Space-Time Discontinuous Galerkin Method for Maxwell s Equations

Size: px
Start display at page:

Download "Space-Time Discontinuous Galerkin Method for Maxwell s Equations"

Transcription

1 Commun. Comput. Pys. doi: /cicp a Vol. 4, No. 4, pp Octobr 203 Spac-Tim Discontinuous Galrkin Mtod for Maxwll s Equations Ziqing Xi,2, Bo Wang 3,4, and Zimin Zang 5,6 Scool of Matmatics and Computr Scinc, Guizou Normal Univrsity, Guiyang, Guizou 55000, Cina. 2 y Laboratory of Hig Prformanc Computing and Stocastic Information Procssing, Ministry of Education of Cina, Hunan Normal Univrsity, Cangsa, Hunan 4008, Cina. 3 Collg of Matmatics and Computr Scinc, Hunan Normal Univrsity, Cangsa, Hunan 4008, Cina. 4 Singapor-MIT Allianc, 4 Enginring Driv 3, National Univrsity of Singapor, Singapor 7576, Singapor. 5 Dpartmnt of Matmatics, Wayn Stat Univrsity, Dtroit, MI 48202, USA. 6 Guangdong Provinc y Laboratory of Computational Scinc, Scool of Matmatics and Computational Scinc, Sun Yat-sn Univrsity, Guangzou, 50275, Cina. Rcivd 23 April 202; Accptd in rvisd vrsion 27 Dcmbr 202 Availabl onlin 9 Marc 203 Abstract. A fully discrt discontinuous Galrkin mtod is introducd for solving tim-dpndnt Maxwll s quations. Distinguisd from t Rung-utta discontinuous Galrkin mtod RDG and t finit lmnt tim domain mtod FETD, in our scm, discontinuous Galrkin mtods ar usd to discrtiz not only t spatial domain but also t tmporal domain. T proposd numrical scm is provd to b unconditionally stabl, and a convrgnt rat O t r+ + k+/2 is stablisd undr t L 2 -norm wn polynomials of dgr at most r and k ar usd for tmporal and spatial approximation, rspctivly. Numrical rsults in bot 2-D and 3-D ar providd to validat t tortical prdiction. An ultra-convrgnc of ordr t 2r+ in tim stp is obsrvd numrically for t numrical fluxs w.r.t. tmporal variabl at t grid points. AMS subjct classifications: 35Q6, 65M2, 65M60, 65N2 y words: Discontinuous Galrkin mtod, Maxwll s quations, full-discrtization, L 2 -rror stimat, L 2 -stability, ultra-convrgnc. Corrsponding autor. addrsss: ziqingxi@yaoo.com.cn Z. Q. Xi, bowangn@gmail.com B. Wang,ag776@wayn.du Z. Zang ttp:// 96 c 203 Global-Scinc Prss

2 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Introduction Finit lmnt mtods, including dg lmnt mtods and discontinuous Galrkin mtods, av bn widly usd to solv tim-armonic Maxwll s quations [2, 4, 28] as wll as tim-dpndnt Maxwll s quations [8, 9,, 5, 20 27], du to tir ig ordr accuracy and flxibility in andling complicatd domains. Traditionally, ty wr only usd to discrtiz t spatial domain to produc a systm of ordinary diffrntial quations in tim t, wic was tn solvd by t finit diffrnc or Rung-utta mtods [8,, 5, 25, 27]. Towards tis nd, Makridakis and Monk proposd a fully discrt finit lmnt mtod for Maxwll s quations and invstigatd t corrsponding rror stimats in [26]. Tir approac rsultd in a coupld non-symmtric and indfinit linar algbraic systm involving bot lctric and magntic filds. Latr, Ciarlt Jr. and Zou [9] analyzd a fully discrt finit lmnt approac for a scond-ordr lctric fild quation drivd from Maxwll s quations by liminating t magntic fild. Bot optimal nrgy-norm rror stimat and optimal L 2 -norm rror stimat wr obtaind. Wn disprsiv mdia wr involvd, Li proposd som fully discrt numrical scms. Bot mixd finit lmnt mtod [20 22] and intrior pnalty discontinuous Galrkin mtod [23] ar considrd for spatial discrtization. Sinc Maxwll s quations ar a coupld systm, a fully discrt scm was proposd by Ma [25], aimd to rduc t computational cost by dnoting t magntic fild xplicitly in t numrical scm. T ida to discrtiz t tmporal domain by finit lmnt mtod is not somting nw in t litratur. Actually it was proposd as arly as in lat 60 s by Argyris and Scarpf [], and Odn [30]. Sinc tn t spac-tim finit lmnt mtods av bn widly usd to solv a varity of diffrntial quations,.g., s [3,5,6] for t implmntation of tim-continuous Galrkin finit lmnt scms. Som works on spac-tim finit lmnt mtod for solving yprbolic quations ar availabl, s [29, 32]. Rcntly, Tu t al., proposd a spac-tim discontinuous Galrkin cll vrtx scm to solv consrvation law and tim dpndnt diffusion quations [33]. Tis scm is concptually simplr tan otr xisting DG-typ mtods. Nvrtlss, to t bst of our knowldg, t finit lmnt mtod as not bn usd to discrtiz t tmporal domain in fully discrt scm for Maxwll s quations up to now. On t otr and, tim-discontinuous Galrkin mtods wr originally dvlopd for t first ordr yprbolic quations [9, 3] and av bn succssfully applid to various yprbolic and parabolic quations s [2, 6] and t rfrncs trin. Ty usually lad to som stabl and igr-ordr accurat numrical scms. Actually in [8, 9], t tim-discontinuous Galrkin mtod was first sown to b an A-stabl, igr-ordr accurat ordinary diffrntial quation solvr. Furtrmor, t tim-discontinuous Galrkin framwork sms conduciv for t rigorous justification of t rror stimats [8]. In [34] w introducd a smi-discrt locally divrgnc-fr DG mtod for solving Maxwll s quations in disprsiv mdia undr a unifid framwork. Aftr t discrtization of t spatial domain, w obtaind a Voltrra intgro-diffrntial systm in

3 98 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp tim t. Tn a continuous Galrkin mtod was usd to solv tis rducd systm. T numrical rsults ar surprisingly good! T scm is stabl vn wn t tim stp siz t is largr tan t spatial ms siz! Indd, t scm is ssntially implicit and placs no rstriction on t tim stp siz. Tis advantag ovr many xplicit scms, wic av a so-calld CFL condition on t tim stp siz t, maks t scm wortwil to b studid. Unfortunatly, tortical analysis of tis mixd scm DG mtod in spac and continuous Galrkin finit lmnt mtod in tim sms to b vry difficult. Trfor, w want to sk for a numrical scm, wic not only is unconditionally stabl, but also is accssibl for tortical justification. Sinc t DG mtod is applid to discrtiz t spatial domain in our arlir work [34], a natural considration is to us it to trat t tmporal domain as wll. Hnc, w propos r a spac-tim DG scm, in wic two diffrnt DG mtods ar usd to discrtiz t spatial and tmporal domains, rspctivly. Fortunatly, w ar abl to prov tat t nw scm is unconditionally stabl. Again, w obtain vry accurat numrical solutions vn wn t tim stp siz t is largr tan t spatial ms siz, as xpctd. Furtrmor, w prov t convrgnc rat O t r+ + k+ 2 in t L 2 -norm wn t r-t and k-t ordr polynomials ar usd in tmporal discrtization and spatial discrtization rspctivly. Comparing wit finit diffrnc mtods usd in [9, 4, 20 23, 25, 26], our spac-tim DG mtod is a ig-ordr scm in tmporal variabl. T situation is vn bttr in our numrical xprimnts, wr t optimal convrgnc rat O k+ in t spatial stp is sown. Morovr, an ultra-convrgnc rat O t 2r+ in t tim stp is obsrvd for t numrical fluxs wit rspct to t tmporal variabl at t grid points. Tis is anotr significant advantag of our approac ovr many xisting numrical mtods. T outlin of tis papr is as follows. T modl problm and our proposd spactim DG scm ar introducd in Sction 2. Bot t L 2 -stability and L 2 -rror stimat ar provd in Sction 3, wr an oprator splitting is introducd to dcompos t rror into tmporal part and spatial part. Numrical xampls ar providd in Sction 4. Finally, som possibl futur works and concluding rmarks ar prsntd in Sction 5. 2 Spac-tim discontinuous Galrkin mtod 2. Modl problm W considr Maxwll s quations in simpl omognous mdia as follows: µ H t = E, x,t Ω I, 2. ǫ E = H, x,t Ω I, 2.2 t

