc tat t following inf-sup condition olds q L Ω), sup v X 0Ω) bv,q) v XΩ) β q L Ω)..3) Proof. Lt Ω + b a rctangl d = ) or a rctangular paralllpipd d = 3) suc tat Γ + =Γ a Ω + is containd in t intrior of Γ a and as a positiv masur. Tn, t function q + dfind by { q on Ω, q + = 1 masω +) Ω qx)dx on Ω +, blongs to L Ω Ω + ) and as a null intgral on tis domain. It tus follows from t standard inf-sup condition, s [4], Captr I, Corollary.4, tat tr xists a function v + in H 1 0 Ω Γ + Ω + ) d suc tat div v + = q + and v + H 1 Ω Γ + Ω +) d c q + L Ω Γ + Ω +). Taking v qual to t rstriction of v + to Ω wic obviously blongs to X 0 Ω)) lads to t dsird inf-sup condition. W ar now in a position to prov t main rsult of tis sction. Not tat, du to t mixd boundary conditions, no furtr assumption on t flux of t data is ndd for t xistnc of a solution. Torm.7. If t assumptions of Lmma.5 old, for any data k, g, f,p a, t a ) satisfying.9), problm.6).7) as a uniqu solution u,p) in XΩ) L Ω). Morovr tis solution satisfis ) u XΩ) + p L Ω) c k H 1 + g ΓP ) H 1 + f X ΓF 0Ω) + p a )d H 100ΓaP + t a ) H 1..4) ΓaF )d Proof. It follows from Lmmas.5 and.6, s [4], Captr I, Torm 4.1, tat problm.18) as a uniqu solution u 0,p)inX 0 Ω) L Ω) and tat tis solution satisfis ) u 0 XΩ) + p L Ω) c u b XΩ) + f X0Ω) + p a H 100ΓaP + t a ) H 1..5) ΓaF )d Tn, t pair u = u 0 + u b,p) is a solution of problm.6).7), and stimat.4) is a consqunc of.5) and.11). On t otr and, lt u 1,p 1 )andu,p ) b two solutions of problm.6).7). Tn, t diffrnc u 1 u,p 1 p ) is a solution of problm.18) wit data u b, f, p a and t a qual to zro. Tus, it follows from.5) tat it is zro. So t solution of problm.6).7) is uniqu. From now on, w assum tat t non rstrictiv assumptions of Lmma.5 old. W conclud wit som rgularity proprtis of t solution u,p). Proposition.8. Lt us assum tat t fiv data satisfy k H 1 ΓP ), g H 3 ΓF ) d, f H 1 Ω) d, p a H 3 ΓaP ), t a H 1 ΓaF ) d..6) Tn, t rstriction u ΩP,p ΩP ) of t solution u,p) of problm.6).7) to Ω P blongs to t spac H sp Ω P ) d H sp +1 Ω P ) for a ral numbr s P > 0 givn by s P =1/4 if Ω P is a polygon d =); s P =1/ if Γ ap is mpty or if Ω P is a polygon or a polydron and tr xists a convx nigbourood in Ω P of Γ P Γ) Γ ap ;

9 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 383 s P < 1 if Γ ap is mpty and Ω P is a convx polygon or polydron or as a C 1,1 -boundary. T rstriction u ΩF,p ΩF ) of t solution u,p) of problm.6).7) to Ω F blongs to t spac H sf +1 Ω F ) d H sf Ω F ) for a ral numbr s F > 0 givn by s F =1/4 if Ω F is a polygon d =); s F =1/ if Γ F is mpty or if Ω F is a polygon d =) and tr xists a convx nigbourood in Ω F of Γ af Γ) Γ F ; s F < 1 if Γ F is mpty and Ω F is a convx polygon or polydron or as a C 1,1 -boundary. Proof. W cck succssivly t two assrtions. 1) T function p ΩP is a solution of t Poisson quation wit mixd boundary conditions p = div f in Ω P, p = p a on Γ ap, n p = f n αk on Γ P, n p = f n α u ΩF n on Γ. Morovr, sinc u ΩF blongs to H 1 Ω) d, its normal trac u ΩF n blongs to H 1 Γ). T dsird rgularity of p ΩP is asily drivd from [6], Torms...3 and 3..1., or [19], Sction 3, tanks to appropriat Sobolv imbddings. T rgularity of u ΩP tn follows from t first lin in 1.1). ) T pair u ΩF,p ΩF ) is a solution of t Stoks problm wit mixd boundary conditions ν u + grad p = f in Ω F, div u =0 inω F, u = g on Γ F, ν n u p n = t a on Γ af, ν n u p n = p ΩP n on Γ. It can also b notd from part 1) of t proof tat p ΩP n blongs at last to H 1 Γ) d. So t dsird rsults follow from [3]. Assumption.6) is too strong for most rsults of Proposition.8, and w only mak it for simplicity. Morovr t norms of u ΩP,p ΩP )inh sp Ω P ) d H sp +1 Ω P )andofu ΩF,p ΩF )inh sf +1 Ω F ) d H sf Ω F ) ar boundd as a function of wakr norms of t data. Not also tat compatibility conditions on t data at t intrsctions of diffrnt parts of t boundaris sould b mad to obtain igr rgularity, i.. to brak t rstrictions s P < 1ands F < 1. Similar rsults old in otr situations tat w do not considr in tis work for instanc, wn Γ af is mpty). 3. T discrt problm and its wll-posdnss T mortar finit lmnt discrtization rlis on t partition of Ω into Ω P and Ω F. Indd, vn if som furtr partitions could b introducd to andl anisotropic domains for instanc, w do not considr tm in tis work. Lt T P ) P and T F ) F b rgular familis of triangulations of Ω P and Ω F, rspctivly, by closd triangls d = ) or ttradra d = 3), in t usual sns tat: For ac P, Ω P is t union of all lmnts of T P and, for ac F, Ω F is t union of all lmnts of T F. T intrsction of two diffrnt lmnts of T P, if not mpty, is a vrtx or a wol dg or a wol fac of bot of tm, and t sam proprty olds for t intrsction of two diffrnt lmnts of T F. T ratio of t diamtr of any lmnt of T P F or of T to t diamtr of its inscribd circl or spr is smallr tan a constant σ indpndnt of P and F.