4 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp wr ǫ and µ ar t lctric prmittivity and magntic prmability rspctivly, Ω is a Lipscitz polydron and I=[0,T]. Morovr a simpl initial condition and a prfct conduct boundary condition Hx,0=H 0 x, Ex,0=E 0 x in Ω 2.3 n E = 0 on Ω I 2.4 ar imposd. Hr n is t outward normal of Ω, E 0 and H 0 ar givn functions wit H 0 satisfying [27] µh 0 =0 in Ω, H 0 n=0 on Ω. 2.5 Tn 2.5, togtr wit 2., implis µh=0 in Ω I, 2.6 wic is usually a statmnt of Maxwll s quations. Furtrmor t scond condition in 2.5, combind wit 2. and 2.2, lads to [27] As in [], w rwrit into t consrvativ form H n = 0 on Ω 0,T]. 2.7 QU t + fu=0, x,t Ω I, 2.8 Ux,0=U 0 x, x Ω, 2.9 wr H U= E µi3 3 0 Q= 0 ǫi 3 3 H0 x, U 0 x= E 0 x, f i U=, fu=[f U,f 2 U,f 3 U] T, 2.0 i E i H. 2. T following notations in Soblv spac will b usd latr. Dnot H k Ω and H k I t standard Soblv spacs quippd wit norms k,ω and k,i, rspctivly. Furtr, dfin { L 2 I,H k Ω= u u,t H k Ω, t I, and u,t 2 k,ω }, dt< 2.2 I quippd wit norm and u k,0 = u,t 2 k,ω dt 2 ; 2.3 I { H k I,L 2 Ω= u ux, H k I, x Ω, and ux, 2 k,i }, dx< 2.4 Ω

5 920 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp quippd wit norm u 0,k = ux, 2 k,i dx Ω T corrsponding vctor function spacs ar dnotd by H k Ω 3, H k I 3, L 2 I,H k Ω 3 and H k I,L 2 Ω 3. For U=H,E T and H,t,E,t H k Ω 3, t I, dfin and 2.2 Numrical scm U,t k,ω = H,t 2 k,ω + E,t 2 k,ω /2, 2.6 Q /2 U,t k,ω = µ H,t 2 k,ω +ǫ E,t 2 k,ω / Assum tat T is a triangulation of t domain Ω wit t lmnt dnotd by, t dg by, and t outward normal by n. W assum tat vry lmnt of t triangulation T is affin quivalnt, s [0, Sction 2.3]. For ac lmnt, w dnot by t diamtr of and by ρ t diamtr of t biggst ball includd in. St =max {t radius of t largst circl witin }. W also dnot bye I t union of all intrior facs of T, by E D t union of all boundary facs of T, and by E =E I ED t union of all facs of T. T triangulation w considr as to b rgular, i.. tr xists a positiv constant C suc tat ρ C, T, 2.8 s [0, Sction 3.]. Morovr, lt 0=t 0 <t < <t n =T b a uniform triangulation of t intrval I wit lmnts dnotd by =[t j,t j+ ], j=0,,,n and t tim stp siz by t=t j+ t j. Lt P k or P k dnot t spac of polynomials in or of dgr at most k. Tn t DG finit lmnt spac for t spatial discrtization is S k,ω ={ v L 2 Ω : v P k, T }. On t otr and, t DG finit lmnt spac for t tmporal discrtization is S r,i ={ v L 2 I : v Ij P r, j=0,,,n }. Sinc our approac is to discrtiz bot t spatial and tmporal domains by t DG mtods, t spac-tim discontinuous finit lmnt spac is dfind by V r,k = V r,k V r,k,

6 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp wr V r,k =Sk,Ω Sr,I 3. In fact, ac componnt of t lmnt in V r,k is t product of two lmnts from S k,ω and S r,i. It is wll known tat t coic of t numrical fluxs plays a crucial rol in t dsign of discontinuous Galrkin scms. In ordr to dfin numrical fluxs, w nd to introduc som notations first. Lt b an intrior fac blonging to lmnt. W dnot v int x= lim δ 0 vx+δn, v xt x= lim δ 0+ vx+δn x. Tn w dfin t avrag and tangntial jump of v on any intrior fac as follows: v= vint +v xt, [v] T = n v int n v xt. 2 For a boundary fac E D wic blongs to t lmnt, w dnot In addition, w dfin v int x=v int x x. vt + j = lim t t j +0 vt, vt j = lim t t j 0 vt. Now w ar rady for t dfinition of t numrical scm. Multiplying by a tst function v, intgrating ovr ac Q j =, and tn intgrating by parts, w obtain QU v t dxdt+ fu n vdsdt fu vdxdt+ QU v t j+ t j dx= Tn t DG scm basd on 2.9 is to find U V r,k suc tat QU v t dxdt+ fu n v dsdt t fu v dxdt+ QÛ v j+ t j dx= for all v V r,k and all lmnts Q j =, T, j=0,,,n. Hr fu n and Û ar t numrical fluxs on t fac E and at t nodal points t j,j=0,,,n, rspctivly. Motivatd by [] and [34], w tak fu n n = Ē Z 2 [H ] T n H + 2Z [E 2.2 ] T

7 922 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp on an intrior fac and fu n= n H int Z n Eint 2.22 on a boundary fac = E D, wr Z= µ/ǫ dnots t impdanc of t mdium. Obviously tis numrical flux is consistnt wit fu n. On t otr and, w tak Û x,t j =U x,t j, j=,2,,n, Û x,0=p U 0, 2.23 wr P is t lmnt-wis L 2 projction oprator and will b dfind latr. 3 L 2 -stability and L 2 -rror stimat In tis sction, bot t L 2 -stability and rror stimat in L 2 norm of our numrical scm will b analyzd. T fact tat t DG mtods ar usd to discrtiz spatial and tmporal domains simultanously will facilitat t tortical justification. Actually t corrsponding tortical analysis can b don undr t framwork of standard Galrkin finit lmnt mtod basd on an oprator dcomposition tcniqu. 3. L 2 -stability W first focus on t L 2 -stability of our numrical scm. St B Ij,U,v = QU v t dxdt+ fu n v dsdt and fu v dxdt+ QÛ v t j+ t j dx, 3. B Ij U,v = T B Ij,U,v. 3.2 According to t DG scm 2.20, B Ij,U,v =0, for all v V r,k. Tn t solution U satisfis B Ij U,v =0, v V r,k, j=0,,,n. 3.3 W av t following rsult for t stability of t DG scm Torm 3.. Assum tat U =H,E T is a solution of 2.20, tn Q /2 U,T 2 0,Ω +Θ T,T U Q /2 U 0 2 0,Ω, wr n Θ T,T U = j=0 Θ Ij,T U 3.4

8 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp and Θ Ij,T U = Z [U,H ] T 2 + Z [U,E] T 2 dsdt+2 E I E D Z n Uint,E 2 dsdt. Proof. Lt v = U in 3.2, w av B Ij U,U = QU U t dxdt+ fu n U dsdt T T t fu U dxdt+ QÛ U j+ t T T j dx. 3.5 By t dfinition of t numrical flux in 2.23 and Scwatz inquality, dirct calculation sows tat t QÛ U j+ t j dx QU U t dxdt+ T T 2 Q/2 U,t j+ 2 0,Ω 2 Q/2 U,t j 0,Ω, j=,2,,n 3.6 and QU U t dxdt+ T I 0 QÛ U t t0 dx T 2 Q/2 U,t 2 0,Ω 2 Q/2 U 0 0,Ω, 3.7 wr P U 0 U 0 is usd according to t dfinition of t projction oprator P in Subsction 3.2. Morovr, by following t sam stratgy as tat in t proof of Lmma 3. in [34], w obtain a similar idntity, i.., T fu n U dsdt T fu U dxdt = 2 Θ,T U. 3.8 T combination of 3.3 and lads to for j=,2,,n and 2 Q/2 U,t j+ 2 0,Ω 2 Q/2 U,t j 0,Ω + 2 Θ,T U Q/2 U,t 2 0,Ω 2 Q/2 U 0 0,Ω + 2 Θ I 0,T U Summing up 3.9 and 3.0 ovr j from 0 to n, w obtain t dsird rsult.

9 924 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Error stimat Now w turn to t L 2 rror stimat of t spac-tim DG solution. For tis purpos, w introduc two lmnt-wis projction oprators Π and P and giv t corrsponding approximation rsults wic will b usd in t proof of t L 2 -rror stimat latr. First w introduc a projction oprator Π : H r+ I S r,i, suc tat Π ut j+ =ut j+, 3. u Π uvdt=0, v P r, j=0,,,n, r. 3.2 Furtrmor, w av t following rror stimat [6]. Lmma 3.. For any u H r+, w av u Π u 0,Ij C t r+ u r+,ij. 3.3 Morovr, w also nd t lmnt-wis L 2 -projction oprator P : H k+ Ω S k,ω, suc tat u P u vdx=0, v P k, T. 3.4 For tis L 2 projction oprator, w av t following approximation lmma. Lmma 3.2. Lt u H k+. Tn u P u 0, C k+ u k+,, u P u 0, C k+/2 u k+,. T rror analysis of numrical mtods for tim-dpndnt problms is oftn mor difficult tan tat for t tim-indpndnt ons. Actually, t main difficulty is ow to dcompos t rror into t tmporal part and spatial part wic can b andld indpndntly. In our work w introduc an oprator dcomposition as follows: I Π P =I Π +I P I Π I P. 3.5 In fact, tis tcniqu was first introducd in t analysis of t finit lmnt mtod for multi-dimnsional lliptic problms by Douglas, Dupont and Wlr in [3]. Tn it was implmntd to analyz t convrgnc proprty of t finit lmnt mtods for parabolic and yprbolic problms by Cn s Captr 3 in [7] for mor dtails. In trms of t ortogonality rlations in 3.2 and 3.4, w av [I Π I P u]v=0, v P k, k, 3.6 [I Π I P u]v=0, v P k, T. 3.7

10 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Actually 3.6 can b provd by a straigtforward implmntation of 3.2. On t otr and, 3.7 can b obtaind immdiatly basd on t fact tat I Π and I P ar indpndnt of ac otr. It is notd tat t numrical fluxs dfind in 2.2, 2.22 and 2.23 ar consistnt xcpt for Û0=P U 0. St =U U. According to 2.9 and 2.20, w av On t otr and, by 2.20, B Ij,,v =0, v V r,k, j=,2,,n. 3.8 B I0,U,v [ ] = QU v t dx+ fu n v ds fu v dx dt I 0 [ + QU x,t v x,t QP U 0 v x,0 + ] dx [ ] = QU v t dx+ fu n v ds fu v dx dt I 0 [ + QU x,t v x,t QU 0 v x,0 + ] dx. 3.9 Taking v=v in 2.9 and tn subtracting 3.9 from 2.9 wit j=0, w obtain Q v t dxdt+ f n v dsdt I 0 I 0 f v dxdt+ Qx,t v x,t dx= I 0 Dnot t lft-and sid of 3.20 by B I0,,v and lt B Ij,,v =B Ij,,v for j=,2,,n. Tn w obtain t following rror quation wr B Ij,v =0, T rror can b dcomposd into v V r,k, j=0,,,n, 3.2 B Ij,v = T B Ij,,v =U Π P U U Π P U=R θ, 3.23 wr R=U Π P U, θ= U Π P U V r,k Substituting =R θ into 3.2 and taking v = θ, w av B Ij R,θ= B Ij θ,θ. 3.25

11 926 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Lmma 3.3. In trms of B Ij θ,θ, w av t following stimat for j=,2,,n and B Ij θ,θ 2 Q/2 θ,t j+ 2 0,Ω 2 Q/2 θ,t j 2 0,Ω + 2 Θ,T θ, 3.26 B I0 θ,θ= 2 Q/2 θ,t 2 0,Ω + 2 Q/2 θ, ,Ω + 2 Θ I 0,T θ Proof. By t dfinition of B Ij,v, w av B Ij θ,θ= Qθ θ t dxdt+ fθ n θdsdt T T fθ θdxdt+ Q ˆθ θ t j+ t T T j dx, 3.28 for j=,2,,n. Similar to t proof of t stability in Torm 3., w av Qθ θ t dxdt+ Q ˆθ θ t j+ t T T j dx 2 Q/2 θ,t j+ 2 0,Ω 2 Q/2 θ,t j 2 0,Ω, 3.29 for j =,2,,n. Following t sam stratgy as tos in t proof of Torm 3., it is asy to obtain fθ n θdsdt fθ θdxdt= T T 2 Θ,T θ T combination of 3.28, 3.29 and 3.30 yilds According to 3.9, w av B I0 θ,θ= Qθ θ t dxdt+ T I 0 fθ n θdsdt T I 0 fθ θdxdt+ T I 0 Qθx,t θx,t dx T T proof is complt. = 2 Q/2 θ,t 2 0,Ω + 2 Q/2 θ, ,Ω + 2 Θ I 0,T θ. 3.3 Now t ky point is to stimat B I0 R,θ and B Ij R,θ, j=,2,,n. In trms of 3., 3.20, w av B Ij R,θ= QR θ t dxdt+ fr n θdsdt T T T fr θdxdt+ T Q ˆR θ t j+ t j dx, 3.32