10 384 C. BERNARDI ET AL. As usual, P stands for t maximum of t diamtrs of t lmnts of T P and F for t maximum of t diamtrs of t lmnts of T F.Fromnowon,c, c,... dnot for gnric constants tat may vary from on lin to t nxt but ar always indpndnt of P and F. W mak t furtr standard and non rstrictiv assumptions. Assumption 3.1. T intrsction of ac lmnt of T P wit itr Γ ap or Γ P or Γ, if not mpty, is a vrtx or a wol dg or a wol fac of. T intrsction of ac lmnt of T F wit itr Γ af or Γ F or Γ, if not mpty, is a vrtx or a wol dg or a wol fac of. It must b notd tat, up to now, no assumption is mad on t intrsction of t lmnts of T P and T F. So t Γ, T P F,andt Γ, T, form two indpndnt triangulations of Γ, tat w dnot by E P,Γ and E F,Γ, rspctivly. Howvr, w ar ld to mak anotr assumption. Assumption 3.. For any lmnt of T F, t numbr of lmnts of T P suc tat as a positiv d 1)-masur is boundd indpndntly of, P and F. W now dfin t local discrt spacs. For t rasons alrady xplaind in t introduction, t spac of discrt vlocitis in Ω P is constructd from t Raviart-Tomas finit lmnt [34], wic lads to t following dfinition X P = { v Hdiv, Ω P ); T P, v P RT ) }, 3.1) wr P RT ) stands for t spac of rstrictions to of polynomials of t form a + b x, a R d and b R. W also introduc t spac X0 P = { v X P } ; v n =0 onγ P. 3.) Similarly, on Ω F, w considr t spac rlatd to t Brnardi-Raugl lmnt [6], i.. X F = { v H 1 Ω F ) d ; T F, v P BR ) }, 3.3) wr P BR ) stands for t spac spannd by t rstrictions to of affin functions on R d wit valus in R d and t d+1 normal bubbl functions ψ n for ac dg d =)orfacd =3) of, ψ dnots t bubbl function on qual to t product of t barycntric coordinats associatd wit t ndpoints or vrtics of and n stands for t unit outward normal vctor on ). W also nd t spac X F 0 = { v X F ; v = 0 on Γ F }. 3.4) Lt now dnot t discrtization paramtr, r qual to t pair P, F ), and lt T stand for t union of T P and T F. W dfin t discrt spac of prssurs as { } M = q L Ω); T, q P 0 ), 3.5) wr P 0 ) is t spac of constant functions on. Rmark 3.3. Otr coics of finit lmnts ar possibl. Indd, t Raviart-Tomas lmnt is t simplst div-conforming lmnt and t Brnardi-Raugl lmnt is t lss xpnsiv H 1 -conforming finit lmnt for t Stoks problm. In dimnsion d =, picwis quadratic vlocitis can also b usd on Ω F and in dimnsion d =3,P BR ) can b rplacd by t spac spannd by affin functions and t ψ,uptot powr d. T sklton of t dcomposition is now t intrfac Γ. As standard for t mortar lmnt mtod, s [7] and [11], t construction of t global spac of vlocitis rlis on t fact tat t matcing conditions ar nforcd via t ortogonality to functions dfind on T P or T F. Sinc ts matcing conditions only dal wit t normal trac of t vlocity, w av dcidd to mak t coic proposd in [1], Sction 3, wic is

11 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 385 mor naturally associatd wit functions dfind on T P, i.. w dfin t spac W = { ϕ L Γ); E P,Γ,ϕ P 0 ) }, 3.6) wit obvious dfinition for P 0 ). T global spacs of vlocitis ar tn t spacs X and X 0 of functions v suc tat tir rstrictions v ΩP to Ω P blong to X P and XP 0, rspctivly; tir rstrictions v ΩF to Ω F blong to X F and XF 0, rspctivly; t following matcing conditions old on Γ ϕ W, v ΩP v ΩF ) n ) τ )ϕ τ )dτ =0, 3.7) Γ wr τ stands for t tangntial coordinats) on Γ. Not tat ts conditions ar not sufficint to nforc t continuity of v n troug Γ, so tat t discrtization is nonconforming: For instanc, X is not containd in Hdiv, Ω). Howvr, t spacs X and X 0 ar still quippd wit t norm XΩ). Rmark 3.4. In t implmntation of t discrt problm, t matcing conditions 3.7) ar andld via t introduction of a Lagrang multiplir, as usual for t mortar mtod. W rfr to [5] fortfirstanalysisof tis algoritm and to [11], Sction 4, for anotr way of trating ts conditions. To discrtiz t ssntial boundary conditions tat appar in.6), w now dfin t approximations of t data k and g tat w us in tis work. W dnot by k t picwis constant approximation of k dfind by T P / mas Γ P ) > 0, k ΓP = 1 mas Γ P ) Γ P kτ )dτ. 3.8) Not tat tis coic rquirs tat k blongs to H σ Ω), σ< 1. W also introduc an approximation of g: Wn assuming tat g is continuous on Γ F wic is sligtly strongr tan t ypotsis mad in.9)), t function g blongs to t trac spac of X F ; for ac in T F,isqualtoga) at ac ndpoint or vrtx a of Γ F ; and satisfis g n)τ )dτ = g n)τ )dτ. Γ F Γ F Indd, ts conditions dfin k and g in a uniqu way, as follows from [34], Rmark 3, and [6], Lmma II.1. W ar now in a position to writ t discrt problm, wic is constructd by t Galrkin mtod from.7). It rads: Find u,p ) in X M suc tat and tat wr t bilinar form b, ) is dfind by u n = k on Γ P and u = g on Γ F, 3.9) v X 0, au, v )+ bv,p )=Lv ), q M, bu,q )=0, 3.10) bv,q)= Ω P div v ΩP )x)qx)dx Ω F div v ΩF )x)qx)dx. 3.11)

12 386 C. BERNARDI ET AL. T introduction of tis modifid form is du to t nonconformity of t discrtization, and it is radily cckd tat it coincids wit b, ) onhdiv, Ω) L Ω). As in t continuous cas, to prov t wll-posdnss of problm 3.9) 3.10), w first construct a lifting of t boundary conditions 3.9). It rquirs t Raviart-Tomas oprator Π RT Sction 1.3, for its tr-dimnsional analogu: For any smoot noug function v on Ω P,Π RT and satisfis on all dgs d = ) or facs d =3) of lmnts of T P,,s[34], Sction 3, and also [31], v blongs to XP Π RT v n)τ )dτ = v n)τ )dτ. 3.1) T fact tat ts quations dfin t oprator Π RT in a uniqu way and its main proprtis ar provd in [34], Torm 3, in t two-dimnsional cas. Morovr, tis oprator prsrvs t nullity of t normal trac on Γ P tis rquirs Assumption 3.1). Similarly, w introduc anotr oprator tat w call Brnardi-Raugl oprator and dnot by Π BR vrtx a of t lmnts of T F : For any continuous function v on Ω F,Π BR v blongs to XF,isqualtova) atany F and satisfis on all dgs d = ) or facs d =3) of lmnts of T, Π BR v n)τ )dτ = v n)τ )dτ. 3.13) Tis dfins t oprator Π BR in a uniqu way, s [6], Lmma II.1. W now stablis som proprtis of t oprator Π RT. W rfr to [5], Appndix, for tir proof in t two-dimnsional cas and for quadrilatral finit lmnts and to [15], Sction III.3, for additional rsults. It rquirs t Piola transform A, dfind as follows, s [4], Captr III, formula 4.63): For any lmnt of T P,dnotingbyF on of t affin mappings wic maps t rfrnc triangl or ttradron ˆ onto and by B t Jacobian matrix of F, w associat wit any vctor fild ˆv dfind on ˆ t vctor fild v = A ˆv dfind on by t formula A ˆv) F = 1 dt B B ˆv. 3.14) W rcall two proprtis of tis transform, valid for all smoot noug functions v and ϕ div v) F = v n)τ )ϕτ )dτ = 1 dt B ˆ div A 1 v), 3.15) A 1 v ˆn)ˆτ )ϕ F )ˆτ )dˆτ, 3.16) wr n and ˆn stand for t unit outward normal vctors to and ˆ, rspctivly. W also introduc t basis functions associatd wit t spac X P :IfEP dnots t st of dgs d = ) or facs d =3)oflmnts of T P, w associat t function ϕ in X P suc tat ϕ n)τ )dτ =1 and E P,, ϕ n)τ )dτ = ) T ϕ, E P,formabasisofXP. Morovr, it is radily cckd tat ac ϕ n is picwis constant, 1 qual to mas) on and to zro on all. Lmma 3.5. T following proprty olds for any in T P and any v in Hdiv, Ω P ), div Π RT v L ) div v L ). 3.18)

13 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 387 T following proprty olds for any in T P and any v in Hdiv, Ω P ) H s Ω P ) d, 0 <s< 1, Π RT v L ) d c v L ) d + s v H s ) d + div v L )). 3.19) Proof. W cck succssivly t two assrtions of t lmma. 1) Sinc t divrgnc of all functions in X P P is constant on ac lmnt of T,wav div Π RT It follows from t dfinition 3.1) of Π RT div Π RT v L ) =divπrt v) div Π RT v)x)dx =divπ RT v) Π RT v n)τ )dτ. tat v L ) =divπrt v) v n)τ )dτ = div Π RT v)divv)x)dx, so tat using a Caucy-Scwarz inquality yilds 3.18). ) Dnoting by E t st of dgs d = ) or facs d =3)of, w av from 3.1) so tat Π RT v) = E Π RT v L ) d E v n)τ )dτ ) ϕ, v n)τ )dτ ϕ L ) d. 3.0) Wn stting ê = F 1 ), it follows from 3.16) and 3.17) tat t function ϕ = A 1 ϕ is suc tat ϕ ˆn)ˆτ )dˆτ =1 and ê E ˆ, ê ê, ϕ ˆn)ˆτ )dˆτ =0, ê ê so tat ϕ L ˆ) d is boundd indpndntly of. Tus, standard argumnts rlying on 3.14) giv ϕ L ) d c1 d. 3.1) On t otr and, dnoting by χ t function qual to 1 on andto0on \, by χ t function χ F and by χ a lifting of χ to ˆ, w av from 3.16) v n)τ )dτ = A 1 v ˆn)ˆτ ) χ ˆτ )dˆτ = ˆ A 1 v)ˆx) grad χ )ˆx)dˆx + ˆ ˆ div A 1 v)) ˆx) χ ˆx)dˆx. Not owvr tat, sinc χ only blongs to H r ˆ) for all r< 1,grad χ )ˆx) only blongs to H r 1 ˆ) and tat t first intgral in t scond lin of t prvious quation must b rplacd by a duality pairing. Tn, coosing r suc tat 1 r = s yilds v n)τ )dτ c A 1 v H s ˆ) + div A 1 d v) ˆ)) L.

14 388 C. BERNARDI ET AL. Standard argumnts rlying on 3.14), 3.15) and t us of intrinsic norm and sminorm on H s ˆ), s for instanc [3], Sction 7.43, giv v n)τ )dτ c d 1 ) v L ) d + d +s 1 v H s ) d + d div v L ). 3.) Insrting 3.1) and 3.) into 3.0) lads to 3.19). W now brifly prov analogous rsults for t oprator Π BR. Lmma 3.6. T following proprty olds for any ral numbr s 0, 0 s 0 1, for any in T F <s, v E and any v in H s Ω F ) d, d Π BR v H s 0 ) d cs s0 v H s ) d. 3.3) Proof. Lt I dnot t Lagrang intrpolation oprator wit valus in picwis affin functions. It follows from t dfinition of Π BR tat, if E dnots t st of dgs d = ) or facs d =3)of, Π BR v) =I v) + ) v I v) n τ )dτ ψ ψ n. τ )dτ W rcall t usual stimat, for 0 r 0 1and d <r, Applying tis stimat wit r 0 = s 0 yilds v I v H r 0 ) d c r r0 v H r ) d. 3.4) v I v H s 0 ) d On t otr and, w driv from standard argumnts tat ψ n H s 0 ) d c d s0, ψ τ )dτ c d 1 c s s0 v H s ) d. 3.5) Combining tis wit 3.) and tr applications of 3.4) givs for ac in E ) v I v) n τ )dτ ψ τ )dτ ψ n H s 0 ) d c s s0 v H s ) d. Tis inquality and 3.5) yild t dsird stimat. To go furtr, w nd t following rsult wic is a consqunc of Assumption 3.. Lmma 3.7. For ac, lt λ dnot t maximal ratio /, wr runs troug T F, runs troug T P and as a positiv d 1)-masur. Tn, all λ ar smallr tan a constant λ indpndnt of. Proof. Lt b any lmnt of T F wic as an dg d =)orafacd =3)containd in Γ. Assumption 3. yilds tat is containd in t union of dgs or facs i,1 i I, oflmnts i of T P,wrI is boundd indpndntly of and. So,wav mas) I mas i ). i=1.

15 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 389 On t otr and, mas) isquivalntto d 1 and ac mas i)isquivalntto d 1 i, wit quivalnc constants only dpnding on t rgularity paramtr σ; wn i and j ar adjacnt, i.. sar a vrtx in dimnsion d = or an dg in dimnsion d =3,t ratio i / j is boundd by constants only dpnding on σ; for all i and j, tr xists a pat linking i to j, only going from an to an adjacnt and crossing at most c lmnts, wrc is boundd as a function of I. Combining all tis yilds t dsird rsult. Lmma 3.8. If t data k, g) blong to H σp Γ P ) H σf Γ F ) d, σ P > 1 and σ F > d 1, tr xists a function u b in X wic satisfis and u b n = k on Γ P and u b = g on Γ F, 3.6) u b XΩ) c k H σ P ΓP ) + g H σ F ΓF ) d ). 3.7) Proof. W us onc mor t function u b xibitd in Lmma.3 and, sinc it is constructd from t solutions of problms.1) and.14), w obsrv from [6], Sction 7.3.3, or [19], Corollary 7, tat, sinc Ω P and Ω F ar polygons or polydra, tr xist ral numbrs s P,0<s P <σ P + 1,ands F, d <s F <σ F + 1, suc tat t pair u b ΩP, u b ΩF ) blongs to H sp Ω P ) d H sf Ω F ) d and satisfis u b H s P ΩP ) d + u b H s F ΩF ) d c k H σ P ΓP ) + g H σ F ΓF ) d ). 3.8) T construction of t function u b is now prformd in two stps. 1) W first introduc t function w 1 suc tat w 1 Ω P =Π RT u b Ω P, w 1 Ω F =Π BR u b Ω F. It follows from Lmmas 3.5 and 3.6 tat, sinc u b is divrgnc-fr on Ω P, Morovr, owing to t dfinitions of Π RT ) Rcalling tat E P,Γ in Γ, w considr t function w w 1 Hdiv,ΩP ) + w 1 H1 Ω F ) d c u b H s P ΩP ) d + u b H s F ΩF ) d ). 3.9) and Π BR, t function w1 dnots t st of dgs d = ) or facs d =3)oflmntsofT P dfind by w Ω P = E P,Γ satisfis t boundary conditions 3.6). wic ar containd w 1 ΩF w 1 Ω P ) n ) ) τ )dτ ϕ, w Ω F = 0 wr t functions ϕ ar dfind in 3.17). W obsrv from t coic of w tat t function u b = w 1 +w satisfis t matcing conditions 3.7), nc blongs to X. Owing to t proprtis of t functions ϕ, w n vaniss on Γ P,sotatu b satisfis 3.6). Morovr, it follows from 3.15) and 3.1) tat, if dnots t triangl of T P tat contains, ϕ Hdiv,) c d. 3.30) Nxt, owing to t dfinition of w 1,wav w 1 ΩF w 1 Ω P ) n ) τ )dτ = ub w 1 Ω F ) n ) τ )dτ.