12 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp for j=,2,,n, and B I0 R,θ= T I 0 T I 0 QR θ t dxdt+ T fr θdxdt+ T I 0 Now 3.5 is usd to dcompos R into tr parts, i.., Dnotd by tn R=I Π P U fr n θdsdt QRx,t θx,t dx =I Π U+I P U I Π I P U ξ=i Π U, η=i P U, ρ= I Π I P U, R=ξ+η+ρ According to t proprtis of projction Π sown in 3., w av ξx,t j =0, ρx,t j =0, x Ω, j=,2,,n Du to θ,θ t V r,k, tus θ Hx,, θ H t x,, θ E x,, θ E t x, P k 3, θ H t,t Ij, θ E t,t Ij P r 3. According to t dfinition of t projction oprators Π and P, 3.6 and 3.7, w av t following ortogonality rlations, i.., ξx,t θ t x,tdt=0, ηx,t θ t x,tdx=0, ηx,t θx,tdx = 0, As a consqunc, ρx,t θ t x,tdt=0, x Ω, 3.37a ρx,t θ t x,tdx=0, t 0,T], 3.37b ρx,t θx,tdx = 0, t 0,T]. 3.37c QR θ t dxdt= Qξ+η+ρ θ t dxdt=0, T, 3.38 for j=0,,2,,n. On t otr and, by 3.36 and 3.37, Q ˆR θ t j+ t j dx= Q Rx,t j+ θx,t j+ Rx,t j θx,t + j dx = Q ξx,t j+ +ηx,t j+ +ρx,t j+ θx,t j+ dx Q ξx,t j +ηx,t j +ρx,t j θx,t + j dx =0, j=,2,,n. 3.39

13 928 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Furtrmor, QRx,t θx,t dx= Q ξx,t +ηx,t +ρx,t θx,t dx= Implmnting 3.38, 3.39 and 3.40 in 3.32 and 3.33, w av [ ] B Ij R,θ= fr n θds fr θdx dt, 3.4 T for j=0,,2,,n. Lmma 3.4. In trms of B Ij R,θ, w av B Ij R,θ C 2k+ U,t 2 k+,ω dt+ Q /2 θ,t 2 0,Ω 2 dt+ 2 Θ,T θ +C t Ex, 2r+2 2 r+,ij + Hx, 2 r+,ij dx T T Ω Proof. Substituting t dcomposition 3.35 in 3.4, w obtain B Ij R,θ= fξ n θdsdt fξ θdxdt T T + fη n θdsdt fη θdxdt T + fρ n θdsdt T fρ θdxdt =M j + M2 j + M3 j Obviously, ξ=u Π U is continuous in spac. Trfor t consistncy of t numrical flux fu n implis M j = fξ n θdsdt fξ θdxdt T T = T ξ E θ H ξ H θ E dxdt Using Lmma 3.2 and t Young s inquality, w av M j Ω 2µ ξ E 2 + 2ǫ ξ H 2 + µ 2 θ H 2 + ǫ 2 θ E 2 dtdx C t Ex, 2r+2 2 r+,ij + Hx, 2 r+,ij dx Ω + Q /2 θ,t 2 0,Ωdt

14 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp By t dfinition of t numrical fluxs in 2.2 and 2.22, a straigtforward calculation lads to M 2 j = n η E Z T E 2 [η H] T θ int H n η H + 2Z [η E] T θ int E dsdt I + n η T H int + E Z n ηint E θe I int dsdt fη θdxdt j D T = η H [θ E ] T + Z E 2 [η H] T [θ H ] T dsdt I Similarly, + + E I E D T η E [θ H ] T + n η int M 3 j I = j H θe int 2Z [η E] T [θ E ] T dsdt + Z n ηint E n θe int dsdt θ E η H θ H η E dxdt E I + + ρ H [θ E ] T + Z 2 [ρ H] T [θ H ] T dsdt E I E D T ρ E [θ H ] T + n ρ int H θe int 2Z [ρ E] T [θ E ] T dsdt + Z n ρint E n θe int dsdt θ E ρ H θ H ρ E dxdt Sinc θ V r,k, by t ortogonality proprty of t projction oprator P, w av θ E η H θ H η E dx=0, θ E ρ H θ H ρ E dx= Implmnting Lmma 3.3 and t Young s inquality, w obtain M 2 j I 2Z η H j E Z η E 2 + Z 2 [η H] T 2 + 2Z [η E] T 2 I + Z ηh int 2 + E Z ηint E 2 dsdt+ 2Z I D j E D + 4 Z [θ H ] T 2 + Z [θ E] T 2 dsdt E I dsdt n θ int E 2 dsdt

15 930 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp C 2k+ + 2Z M 3 j I j E I U,t 2 k+,ω dt+ 4 E D E I Z [θ H ] T 2 + Z [θ E] T 2 dsdt n θ int E 2 dsdt, Z ρ H Z ρ E 2 + Z 2 [ρ H] T 2 + E D C 2k+ + 2Z E I Z ρ int H 2 + Z ρint E 2 dsdt+ 2Z Z [θ H ] T 2 + Z [θ E] T 2 dsdt U,t 2 k+,ω dt+ 4 E D According to 3.45, 3.49 and 3.50, w av B Ij R,θ C 2k+ T proof is complt. E I 2Z [ρ E] T 2 E D dsdt n θ int E 2 dsdt Z [θ H ] T 2 + Z [θ E] T 2 dsdt n θ int E 2 dsdt U,t 2 k+,ω dt+ Q /2 θ,t 2 0,Ω 2 dt+ 2 Θ,T θ. +C t Ex, 2r+2 2 r+,ij + Hx, 2 r+,ij dx. 3.5 Ω Now w giv t main rsult in trms of t L 2 -rror stimat. Torm 3.2. Lt U =H,E T b t solution of2.20 andh,e T t xact smoot solution of Assum tat Tn 3, 3. H,E L 2 [0,T],H k+ Ω E, H H r+ [0,T],L Ω 2 µ Hx,T H x,t 0 +ǫ Ex,T E x,t 0 C t r+ E 0,r+ + H 0,r+ +C k+ 2 E k+,0 + H k+,0 +C k+ Ex,T k+,ω + Hx,T k+,ω, wr C is a constant rlying on T, but indpndnt of t and.

16 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Proof. By Eq. 3.25, Lmma 3.3 and Lmma 3.4, w av for j=,2,,n, and Tus w obtain 2 Q/2 θ,t j+ 2 0,Ω 2 Q/2 θ,t j 2 0,Ω + 2 Θ,T θ Q /2 θ,t 2 0,Ω 2 dt+ 2 Θ,T θ+c 2k+ U,t 2 k+,ω dt +C t Ex, 2r+2 2 r+,ij + Hx, 2 r+,ij dx, 3.52 Ω 2 Q/2 θ,t 2 0,Ω + 2 Q/2 θ, ,Ω + 2 Θ I 0,T θ Q /2 θ,t 2 0,Ω 2 dt+ I 0 2 Θ I 0,T θ+c 2k+ U,t 2 k+,ω dt I 0 +C t 2r+2 Ex, 2 r+,i0 + Hx, 2 r+,i 0 dx Ω Q /2 θ,t j+ 2 0,Ω t Q /2 θ,t j 2 0,Ω +C t 2k+ U,t 2 k+,ω dt +C t t 2r+2 for j=,2,,n, and Ω Ex, 2 r+,ij + Hx, 2 r+,ij dx, 3.54 Q /2 θ,t 2 0,Ω C t I 2k+ U,t 2 k+,ω dt 0 +C t t 2r+2 Ex, 2 r+,i0 + Hx, 2 r+,i 0 dx, 3.55 by using Gronwall s inquality. Hnc w obtain Ω Q /2 θx,t 2 0 C T t 2r+2 E 2 0,r+ + H 2 0,r+ +C T 2k+ E 2 k+,0 k+,0 + H On t otr and, Q /2 R,T 2 0,Ω = Q/2 η,t 2 0,Ω C2k+2 U,T 2 0,Ω. 3.57

17 932 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp By using a triangular inquality, w av Q /2,T 2 0,Ω Q C /2 R,T 2 0,Ω + Q/2 θ,t 2 0,Ω C T t 2r+2 E 2 0,k+ + H 2 0,k+ wic complts t proof. +C T 2k+ E 2 k+,0 + H 2 k+,0 +C 2k+2 U,T 2 0,Ω, 3.58 Rmark 3.. It is notd tat only smi-norms ar usd in Lmmas 3. and 3.2. Hnc all norms in t rigt and sid of t rror stimat in Torm 3.2 can b rplacd by t corrsponding wakr smi-norms. 4 Numrical rsults In tis sction, som numrical xampls ar givn to justify our tortical prdiction. T uniform Cartsian ms is usd in all numrical xampls. According to t tortical analysis abov, w know tat our numrical scm is stabl witout any rstriction on t tim stp siz t. Actually w obtain accurat numrical solutions vn wn t is largr tan. Morovr, in tis sction, t L 2 rrors ar computd in t following way, 4. 2-D numrical xampl u u 0 = T u u 2 dω 2. T similar rror stimat for 2-D Maxwll quations can b obtaind in t sam way as w av don for 3-D cas, by introducing t scalar and vctor curl oprators curle= E 2 x E y, E= E E, y x T. To justify our tortical analysis, w first giv a 2-D numrical xampl. Considr t following 2-D modl problm H x t + E z y = R, H y t E z x = R 2, E z t H y x H x y = R 3,

18 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Tabl : T convrgnc rat of L 2 rror for r=k= 2-D cas. tim tim stp ms E,T E,T 0 ordr H,T H,T 0 ordr T=0.5 N= N= N= N= T=5 N= N= N= N= T=50 N= N= N= N= Tabl 2: T convrgnc rat of L 2 rror for r=k= 2 2-D cas. tim tim stp ms E,T E,T 0 ordr H,T H,T 0 ordr T= N= N= N= T=0 N= N= N= T=00 N= N= N= in [0,] 2, wr R i, i=,2,3 ar cosn suc tat t xact solution is H x H y E z =00 x x 2ytsint y y 2xtsint xy x ytsint+x+y First w coos t tim stp siz t qual to t spatial ms siz and t polynomials of t sam dgr for bot tmporal and spatial variabls, i.. r=k. T rsults and tir corrsponding convrgnc ordr ar sown in Tabls and 2 for r=k= and r=k=2 rspctivly. It is obsrvd tat t convrgnc rat of bot E and H in L 2 -norm is O k+, wic is bttr tan t tortical prdiction. As mntiond abov, tis spac-tim DG scm is unconditionally stabl. Hr w us a numrical xprimnt to vrify tis claim. W tak t tim stp siz t largr tan t spatial ms siz and r=, k=2. T L 2 -rrors ar listd in Tabl 3. It is noticd tat, vn wn t tim stp siz t=0.2,0.3, wic is largr tan t spatial ms siz = 0.25, t rlativ rrors do not incras wn T = 20,30..

19 934 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Tabl 3: T unconditional stability of t spac-tim DG mtod for r=, k= 2, 8 8 ms 2-D cas. t E,T E,T 0 Rlativ rror H,T H,T 0 Rlativ rror in prcntag in prcntag 0.2 T= T= T= T= T= T= Tabl 4: T ultra-convrgnc of ordr 2r+ in t, = t 2, r=k, T= 2-D cas. k t ms E,T E,T 0 ordr H,T H,T 0 ordr Tabl 5: T ultra-convrgnc of ordr 2r+ in t, = t, r=, k= 2 2-D cas. tim tim stp ms E,T E,T 0 ordr H,T H,T 0 ordr T= N= N= N= T=0 N= N= N= T=00 N= N= N= Bsids t unconditional stability, our approac as anotr important advantag ovr many xisting numrical scms, i.., t implmntation of t DG mtod in tim-discrtization lads to an ultra-convrgnc of ordr 2r+ in tim stp for t numrical fluxs w.r.t. t at t grid points. Numrical rsults in Tabls 4 and 5 sow tis pnomnon from two diffrnt ways. On t on and, w st r=k and coos = t 2 in Tabl 4. Tn t ultra-convrgnc rat ofo t 3 ando t 5 for k= and k=2 ar obsrvd numrically. On t otr and, w lt t= but coos r= and k=2, a convrgnc rat of ordro t 3 of t L 2 -rror is obsrvd in Tabl D numrical xampl W considr t following 3D Maxwll s quation

20 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Tabl 6: T convrgnc rat of L 2 rror for r=k= 3-D cas. tim tim stp ms E,T E,T 0 ordr H,T H,T 0 ordr T= N= N= N= T=0 N= N= N= T=00 N= N= N= Tabl 7: T convrgnc rat of L 2 rror for r=k= 2 3-D cas. tim tim stp ms E,T E,T 0 ordr H,T H,T 0 ordr T= N= N= N= T=0 N= N= N= T=00 N= N= N= H t + E=R, E t H=R 2, in Ω=[0,] 3. Hr R, R 2 ar cosn suc tat t xact solution is y y 2 z z 2 E= x x 2 z z 2 tcost+x+y+z, y z H = z x tcost+x+y+z. x x 2 y y 2 x y Lik t 2-D cas w firstly coos t tim stp siz t qual to t spatial ms siz and t polynomials of t sam dgr for bot tmporal and spatial variabls, i.. r=k. T L 2 -rrors and tir corrsponding convrgnc ordr ar sown in Tabls 6 and 7 for r=k= and r=k=2 rspctivly. It is obsrvd tat t convrgnc rat of bot E and H in L 2 -norm is O k+, wic is bttr tan t tortical prdiction also. To sow t unconditional stability, w tak t tim stp siz t largr tan t spatial ms siz and r=k=. T L 2 -rrors ar listd in Tabl 8. It is noticd tat t rlativ rrors do not incras wn T= 20,30 vn wn t tim stp siz t=0.2,0.3 is largr tan t spatial ms siz =0.25.

21 936 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Tabl 8: T unconditional stability of t spac-tim DG mtod for r=k=, ms 3-D cas. t E,T E,T 0 Rlativ rror H,T H,T 0 Rlativ rror in prcntag in prcntag 0.2 T= T= T= T= T= T= Tabl 9: T ultra-convrgnc of ordr 2r+ in t, = t 2, k= r, T= 3-D cas. r t ms E,T E,T 0 ordr H,T H,T 0 ordr Tabl 0: T ultra-convrgnc of ordr 2r+ in t, = t, r=, k= 2 3-D cas. tim tim stp ms E,T E,T 0 ordr H,T H,T 0 ordr T= N= N= N= T=0 N= N= N= T=00 N= N= N= Numrical rsults in Tabls 9 and 0 sow t ultra-convrgnc of our mtod numrically. In Tabl 9 w st r=k and coos = t 2. Tn t ultra-convrgnc rat of O t 3 and O t 5 for k= and k=2 ar obsrvd numrically. In Tabl 0, w coos t tim stp siz t qual to t spatial ms siz, and r=, k=2. An ultra-convrgnc of ordro t 3 is obsrvd numrically. Rmark 4.. Altoug t tortical rror bound is O k+/2 + t r+, our numrical tsts indicat tat t actual rror sms to bo k+ + t 2r+. Trfor, w propos t following two stratgis in practic to optimiz t scm: Us t sam polynomial spac P k 3 P k and diffrnt lmnt scal = t 2 k+ ; 2 Us t sam lmnt scal t= and diffrnt polynomial spacsp k 3 P r wit 2r=k. T first stratgy suggsts to us t largr tim stps wil t scond on rcommnds to us igr ordr polynomial spacs for spatial discrtization.