16 390 C. BERNARDI ET AL. Applying 3.) yilds ub w 1 Ω F ) n ) τ )dτ c κ d 1 κ u b Π BR u b L κ) d + d +s 1 κ u b Π BR u b Hs κ) d + d κ u b Π BR u b H1 κ) d ), wr t prvious summation is takn on all t κ in T F suc tat κ as a positiv masur. W us Lmma 3.6 to bound t norms on t κ. Combining all tis wit 3.30) yilds w 1 ΩF w 1 Ω P ) n ) τ )dτ ϕ Hdiv,) c d d +sf 1 κ u b H s F κ) d. Not also tat t ratio d κ / d is boundd by λ d, nc by a constant indpndnt of, s Lmma 3.7. Tis givs w sf 1 Hdiv,Ω P ) cf u b H s F ΩF ) d. 3.31) Finally, stimat 3.7) is drivd from 3.8), 3.9) and 3.31). W prov a furtr rsult wic is ndd in Sction 4. It rquirs t following paramtrs. Notation 3.9. T paramtrs λ P and λ F ar dfind as follows: i) λ P is positiv in t gnral cas, qual to 1/4 ifω P is a polygon d =),qualto1/ ifγ ap is mpty or if tr xists a convx nigbourood in Ω P of Γ P Γ) Γ ap and < 1ifΓ ap is mpty and Ω P is a convx polygon or polydron; ii) λ F is qual to 1/ in t gnral cas and to 1 if Ω F is convx. Corollary If t assumptions of Lmma 3.8 ar satisfid, t following stimats old btwn t function u b introducd in Lmma.3 and t function u b introducd in Lmma 3.8 and u b u b XΩ) c bub,q ) sup q M q L Ω) κ ) min{σp + 1,λP } P + min{σf 1,λF } k H ) σp F Γ P ) + g H σf ΓF ), 3.3) d c min{σf 1,λF } ) F k H σ P ΓP ) + g H σ F ΓF ). 3.33) d Proof. Owing to t rgularity proprtis of problms.1) and.14), s [6], Sction 7.3.3, or [19], Corollary 3.7, stimat 3.8) olds wit { s P =min σ P + 1 },λ P and { s F =min σ F + 1 },λ F +1. Wit t notation of t prvious proof, sinc bot u b and Π RT u b ar divrgnc-fr on Ω P,wavt inquality u b u b XΩ) u b Π RT u b L Ω P ) d + u b Π BR u b H1 Ω F ) d + w Hdiv,ΩP ). 3.34) T approximation proprtis of t oprator Π RT ar asily drivd from t fact tat it prsrvs t constants on ac in T P, by applying 3.19) to t function v c for an appropriat constant c and using t approximation proprtis of tis constant. Ty rad, for 0 <r 1, v Π RT v L ) d cr v Hr ) d. 3.35)

17 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 391 So, using 3.35) to bound t first trm in t rigt-and sid of 3.34), 3.3) to bound t scond trm and 3.31) to bound t tird trm yilds 3.3). W also driv from t proprtis 3.1) and 3.13) of t oprators Π RT and Π BR tat, sinc u b is divrgnc-fr on Ω, w av for all q in M, 1 bw,q )= q w 1 n)τ )dτ = q u b n)τ )dτ =0, T P T F T P T F so tat bub,q )= bw,q ) w Hdiv,Ω P ) q L Ω), and w driv 3.33) from 3.31). In analogy wit Sction, w now st: u 0 = u u b,wru b is t function xibitd in Lmma 3.8. Tis lads to considr t problm: Find u 0,p ) in X 0 M suc tat W also introduc t discrt krnl v X 0, au 0, v )+ bv,p )= au b, v )+Lv ), q M, bu0,q )= bu b,q ). 3.36) V = { v X 0 ; q M, bv,q )=0 }. 3.37) It must b notd tat t functions in V ar divrgnc-fr only on Ω P. W now study t proprtis of t forms a, ) and b, ) on t discrt spacs. Lmma If Γ F as a positiv masur in Ω F, tr xists a constant α >0 suc tat t following llipticity proprty olds v V, av, v ) α v XΩ). 3.38) Proof. Sinc functions in V ar divrgnc-fr on Ω P, proprtis.1) and.) still old for all functions v in V. So, w now wis to cck tat v V, v L Ω F ) d c v H1 Ω F ) d. Wn Γ F as a positiv masur, tis inquality is a simpl consqunc of t Poincaré-Fridrics inquality and of t imbdding of X F 0 into t spac of functions in H1 Ω F ) vanising on Γ F. Rmark 3.1. Wn Γ F as a zro masur but t normal vctor nx) wnx runs troug Γ runs troug a basis of R d tis is t scond possibl assumption of Lm..5), it is radily cckd tat any lmnt of V suc tat av, v ) = 0 is qual to zro. Tus, using t quivalnc of norms on t finit-dimnsional spac V yilds tat tr xists a constant α positiv but dpnding on t triangulations T P and T F suc tat v V, av, v ) α v XΩ). 3.39) Howvr t standard argumnts to valuat t dpndnc of α wit rspct to P and F sm to fail r. Fortunatly, t assumption tat Γ F as a positiv masur in Ω F is not rstrictiv for t applications tat w wis to considr. W now prov t inf-sup condition on b, BR ). It rquirs t modifid Brnardi-Raugl oprator Π dfind as follows: if R dnots a Clémnt typ rgularization oprator wit valus in t spac of picwis affin functions wic vanis on Γ F s for instanc [9], Sct. IX.3, for a dtaild dfinition of suc an oprator), Π BR v) =R v) + ) v R v) n τ )dτ ψ ψ n. 3.40) τ )dτ E

18 39 C. BERNARDI ET AL. Lmma Tr xist two constants 0 > 0 and β >0 suc tat, itr wn bot Γ ap and Γ af av a positiv masur or for all 0, t following inf-sup condition olds q M, bv,q ) sup v X 0 v β q L Ω). 3.41) XΩ) W must prov tis lmma in t nxt tr situations: Wn bot Γ ap and Γ af av a positiv masur, wn Γ ap as a zro masur and wn Γ af as a zro masur. Howvr, w skip t proof in t tird situation sinc it is lss ralistic tan t scond on s Fig. 1) and t argumnts ar xactly t sam. Proof. Cas wr Γ ap and Γ af av a positiv masur. In tis situation, it follows from xactly t sam argumnts as in t proof of Lmma.6 tat, for any function q in M, tr xists a function v P in H 1 Ω P ) d, vanising on Γ P andalsoonγsuctat div v P = q on Ω P and v P H1 Ω P ) d c q L Ω P ), 3.4) and also a function v F in H 1 Ω F ) d, vanising on Γ F Γ suc tat div v F = q on Ω F and v F H 1 Ω F ) d c q L Ω F ). 3.43) W now dfin v ΩP =Π RT v BR P, v ΩF = Π v F. Only for tis proof, w mak t furtr assumption tat t oprator R taks its valus in t spac of BR picwis affin functions wic also vanis on Γ, so tat Π v F vaniss on Γ F Γ. On t otr and, it is radily cckd tat all functions v in P RT ) arsuctatv n is constant on ac dg d =)orfac d =3)of, sotatπ RT v P n vaniss on Γ P Γ. Ts two proprtis yild tat t function v satisfis tat matcing conditions 3.7), nc blongs to X 0.Walsoav bv,q )= q v n)τ )dτ q v n)τ )dτ. T P So it follows from t dfinition of t oprators Π RT bv,q )= q T P Combining tis wit 3.4) and 3.43) yilds W also dduc from Lmma 3.5 tat and Π BR T F tat v P n)τ )dτ T F q = div v P )x)q x)dx div v F )x)q x)dx. Ω P Ω F v F n)τ )dτ bv,q )= q L Ω). 3.44) v Hdiv,ΩP ) c v P H1 Ω P ) d, wnc, from 3.4), v Hdiv,ΩP ) c q L Ω P ). 3.45)