22 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp Concluding rmarks A spac-tim DG mtod is proposd to solv tim-dpndnt Maxwll s quation in omognous mdia. T L 2 -stability is provd. Basd on a tcnical oprator dcomposition, t convrgnc rat of O k+ 2+ t r+ in t L 2 -norm is stablisd undr t standard Galrkin finit lmnt framwork. T proposd spac-tim DG mtod is ssntially an implicit scm. T main advantags of it ovr t traditional xplicit tim stp approacs ar its unconditionally stabl proprty, and 2 its ultra-convrgnc in tim stps. Ts favorabl proprtis mak it possibl to comput long tim bavior of tim-dpndnt Maxwll s quations and offst t disadvantag of t computational cost of t implicit mtod. As xplaind in Rmark 4., it is advisd to us t 2 in our scm instad of t=o in most xplicit mtods. A systmatic study of comparison of t proposd spac-tim DG mtod wit t xplicit tim stp approacs spatial smi-discrtization by DG would b a sparat work. Otr futur works includ t rigorous justification of t ultra-convrgnc in tim stps, t -vrsion and p-vrsion spac-tim DG mtods for Maxwll s quations in disprsiv mdia and mta-matrials, and tir corrsponding tortical analysis and applications. Acknowldgmnts T first autor is partially supportd by t NSFC 704 and and t Scinc and Tcnology Grant of Guizou Provinc LS[200]05. T scond autor is partially supportd by t NSFC 704 and and Hunan Provincial Innovation Foundation for Postgraduat #CX200B2. T tird autor is partially supportd by t US National Scinc Foundation troug grant DMS-5530, t Ministry of Education of Cina troug t Cangjiang Scolars program, t Guangdong Provincial Govrnmnt of Cina troug t Computational Scinc Innovativ Rsarc Tam program, and Guangdong Provinc y Laboratory of Computational Scinc at t Sun Yat-sn Univrsity. W also tank Profssor Cuanmiao Cn for is lpful discussions. Rfrncs [] J. H. Argyris and D. W. Scarpf, Finit lmnts in tim and spac, Nucl. Engrg. Ds., 0 969, [2] D. Boffi, P. Frnands, L. Gastaldi, and I. Prugia, Computational modls of lctromagntic rsonators: analysis of dg lmnt approximation, SIAM J. Numr. Anal., , [3] R. Bonnrot and P. Jamt, Numrical computation of t fr boundary for t twodimnsional Stfan problm by spac-tim finit lmnts, J. Comput. Pys., , 63-8.

23 938 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp [4] A. Buffa, Rmarks on t discrtization of som noncorciv oprator wit applications to trognous Maxwll quations, SIAM J. Numr. Anal., , -8. [5] J. C. Bruc and G. Zyvoloski, Transint two-dimnsional at conduction problms solvd by t finit lmnt mtod, Intrnat. J. Numr. Mtods Engrg., 8 974, [6] P. Castillo, B. Cockburn, D. Scötzau and C. Scwab, Optimal a priori rror stimats for t p-vrsion of t local discontinuous Galrkin mtod for convction-diffusion problms, Mat. Comput., 7 200, [7] C. M. Cn, Structur tory of suprconvrgnc of finit lmnts, Hunan Scinc and Tcnology Prss, Cangsa, Cina in Cins, 200. [8] M. H. Cn, B. Cockburn, and F. Ritic, Hig-ordr RDG mtods for computational lctromagntics, J. Sci. Comput., , [9] P. Ciarlt. Jr and J. Zou, Fully discrt finit lmnt approacs for tim-dpndnt Maxwll quations, Numr. Mat., , [0] P. Cialt, T finit lmnt mtod for lliptic problms, Nort Holland, 978. [] B. Cockburn, F. Li, and C. W. Su, Locally divrgnc-fr discontinuous Galrkin mtods for t Maxwll quations, J. Comput. Pys., , [2] B. Cockburn and C. W. Su, Rung-utta Discontinuous Galrkin mtods for timdpdnt convction-diffusion systms, SIAM J. Numr. Anal., , [3] T. Douglas, T. Dupont, and M. F. Wlr, An L stimat and suprconvrgnc rsult for a Galrkin mtod for lliptic quations basd on tnsor products of picwis polynomials, RAIRO Anal. Numr., 8 974, [4] L. P. Gao and D. Liang, Nw nrgy-consrvd idntitis and supr-convrgnc of t symmtric EC-S-FDTD scm for Maxwll s quations in 2D, Commun. Comput. Pys., 202, [5] J. S. Hstavn and T. Warburton, Nodal ig-ordr mtods on unstructurd grids, I: Timdomain solution of Maxwll quations, J. Comput. Pys., , [6] T. J. R. Hugs and G. M. Hulbrt, Spac-tim finit lmnt mtods for lastodynamics: formulations and rror stimats, Comput. Mtods Appl. Mc. Engrg., , [7] G. M. Hulbrt and T. J. R. Hugs, Spac-tim finit lmnt mtods for scond-ordr yprbolic quations, Comput. Mtods Appl. Mc. Engrg., , [8] C. Jonson, Error stimats and automatic tim stp control for numrical mtods for stiff ordinary diffrntial quations, Tcnical Rport , Dpartmnt of Matmatics, Calmrs Univrsity of Tcnology and Univrsity of Götborg, Götborg, Swdn, 984. [9] P. Lsaint and P. A. Raviart, On a finit lmnt mtod for solving t nutron transport quation, in: C. dboor d., Matmatical Aspcts of Finit Elmnts in Partial Diffrntial Equations Acadmic Prss, Nw York, 974, [20] J. Li, Error analysis of finit lmnt mtods for 3-D Maxwll s quations in disprsiv mdia, J. Comput. Appl. Mat., , [2] J. Li, Error analysis of fully discrt mixd finit lmnt scms for 3-D Maxwll s quations in disprsiv mdia, Comput. Mtods Appl. Mc. Engrg., , [22] J. Li and Y. Cn, Analysis of a tim-domain finit lmnt mtod for 3-D Maxwll s quations in disprsiv mdia, Comput. Mtods Appl. Mc. Engrg., , [23] J. Li, Optimal L 2 rror stimats for t intrior pnalty DG mtod for Maxwll s quations in cold plasma, Commun. Comput. Pys. 202, [24] T. Lu, P. Zang, and W. Cai, Discontinuous Galrkin mtods for disprsiv and lossy Maxwll s quations and PML boundary conditions, J. Comput. Pys., , [25] C. F. Ma, Finit-lmnt mtod for tim-dpndnt Maxwll s quations basd on an