19 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 393 T sam argumnts as in t proof of Lmma 3.6, wit 3.4) rplacd by s [9], Cap. IX, T. 3.11) wr is t union of lmnts κ of T F v R v H s 0 ) d c 1 s0 v H 1 ) d, suc tat κ is not mpty, lad to v H1 Ω F ) d c v F H1 Ω F ) d, wnc, owing to 3.43), v H 1 Ω F ) d c q L Ω F ). 3.46) T dsird inf-sup condition now follows from 3.44), 3.45) and 3.46). Proof. Cas wr Γ ap as a zro masur. Lt ϕ Γ b a smoot vctor fild wit support containd in t intrior of Γ suc tat ϕ Γ n)τ )dτ =1. Γ W dfin ϕ Γ in t following way: On Ω F, ϕ Γ is affin on all lmnts of T F and is qual to ϕ Γa) atall vrtics a of ts lmnts tat blong to Γ and to zro at all otr vrtics; on Ω P,wst ϕ Γ Ω P = ) ϕ Γ Ω F n)τ )dτ ϕ. E P,Γ Tus, it is radily cckd tat ϕ blongs to Γ X0 and morovr tat, wn is small noug, ϕ n)τ )dτ 1 Γ 3.47) Γ For a wil, w st b P v,q)= div v ΩP )x)qx)dx, Ω P b F v,q) div v ΩF )x)qx)dx. Ω F Nxt, w procd in two stps. 1) On Ω P, w us t dcomposition q ΩP = q + q, wit q = 1 masω P ) Ω P q x)dx. Indd, tr xists a stabl function v in H0 1 Ω P ) d suc tat div v = q ; tn, t function ṽ =Π RT v blongs to X P H 0div, Ω P ) and satisfis b P ṽ, q )= q L Ω P ) and ṽ Hdiv,ΩP ) c q L Ω P ). 3.48) On t otr and, it is radily cckd by intgration by parts and also from 3.47) tat t function v = q masω P ) Γ ϕ Γ n)τ )dτ ϕ Γ, satisfis b P v, q )= q L Ω P ) and v XΩ) c q L Ω P ). 3.49)

20 394 C. BERNARDI ET AL. Tus, applying t Boland and Nicolaids argumnt, s [13], wic rlis on t ortogonality proprtis b P ṽ, q )=0, q x)q x)dx =0, Ω P givs t xistnc of a constant µ indpndnt of suc tat t function v ΩP = ṽ + µ v satisfis b P v,q ) c q L Ω P ) and v Hdiv,ΩP ) c q L Ω P ). 3.50) ) It follows from t dfinition of ϕ Γ tat div v ) ΩF is constant on ac lmnt of T F. Tus, Lmma.6 yilds t xistnc of a function v in H 1 Ω F ) d, vanising on Γ F Γ, suc tat div v is qual to q +divµv ) and applying t modifid Brnardi-Raugl oprator Π BR v + µ v satisfis Π BR dfind in 3.40) to it yilds tat t function v ΩF = b F v,q )= q L Ω F ) and v H 1 Ω F ) d c q L Ω F ) + v XΩ) ). 3.51) To conclud, w obsrv tat t function v blongs to X 0. T dsird inf-sup condition is tn drivd from 3.50), 3.51) and 3.49). From now on, w assum tat is small noug for t inf-sup condition 3.41) to old. Indd, tis condition is only ndd wn Γ ap or Γ af as a zro masur and, wit t notation of t prvious proof, can b writtn, wn Γ ap as a zro masur for instanc, ϕ Γ ϕ Γ L 1 Γ) 1 So, sinc ϕ Γ is vry smoot, it is not at all rstrictiv. Owing to t prvious lmmas, w ar now in a position to prov t main rsult of tis sction. Torm Assum tat Γ F as a positiv masur in Ω F. Tn, for any data k, g, f,p a, t a ) satisfying k H σp Γ P ), g H σf Γ F ) d, f L Ω) d, p a H 1 00 Γ ap ), t a H 1 ΓaF ) d, 3.5) for som ral numbrs σ P > 1 and σ F > d 1, problm 3.9) 3.10) as a uniqu solution u,p ) in X M. Morovr tis solution satisfis u XΩ) + p L Ω) c k H σ P ΓP ) + g H σ F ΓF ) + f d L Ω) d + p a H 1 00 Γ ap ) + t a H 1 Γ af ) d ). 3.53) Proof. W cck sparatly t xistnc and t uniqunss. 1) Lt u b dnot t function xibitd in Lmma 3.8. It follows from t llipticity proprty 3.38) and t inf-sup condition 3.41), s [4], Captr I, Torm 4.1, tat problm 3.36) as a uniqu solution u 0,p ) in X 0 M wic morovr satisfis ) u 0 XΩ) + p L Ω) c u b XΩ) + f L Ω) d + p a H 100ΓaP + t a ) H ) ΓaF )d Tn, t pair u = u 0 + u b,p ) is a solution of problm 3.9) 3.10), and stimat 3.53) is a dirct consqunc of 3.7) and 3.54). ) If all data k, g, f,p a, t a ) ar qual to zro, u,p ) is a solution of problm 3.36) wit t rigt-and sids of t two quations qual to zro. Tus, it follows from 3.38) and 3.41) tat it is qual to zro. So, t solution of problm 3.9) 3.10) is uniqu.

21 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 395 Rmark T rgularity assumptions tat ar mad on t data f in Torm 3.14 can asily b waknd: It suffics to nforc tat f ΩP blongs to t dual spac of functions on Hdiv, Ω P ) wit zro normal tracs on Γ P and f ΩF blongs to t dual spac of functions on H 1 Ω F ) d vanising on Γ F. Howvr w av no dirct application for tis wakr rgularity. 4. A PRIORI rror stimats W intnd to prov an rror stimat btwn t solution u,p) of problm.6).7) and t solution u,p ) of problm 3.9) 3.10). T main difficulty r is tat applying t intrpolation oprator I or t oprator Π BR to t solution u ΩF in ordr to rcovr t boundary condition g of t discrt problm) would rquir tat u ΩF is continuous on Ω F. In viw of Proposition.8, tis assumption is not likly, at last in dimnsion d = 3. So w prfr to follow anotr approac, basd on t triangl inquality u u XΩ) u b u b XΩ) + u 0 u 0 XΩ), 4.1) wr t functions u b and u b ar introducd in Lmmas.3 and 3.8, rspctivly. An stimat for t quantity u b u b XΩ) is stablisd in Corollary So w ar now intrstd in proving t following vrsion of t scond Strang s lmma for problms.18) and 3.36), t main difficulty bing du to t nonconformity of t mortar lmnt discrtization. Lmma 4.1. Assum tat Γ F as a positiv masur in Ω F. T following stimat olds btwn t solution u 0,p) of problm.18) and t solution u 0,p ) of problm 3.36) u 0 u 0 XΩ) c inf u 0 w XΩ) + inf p r L Ω) w V r M bub,q ) + u b u b XΩ) + sup + sup q M q L Ω) v X 0 4.) Γ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ ) v XΩ) Proof. It is dividd in tr stps. 1) Owing to t inf-sup condition 3.41), tr xists [4], Captr I, Lmma 4.1, a function ũ in X 0 suc tat q M, bũ,q )= bu 0,q ), and, by using t scond lin of 3.36), ũ XΩ) 1 bub,q ) β sup 4.3) q M q L Ω) Tn, t function ũ 0 = u 0 ũ blongs to V and satisfis v V, aũ 0, v )= au b, v ) aũ, v )+Lv ). 4.4) ) Wn multiplying t first lins of 1.1) and 1.) by a function v of V, intgrating by parts and summing t two rsulting quations, w obtain au, v )+ bv,p)=lv ) v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ. Γ

22 396 C. BERNARDI ET AL. Tis last quation can b writtn quivalntly as v V, au 0, v )+ bv,p)= au b, v )+Lv ) v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ. 4.5) 3) Lt now w and r b any lmnts of V and M, rspctivly. It follows from 4.4) and 4.5) tat Γ v V, aũ 0 w, v )=au 0 w, v )+au b u b, v ) aũ, v ) + bv,p r )+ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ. Sinc ũ 0 w blongs to V, w now us t llipticity proprty 3.38) of t form a, ) onv. combind wit svral Caucy-Scwarz inqualitis, tis yilds ũ 0 w XΩ) c u 0 w XΩ) + u b u b XΩ) + ũ XΩ) + p r L Ω) + sup v X 0 Γ Γ v ΩP v ΩF ) n ) ) τ ) p ΩP τ )dτ v XΩ) Wn Combining tis wit 4.3) and using a furtr triangl inquality lad to 4.). In t rigt-and sid of 4.), t first two trms rprsnt t approximation rror. T nxt two ons ar issud from t tratmnt of t Diriclt boundary conditions. T last trm rprsnts t consistncy rror and is du to t nonconformity of t discrtization. Lmma 4.. If t assumptions of Lmma 4.1 ar satisfid, t following stimat olds btwn t solution u 0,p) of problm.18) and t solution u 0,p ) of problm 3.36) p p L Ω) c inf u 0 w XΩ) + inf p r L w V r M Ω) bub,q ) + u b u b XΩ) + sup q M q L Ω) + sup v X 0 Γ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ v XΩ) Proof. T sam argumnts as in t prvious proof yild, for any function r in M, v X 0, bv,p r )=au 0 u 0, v )+au b u b, v ) + bv,p r )+ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ. Γ ) 4.6) So t dsird stimat follows from t inf-sup condition 3.41) combind wit svral Caucy-Scwarz inqualitis, stimat 4.) and a furtr triangl inquality. W now valuat t approximation rrors. T distanc of t prssur to t spac M is boundd in a compltly standard way, s [9], Cap. IX, T..1, for instanc: If p ΩP blongs to H 1 Ω P ) wic is always tru, s Prop..8) and p ΩF blongs to H sf Ω F ), 0 s F 1, inf p r L r M Ω) c P p H 1 Ω P ) + sf F p H s F Ω F )). 4.7)

23 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 397 To stimat t distanc of u to V, w first us an argumnt du to [4], Captr II, formula 1.16): Sinc u 0 blongs to V Ω), it follows from t inf-sup condition 3.41) tat inf u 0 w XΩ) c inf u 0 w XΩ). 4.8) w V w X 0 Lmma 4.3. T following stimat olds for any function u 0 in V Ω) suc tat u 0 ΩP blongs to H sp Ω P ) d, 0 <s P 1, andu 0 ΩF blongs to H sf +1 Ω F ) d, 0 s F 1, inf u 0 w XΩ) c sp w X P u 0 H s P ΩP ) + d sf F u ) 0 H s F +1 Ω F ). 4.9) d 0 Proof. T construction of t function w is prformd in two stps. 1) W first st w Ω P =Π RT u 0, w Ω F = R u 0, wr t Clémnt rgularization oprator R is introducd in Sction 3, s 3.40). Sinc bot u 0 and w ar divrgnc-fr on Ω P,wav u 0 w Hdiv,Ω P ) = u 0 w L Ω P ) d. Tn, rlying on t fact tat Π RT prsrvs t constants on ac in T P approximation proprtis of tis constant lads to and combining 3.19) wit t u 0 w Hdiv,Ω P ) c sp P u 0 H s P ΩP ) d. 4.10) On t otr and, w driv from t approximation proprtis of t oprator R,s[9], Cap. IX, T. 3.11, tat u 0 w H 1 Ω F ) d csf F u 0 H s F +1 Ω F ) d. 4.11) ) For t functions ϕ introducd in 3.17), w now st w Ω P = w Ω F w Ω P ) n ) ) τ )dτ ϕ, w Ω F = 0. E P,Γ T argumnts for valuating w XΩ) ar narly t sam as in t proof of Lmma 3.8: Combining 3.30) wit 3.1) and a Caucy-Scwarz inquality yilds w XΩ) c E P,Γ 1 u 0 w Ω F L ) W rfr to [9], Cap. IX, Cor. 3.1, for t following rsult: On ac lmnt of E F,Γ, u 0 R u 0 L ) c sf + 1 u 0 H s F +1 ) d, wr is t union of lmnts κ of T F suc tat κ is not mpty. Using tis stimat for all suc tat as a positiv masur lads to, owing to Lmma 3.7, w XΩ) c sf F u 0 H s F +1 Ω F ) d. 4.1) 1.

24 398 C. BERNARDI ET AL. To conclud, w not tat t function w = w +w blongs to X 0. Estimat 4.9) is tn drivd from 4.10), 4.11) and 4.1). Estimating t consistncy rror rquirs t ortogonal projction oprator from L Γ) onto W,tatw dnot by π Γ. Lmma 4.4. T following stimat olds for any function p in L Ω) suc tat p ΩP blongs to H sp +1 Ω P ), 0 s P 1, sup Γ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ sp +1 cp p v X 0 v H s P +1 Ω P ). 4.13) XΩ) Proof. It follows from t matcing conditions 3.7) tat, for ac in E P,Γ, v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ = v ΩP v ΩF ) n ) τ )p ΩP π Γ p Ω P )τ )dτ. Γ Γ Morovr, sinc t normal trac of v ΩP on Γ blongs to W for any v in X 0,tisgivs v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ = v ΩF n ) τ )p ΩP πp Γ ΩP )τ )dτ. Γ Γ Tis yilds Γ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ v XΩ) v ΩF 1 p H Γ) d Ω P π Γp Ω P H 1 Γ), v XΩ) wnc, by applying t trac torm on Γ, Γ v ΩP v ΩF ) n ) τ ) p ΩP τ )dτ c p ΩP π v p Γ ΩP H 1. Γ) XΩ) T standard duality argumnt p ΩP π Γ p Ω P H 1 Γ) = sup ϕ H 1 Γ) Γ p Ω P π Γp Ω P )τ )ϕ π Γ ϕ)τ )dτ, ϕ 1 H Γ) combind wit t approximation proprtis of t oprator π Γ,s[9], Cap. IX, T..1, lads to wnc t dsird rsult. p ΩP π Γ p Ω P H 1 Γ) csp +1 P p ΩP H s P + 1 Γ), T fiv trms in t rigt-and sid of 4.) and 4.6) ar boundd in 4.8) and Lmma 4.3, 4.7), Corollary 3.10 and Lmma 4.4, rspctivly. Wn combining tis wit 4.1) and using onc mor Corollary 3.10, w driv t apriorirror stimat. W rcall tat t paramtrs λ P and λ F av bn introducd in Notation 3.9.