24 Z. Q. Xi, B. Wang and Z. Zang / Commun. Comput. Pys., 4 203, pp xplicit-magntic-fild scm, J. Comput. and Appl. Mat., , [26] C. G. Makridakis and P. Monk, Tim-discrt finit lmnt scms for Maxwll s quations. RAIRO Mat. Modling Numr. Anal., , [27] P. Monk, Anlysis of a finit lmnt mtod for Maxwll s quations, SIAM J. Numr. Anal, , [28] P. Monk, A finit lmnt mtods for approximating t tim-armonic Maxwll quations, Numr. Mat., , [29] P. Monk and G. R. Rictr, A Discontinuous Galrkin Mtod for Linar Symmtric Hyprbolic Systms in Inomognous Mdia, J. Sci. Comput., , [30] J. T. Odn, A gnral tory of finit lmnts II: Applications, Intrnat. J. Numr. Mtods in Engrg., 969, [3] W. H. Rd and T. R. Hill, Triangular ms mtods for t nutron transport quation, Rport LA-UR-73479, Los Alamos Scintific Laboratory, Los Alamos, 973. [32] G. R. Rictr, An xplicit finit lmnt mtod for t wav quation, Appl. Numr. Mat., 6 994, [33] S. Z. Tu, G. W. Sklton, and Q. Pang, Extnsion of t ig-ordr spac-tim discontinuous Galrkin cll vrtx scm to solv tim dpndnt diffusion quations, Commun. Comput. Pys., 202, [34] B. Wang, Z. Q. Xi, and Z. Zang, Error analysis of a discontinuous Galrkin mtod for Maxwll quations in disprsiv mdia, J. Comput. Pys., ,

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems Journal of Computational and Applid Matmatics 235 (2011) 5422 5431 Contnts lists availabl at ScincDirct Journal of Computational and Applid Matmatics journal ompag: www.lsvir.com/locat/cam An adaptiv discontinuous

More information

arxiv: v1 [math.na] 22 Oct 2010

arxiv: v1 [math.na] 22 Oct 2010 arxiv:10104563v1 [matna] 22 Oct 2010 ABSOLUTELY STABLE LOCAL DSCONTNUOUS GALERKN METHODS FOR THE HELMHOLTZ EQUATON WTH LARGE WAVE NUMBER XAOBNG FENG AND YULONG XNG Abstract Two local discontinuous Galrkin

More information

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem www.oaw.ac.at Uniformly stabl discontinuous Galrin discrtization and robust itrativ solution mtods for t Brinman problm Q. Hong, J. Kraus RICAM-Rport 2014-36 www.ricam.oaw.ac.at UNIFORMLY STABLE DISCONTINUOUS

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

arxiv: v1 [math.na] 8 Oct 2008

arxiv: v1 [math.na] 8 Oct 2008 DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER XIAOBING FENG AND HAIJUN WU arxiv:080.475v [mat.na] 8 Oct 008 Abstract. Tis papr dvlops and analyzs som intrior pnalty discontinuous

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. In tis papr, t autors stablisd a unifid framwork for driving and

More information

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM A C 0 INERIOR PENALY MEHOD FOR A FOURH ORDER ELLIPIC SINGULAR PERURBAION PROBLEM SUSANNE C. BRENNER AND MICHAEL NEILAN Abstract. In tis papr, w dvlop a C 0 intrior pnalty mtod for a fourt ordr singular

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

Discontinuous Galerkin Approximations for Elliptic Problems

Discontinuous Galerkin Approximations for Elliptic Problems Discontinuous Galrkin Approximations for lliptic Problms F. Brzzi, 1,2 G. Manzini, 2 D. Marini, 1,2 P. Pitra, 2 A. Russo 2 1 Dipartimnto di Matmatica Univrsità di Pavia via Frrata 1 27100 Pavia, Italy

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations www.oaw.ac.at A robust multigrid mtod for discontinuous Galrin discrtizations of Stos and linar lasticity quations Q. Hong, J. Kraus, J. Xu, L. Ziatanov RICAM-Rport 2013-19 www.ricam.oaw.ac.at A ROBUST

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems Convrgnc analysis of a discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of Hlmoltz problms Moamd Amara Laboratoir d Matématiqus Appliqués Univrsité d Pau t ds Pays d l Adour

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

H(curl; Ω) : n v = n

H(curl; Ω) : n v = n A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

An interior penalty method for a two dimensional curl-curl and grad-div problem

An interior penalty method for a two dimensional curl-curl and grad-div problem ANZIAM J. 50 (CTAC2008) pp.c947 C975, 2009 C947 An intrior pnalty mthod for a two dimnsional curl-curl and grad-div problm S. C. Brnnr 1 J. Cui 2 L.-Y. Sung 3 (Rcivd 30 Octobr 2008; rvisd 30 April 2009)

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind World Applid Scincs Journal 9 (9): 8-, ISSN 88-495 IDOSI Publications, Lgndr Wavlts for Systs of Frdhol Intgral Equations of th Scond Kind a,b tb (t)= a, a,b a R, a. J. Biazar and H. Ebrahii Dpartnt of

More information

Available online at ScienceDirect. Procedia Engineering 126 (2015 )

Available online at  ScienceDirect. Procedia Engineering 126 (2015 ) Availabl onlin at www.scincdirct.com ScincDirct Procdia Enginring 26 (25 ) 628 632 7t Intrnational Confrnc on Fluid Mcanics, ICFM7 Applications of ig ordr ybrid DG/FV scms for twodimnsional RAS simulations

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France Error stimation Adaptiv rmsing Rmapping Lionl Fourmnt Mins ParisTc CEMEF Sopia Antipolis, Franc Error stimation Wic masur? L 2 H Enrgy 2 = u 2 u dω Ω Error stimation / Adaptiv rmsing / Rmapping 2 i i (

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Numerische Mathematik

Numerische Mathematik Numr. Math. 04 6:3 360 DOI 0.007/s00-03-0563-3 Numrisch Mathmatik Discontinuous Galrkin and mimtic finit diffrnc mthods for coupld Stoks Darcy flows on polygonal and polyhdral grids Konstantin Lipnikov

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems Portland Stat Univrsity PDXScolar Matmatics and Statistics Faculty Publications and Prsntations Fariborz Mas Dpartmnt of Matmatics and Statistics 2004 A Caractrization of Hybridizd Mixd Mtods for Scond

More information

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3 ESAIM: MAN 4 008) 375 410 DOI: 10.1051/man:008009 ESAIM: Matmatical Modlling and Numrical Analysis www.saim-man.org MORTAR FINITE ELEMENT DISCRETIZATION OF A MODEL COUPLING DARCY AND STOES EQUATIONS Cristin

More information

ETNA Kent State University

ETNA Kent State University Elctronic Transactions on Numrical Analysis Volum 41, pp 262-288, 2014 Copyrigt 2014, Knt Stat Univrsity ISSN 1068-9613 ETNA Knt Stat Univrsity ttp://tnamatkntdu A UNIFIED ANALYSIS OF THREE FINITE ELEMENT

More information

Discontinuous Galerkin methods

Discontinuous Galerkin methods ZAMM Z. Angw. Mat. Mc. 83, No. 11, 731 754 2003 / DOI 10.1002/zamm.200310088 Discontinuous Galrkin mtods Plnary lctur prsntd at t 80t Annual GAMM Confrnc, Augsburg, 25 28 Marc 2002 Brnardo Cockburn Univrsity

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

ruhr.pad An entropy stable spacetime discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations

ruhr.pad An entropy stable spacetime discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations Bild on Scrift: rur.pad UA Rur Zntrum für partill Diffrntialglicungn Bild mit Scrift: rur.pad UA Rur Zntrum für partill Diffrntialglicungn An ntropy stabl spactim discontinuous Galrkin mtod for t two-dimnsional

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME ABSTRACT J Ettanfoui and O Kadir Laboratory of Matmatics, Cryptograpy and Mcanics, Fstm, Univrsity Hassan II of Casablanca, Morocco In tis papr,

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

A Sub-Optimal Log-Domain Decoding Algorithm for Non-Binary LDPC Codes

A Sub-Optimal Log-Domain Decoding Algorithm for Non-Binary LDPC Codes Procdings of th 9th WSEAS Intrnational Confrnc on APPLICATIONS of COMPUTER ENGINEERING A Sub-Optimal Log-Domain Dcoding Algorithm for Non-Binary LDPC Cods CHIRAG DADLANI and RANJAN BOSE Dpartmnt of Elctrical

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER J. C. Sprott PLP 821 Novmbr 1979 Plasma Studis Univrsity of Wisconsin Ths PLP Rports ar informal and prliminary and as such may contain rrors not yt

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient Full Wavform Invrsion Using an Enrgy-Basd Objctiv Function with Efficint Calculation of th Gradint Itm yp Confrnc Papr Authors Choi, Yun Sok; Alkhalifah, ariq Ali Citation Choi Y, Alkhalifah (217) Full

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

2. Background Material

2. Background Material S. Blair Sptmbr 3, 003 4. Background Matrial Th rst of this cours dals with th gnration, modulation, propagation, and ction of optical radiation. As such, bic background in lctromagntics and optics nds

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

arxiv: v1 [math.na] 3 Mar 2016

arxiv: v1 [math.na] 3 Mar 2016 MATHEMATICS OF COMPUTATION Volum 00, Numbr 0, Pags 000 000 S 0025-5718(XX)0000-0 arxiv:1603.01024v1 [math.na] 3 Mar 2016 RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING

More information

State-space behaviours 2 using eigenvalues

State-space behaviours 2 using eigenvalues 1 Stat-spac bhaviours 2 using ignvalus J A Rossitr Slids by Anthony Rossitr Introduction Th first vido dmonstratd that on can solv 2 x x( ( x(0) Th stat transition matrix Φ( can b computd using Laplac

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

Two Products Manufacturer s Production Decisions with Carbon Constraint

Two Products Manufacturer s Production Decisions with Carbon Constraint Managmnt Scinc and Enginring Vol 7 No 3 pp 3-34 DOI:3968/jms9335X374 ISSN 93-34 [Print] ISSN 93-35X [Onlin] wwwcscanadant wwwcscanadaorg Two Products Manufacturr s Production Dcisions with Carbon Constraint

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Discontinuous Galerkin approximation of flows in fractured porous media

Discontinuous Galerkin approximation of flows in fractured porous media MOX-Rport No. 22/2016 Discontinuous Galrkin approximation of flows in fracturd porous mdia Antonitti, P.F.; Facciola', C.; Russo, A.;Vrani, M. MOX, Dipartimnto di Matmatica Politcnico di Milano, Via Bonardi

More information

Rational Approximation for the one-dimensional Bratu Equation

Rational Approximation for the one-dimensional Bratu Equation Intrnational Journal of Enginring & Tchnology IJET-IJES Vol:3 o:05 5 Rational Approximation for th on-dimnsional Bratu Equation Moustafa Aly Soliman Chmical Enginring Dpartmnt, Th British Univrsity in

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations DOI 10.1007/s10915-016-0264-z Dirct Discontinuous Galrkin Mthod and Its Variations for Scond Ordr Elliptic Equations Hongying Huang 1,2 Zhng Chn 3 Jin Li 4 Ju Yan 3 Rcivd: 15 Dcmbr 2015 / Rvisd: 10 Jun

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM A POSTERIORI ERROR ESTIMATE FOR THE Hdiv CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM WENBIN CHEN AND YANQIU WANG Abstract An Hdiv conforming mixd finit lmnt mtod as bn proposd for

More information

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ESAIM: MAN Vol. 39, N o 6, 005, pp. 5 47 DOI: 0.05/man:005048 ESAIM: Mathmatical Modlling and Numrical Analysis A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 43, No. 4, pp. 1728 1749 c 25 Socity for Industrial and Applid Mathmatics SUPERCONVERGENCE OF THE VELOCITY IN MIMETIC FINITE DIFFERENCE METHODS ON QUADRILATERALS M. BERNDT, K.

More information

Construction of Mimetic Numerical Methods

Construction of Mimetic Numerical Methods Construction of Mimtic Numrical Mthods Blair Prot Thortical and Computational Fluid Dynamics Laboratory Dltars July 17, 013 Numrical Mthods Th Foundation on which CFD rsts. Rvolution Math: Accuracy Stability

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains Finit lmnt approximation of Diriclt boundary control for lliptic PDEs on two- and tr-dimnsional curvd domains Klaus Dcklnick, Andras Güntr & Mical Hinz Abstract: W considr t variational discrtization of

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

Characteristics of Gliding Arc Discharge Plasma

Characteristics of Gliding Arc Discharge Plasma Caractristics of Gliding Arc Discarg Plasma Lin Li( ), Wu Bin(, Yang Ci(, Wu Cngkang ( Institut of Mcanics, Cins Acadmy of Scincs, Bijing 8, Cina E-mail: linli@imc.ac.cn Abstract A gliding arc discarg

More information

Anisotropic mesh renement in stabilized Galerkin methods. Thomas Apel y Gert Lube z. February 13, 1995

Anisotropic mesh renement in stabilized Galerkin methods. Thomas Apel y Gert Lube z. February 13, 1995 Anisotropic ms rnmnt in stabilizd Galrkin mtods Tomas Apl y Grt Lub z Fbruary 13, 1995 Abstract. T numrical solution of t convction-diusion-raction problm is considrd in two and tr dimnsions. A stabilizd

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 47 No. 3 pp. 2132 2156 c 2009 Socity for Industrial and Applid Mathmatics RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS ZHIQIANG CAI AND SHUN

More information

arxiv: v1 [math.na] 11 Dec 2014

arxiv: v1 [math.na] 11 Dec 2014 DISCRETE KORN S INEQUALITY FOR SHELLS SHENG ZHANG arxiv:14123654v1 [matna] 11 Dc 2014 Abstract W prov Korn s inqualitis for Nagdi and Koitr sll modls dfind on spacs of discontinuous picwis functions Ty

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Inference Methods for Stochastic Volatility Models

Inference Methods for Stochastic Volatility Models Intrnational Mathmatical Forum, Vol 8, 03, no 8, 369-375 Infrnc Mthods for Stochastic Volatility Modls Maddalna Cavicchioli Cá Foscari Univrsity of Vnic Advancd School of Economics Cannargio 3, Vnic, Italy

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN Intrnational Journal of Scintific & Enginring Rsarch, Volum 6, Issu 7, July-25 64 ISSN 2229-558 HARATERISTIS OF EDGE UTSET MATRIX OF PETERSON GRAPH WITH ALGEBRAI GRAPH THEORY Dr. G. Nirmala M. Murugan

More information

A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS

A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum -, Numbr -, Pags 22 c - Institut for Scintific Computing and Information A NEW FINITE VOLUME METHOD FOR THE STOKES PROBLEMS Abstract. JUNPING

More information