25 MORTAR FINITE ELEMENTS FOR DARCY AND STOES EQUATIONS 399 Torm 4.5. Assum tat Γ F as a positiv masur in Ω F and morovr tat i) t data k, g) blong to H σp Γ P ) H σf Γ F ) d, σ P > 1 and σ F > d 1 ; ii) t solution u 0,p) of problm.18) is suc tat u 0 ΩP,p ΩP ) blongs to H sp Ω P ) d H 1 Ω P ), 0 <s P 1, andu 0 ΩF,p ΩF ) blongs to H sf +1 Ω F ) d H sf Ω F ), 0 s F 1. Tn t following apriorirror stimat olds btwn t solution u,p) of problm.6).7) and t solution u,p ) of problm 3.9) 3.10) u u XΩ) + p p L Ω) c sp P u0 H s P ΩP ) + p ) d H 1 Ω P ) + s F F u0 H s F +1 Ω F ) + p ) d H s F Ω F ) + min{σp + 1,λP } P + min{σf 1,λF } ) ) ) F k H σ P ΓP ) + g H σ F ΓF ). 4.14) d T statmnt of Torm 4.5 is ratr complx. Not anyow tat: In t cas of zro boundary conditions k and g, stimat 4.14) can b writtn mor simply as u u XΩ) + p p L Ω) c sp P u H s P ΩP ) + p ) d H 1 Ω P ) + s F F u H s F +1 Ω F ) + p d H s F Ω F )) ). 4.15) Tis last stimat is fully optimal: Indd, for a smoot solution u,p), t rror bavs lik P + F. In t gnral cas, t ordr of convrgnc dpnds on t paramtrs λ P and λ F. So t ordr 1 is only obtaind wn Γ ap is mpty and bot Ω P and Ω F ar convx, for smoot data and solutions. Wn t rgularity of u,p) is unknown, t ordr of convrgnc is givn by Proposition.8 and, for instanc, is always largr tan 1/4 indimnsiond =. Morovr, a diffrnt analysis rlying on t construction of an approximation of u in X satisfying t boundary conditions 3.9), wic rquirs t continuity of u ΩF ), yilds tat, tr also, for a smoot solution u,p), t rror bavs lik P + F. To conclud, it can b obsrvd tat, in all cass and for smoot noug data k, g), t convrgnc of t discrtization rsults from Torm A POSTERIORI rror stimats Som furtr notation ar ndd to dfin t rror indicators. For ac in T P,wdnot by E t st of dgs d = ) or facs d =3)of wic ar not containd in Ω P ; by E ap t st of dgs d = ) or facs d =3)of wic ar containd in Γ ap. For ac in T F,wdnot by E t st of dgs d = ) or facs d =3)of wic ar not containd in Ω F ; by E af t st of dgs d = ) or facs d =3)of wicarcontaindinγ af. For ac in any of t E and also in E P,Γ, w agr to dnot by [ ] t jump troug making its sign prcis is not ncssary). W also dnot by t lngt d =)ordiamtrd =3)of. W nd a furtr notation for som global sts: E ap is t st of dgs or facs of lmnts of T P wic ar containd in Γ ap ; E P P is t st of all otr dgs or facs of lmnts of T. Wit ac lmnt of T F and ac dg of, w associat t quantitis γ and γ qualto1if or, rspctivly, intrscts Γ \ Γ F and to zro otrwis. W introduc t spac Z of functions in L Ω) d suc tat tir rstrictions to ac in T P F or in T is constant. Similarly, w dnot by Z F t spac of functions in L Γ af ) d suc tat tir rstriction to ac in E af, TF, is constant. Indd, w considr an approximation f of f in Z and an approximation t a of t a in Z F. Finally, assuming tat t datum p a is continuous on Γ ap, w dfin p a as t function wic is affin on ac in E ap, TP, and qual to p aa) at all ndpoints d = ) or vrtics d =3)a of ts.

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM A C 0 INERIOR PENALY MEHOD FOR A FOURH ORDER ELLIPIC SINGULAR PERURBAION PROBLEM SUSANNE C. BRENNER AND MICHAEL NEILAN Abstract. In tis papr, w dvlop a C 0 intrior pnalty mtod for a fourt ordr singular

More information

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems Convrgnc analysis of a discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of Hlmoltz problms Moamd Amara Laboratoir d Matématiqus Appliqués Univrsité d Pau t ds Pays d l Adour

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem www.oaw.ac.at Uniformly stabl discontinuous Galrin discrtization and robust itrativ solution mtods for t Brinman problm Q. Hong, J. Kraus RICAM-Rport 2014-36 www.ricam.oaw.ac.at UNIFORMLY STABLE DISCONTINUOUS

More information

arxiv: v1 [math.na] 22 Oct 2010

arxiv: v1 [math.na] 22 Oct 2010 arxiv:10104563v1 [matna] 22 Oct 2010 ABSOLUTELY STABLE LOCAL DSCONTNUOUS GALERKN METHODS FOR THE HELMHOLTZ EQUATON WTH LARGE WAVE NUMBER XAOBNG FENG AND YULONG XNG Abstract Two local discontinuous Galrkin

More information

Discontinuous Galerkin Approximations for Elliptic Problems

Discontinuous Galerkin Approximations for Elliptic Problems Discontinuous Galrkin Approximations for lliptic Problms F. Brzzi, 1,2 G. Manzini, 2 D. Marini, 1,2 P. Pitra, 2 A. Russo 2 1 Dipartimnto di Matmatica Univrsità di Pavia via Frrata 1 27100 Pavia, Italy

More information

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM A POSTERIORI ERROR ESTIMATE FOR THE Hdiv CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM WENBIN CHEN AND YANQIU WANG Abstract An Hdiv conforming mixd finit lmnt mtod as bn proposd for

More information

Numerische Mathematik

Numerische Mathematik Numr. Math. 04 6:3 360 DOI 0.007/s00-03-0563-3 Numrisch Mathmatik Discontinuous Galrkin and mimtic finit diffrnc mthods for coupld Stoks Darcy flows on polygonal and polyhdral grids Konstantin Lipnikov

More information

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. In tis papr, t autors stablisd a unifid framwork for driving and

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains Finit lmnt approximation of Diriclt boundary control for lliptic PDEs on two- and tr-dimnsional curvd domains Klaus Dcklnick, Andras Güntr & Mical Hinz Abstract: W considr t variational discrtization of

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ESAIM: MAN Vol. 39, N o 6, 005, pp. 5 47 DOI: 0.05/man:005048 ESAIM: Mathmatical Modlling and Numrical Analysis A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations www.oaw.ac.at A robust multigrid mtod for discontinuous Galrin discrtizations of Stos and linar lasticity quations Q. Hong, J. Kraus, J. Xu, L. Ziatanov RICAM-Rport 2013-19 www.ricam.oaw.ac.at A ROBUST

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

arxiv: v1 [math.na] 3 Mar 2016

arxiv: v1 [math.na] 3 Mar 2016 MATHEMATICS OF COMPUTATION Volum 00, Numbr 0, Pags 000 000 S 0025-5718(XX)0000-0 arxiv:1603.01024v1 [math.na] 3 Mar 2016 RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING

More information

A ROBUST NONCONFORMING H 2 -ELEMENT

A ROBUST NONCONFORMING H 2 -ELEMENT MAHEMAICS OF COMPUAION Volum 70, Numbr 234, Pags 489 505 S 0025-5718(00)01230-8 Articl lctronically publishd on Fbruary 23, 2000 A ROBUS NONCONFORMING H 2 -ELEMEN RYGVE K. NILSSEN, XUE-CHENG AI, AND RAGNAR

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA

MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 2, Numbr 3, Pags 241 282 c 25 Institut for Scintific Computing and Information MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr is concrnd with rsidual typ a postriori rror stimators

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY METHODS. Philippe Angot.

CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY METHODS. Philippe Angot. DISCRETE AND CONTINUOUS doi:.3934/dcdsb..7.383 DYNAMICAL SYSTEMS SERIES B Volum 7, Numbr 5, July pp. 383 45 CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY

More information

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems Journal of Computational and Applid Matmatics 235 (2011) 5422 5431 Contnts lists availabl at ScincDirct Journal of Computational and Applid Matmatics journal ompag: www.lsvir.com/locat/cam An adaptiv discontinuous

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Discontinuous Galerkin approximation of flows in fractured porous media

Discontinuous Galerkin approximation of flows in fractured porous media MOX-Rport No. 22/2016 Discontinuous Galrkin approximation of flows in fracturd porous mdia Antonitti, P.F.; Facciola', C.; Russo, A.;Vrani, M. MOX, Dipartimnto di Matmatica Politcnico di Milano, Via Bonardi

More information

arxiv: v1 [math.na] 11 Dec 2014

arxiv: v1 [math.na] 11 Dec 2014 DISCRETE KORN S INEQUALITY FOR SHELLS SHENG ZHANG arxiv:14123654v1 [matna] 11 Dc 2014 Abstract W prov Korn s inqualitis for Nagdi and Koitr sll modls dfind on spacs of discontinuous picwis functions Ty

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems

MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems MsFEM à la Crouzix-Raviart for highly oscillatory lliptic problms Claud L Bris 1, Frédéric Lgoll 1, Alxi Lozinski 2 1 Écol National ds Ponts t Chaussés, 6 t 8 avnu Blais Pascal, 77455 Marn-La-Vallé Cdx

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

arxiv: v1 [math.na] 8 Oct 2008

arxiv: v1 [math.na] 8 Oct 2008 DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER XIAOBING FENG AND HAIJUN WU arxiv:080.475v [mat.na] 8 Oct 008 Abstract. Tis papr dvlops and analyzs som intrior pnalty discontinuous

More information

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator Proprtis of Phas Spac Wavfunctions and Eignvalu Equation of Momntum Disprsion Oprator Ravo Tokiniaina Ranaivoson 1, Raolina Andriambololona 2, Hanitriarivo Rakotoson 3 raolinasp@yahoo.fr 1 ;jacqulinraolina@hotmail.com

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

u x A j Stress in the Ocean

u x A j Stress in the Ocean Strss in t Ocan T tratmnt of strss and strain in fluids is comlicatd and somwat bond t sco of tis class. Tos rall intrstd sould look into tis rtr in Batclor Introduction to luid Dnamics givn as a rfrnc

More information

Discontinuous Galerkin methods

Discontinuous Galerkin methods ZAMM Z. Angw. Mat. Mc. 83, No. 11, 731 754 2003 / DOI 10.1002/zamm.200310088 Discontinuous Galrkin mtods Plnary lctur prsntd at t 80t Annual GAMM Confrnc, Augsburg, 25 28 Marc 2002 Brnardo Cockburn Univrsity

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

A Simple Formula for the Hilbert Metric with Respect to a Sub-Gaussian Cone

A Simple Formula for the Hilbert Metric with Respect to a Sub-Gaussian Cone mathmatics Articl A Simpl Formula for th Hilbrt Mtric with Rspct to a Sub-Gaussian Con Stéphan Chrétin 1, * and Juan-Pablo Ortga 2 1 National Physical Laboratory, Hampton Road, Tddinton TW11 0LW, UK 2

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems Portland Stat Univrsity PDXScolar Matmatics and Statistics Faculty Publications and Prsntations Fariborz Mas Dpartmnt of Matmatics and Statistics 2004 A Caractrization of Hybridizd Mixd Mtods for Scond

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr stablishs a postriori rror

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

NIL-BOHR SETS OF INTEGERS

NIL-BOHR SETS OF INTEGERS NIL-BOHR SETS OF INTEGERS BERNARD HOST AND BRYNA KRA Abstract. W study rlations btwn substs of intgrs that ar larg, whr larg can b intrprtd in trms of siz (such as a st of positiv uppr dnsity or a st with

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

Space-Time Discontinuous Galerkin Method for Maxwell s Equations

Space-Time Discontinuous Galerkin Method for Maxwell s Equations Commun. Comput. Pys. doi: 0.4208/cicp.23042.2722a Vol. 4, No. 4, pp. 96-939 Octobr 203 Spac-Tim Discontinuous Galrkin Mtod for Maxwll s Equations Ziqing Xi,2, Bo Wang 3,4, and Zimin Zang 5,6 Scool of Matmatics

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 43, No. 4, pp. 1728 1749 c 25 Socity for Industrial and Applid Mathmatics SUPERCONVERGENCE OF THE VELOCITY IN MIMETIC FINITE DIFFERENCE METHODS ON QUADRILATERALS M. BERNDT, K.

More information

A ROBUST NUMERICAL METHOD FOR THE STOKES EQUATIONS BASED ON DIVERGENCE-FREE H(DIV) FINITE ELEMENT METHODS

A ROBUST NUMERICAL METHOD FOR THE STOKES EQUATIONS BASED ON DIVERGENCE-FREE H(DIV) FINITE ELEMENT METHODS A ROBUST NUMERICAL METHOD FOR THE STOKES EQUATIONS BASED ON DIVERGENCE-FREE H(DIV) FINITE ELEMENT METHODS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. A computational procdur basd on a divrgnc-fr H(div)

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

ETNA Kent State University

ETNA Kent State University Elctronic Transactions on Numrical Analysis Volum 41, pp 262-288, 2014 Copyrigt 2014, Knt Stat Univrsity ISSN 1068-9613 ETNA Knt Stat Univrsity ttp://tnamatkntdu A UNIFIED ANALYSIS OF THREE FINITE ELEMENT

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

An interior penalty method for a two dimensional curl-curl and grad-div problem

An interior penalty method for a two dimensional curl-curl and grad-div problem ANZIAM J. 50 (CTAC2008) pp.c947 C975, 2009 C947 An intrior pnalty mthod for a two dimnsional curl-curl and grad-div problm S. C. Brnnr 1 J. Cui 2 L.-Y. Sung 3 (Rcivd 30 Octobr 2008; rvisd 30 April 2009)

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

HYPERBOLIC CONSERVATION LAWS ON MANIFOLDS: TOTAL VARIATION ESTIMATES AND THE FINITE VOLUME METHOD

HYPERBOLIC CONSERVATION LAWS ON MANIFOLDS: TOTAL VARIATION ESTIMATES AND THE FINITE VOLUME METHOD METHODS AND APPLICATIONS OF ANALYSIS. c 2005 Intrnational Prss Vol. 12, No. 3, pp. 291 324, Sptmbr 2005 006 HYPERBOLIC CONSERVATION LAWS ON MANIFOLDS: TOTAL VARIATION ESTIMATES AND THE FINITE VOLUME METHOD

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

L ubomír Baňas 1 and Robert Nürnberg Introduction A POSTERIORI ESTIMATES FOR THE CAHN HILLIARD EQUATION WITH OBSTACLE FREE ENERGY

L ubomír Baňas 1 and Robert Nürnberg Introduction A POSTERIORI ESTIMATES FOR THE CAHN HILLIARD EQUATION WITH OBSTACLE FREE ENERGY ESAIM: MAN 43 (009) 1003 106 DOI: 10.1051/man/009015 ESAIM: Mathmatical Modlling and Numrical Analysis www.saim-man.org A POSERIORI ESIMAES FOR HE CAHN HILLIARD EQUAION WIH OBSACLE FREE ENERGY L ubomír

More information

VSMN30 FINITA ELEMENTMETODEN - DUGGA

VSMN30 FINITA ELEMENTMETODEN - DUGGA VSMN3 FINITA ELEMENTMETODEN - DUGGA 1-11-6 kl. 8.-1. Maximum points: 4, Rquird points to pass: Assistanc: CALFEM manual and calculator Problm 1 ( 8p ) 8 7 6 5 y 4 1. m x 1 3 1. m Th isotropic two-dimnsional

More information

H(curl; Ω) : n v = n

H(curl; Ω) : n v = n A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information