A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

Size: px
Start display at page:

Download "A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM"

Transcription

1 A C 0 INERIOR PENALY MEHOD FOR A FOURH ORDER ELLIPIC SINGULAR PERURBAION PROBLEM SUSANNE C. BRENNER AND MICHAEL NEILAN Abstract. In tis papr, w dvlop a C 0 intrior pnalty mtod for a fourt ordr singular prturbation lliptic problm in two dimnsions on polygonal domains. Using som a postriori rror analysis tcniqus, w ar abl to sow tat t mtod convrgs in t nrgy norm uniformly wit rspct to t prturbation paramtr undr minimal rgularity assumptions. In addition, w analyz t convrgnc of t numrical solution to t unprturbd scond ordr problm. Finally, w prform som numrical xprimnts tat back up t tortical rsults. Ky words. Intrior pnalty mtod, singular prturbation problms, fourt ordr AMS subjct classifications. 65N30, 65N1, 35B5 1. Introduction. In tis papr, w construct and analyz a C 0 intrior pnalty IP mtod for t following fourt ordr problm: ε v ε A v ε = ϕ in Ω, 1.1a v ε = v ε = 0 on Ω. 1.1b Hr, Ω R is a convx polygonal domain, ε is a small, positiv paramtr, ϕ L Ω, and A = Ax [W 1, Ω]. Furtrmor, A is symmtric and positiv dfinit in t sns tat tr xist constants Λ, λ > 0 suc tat Λ w H 1 Ω A w w dx λ w H 1 Ω w H0 1 Ω. 1. Ω Problm 1.1 modls a simply supportd plat problm wit v ε rprsnting t displacmnt of t plat and ε bing t ratio of bnding rigidity to tnsil stiffnss in t plat [17]. Additionally, suc problms aris wn studying t linarization of a fourt ordr prturbation of t fully nonlinar Mong-Ampèr quation [8]. W not tat t corrsponding problm for t clampd plat was invstigatd in [17, 18, 16, 1,, ]. In ordr to avoid ig ordr conforming finit lmnt mtods [17, 9], nonconforming finit lmnt mtods ar an attractiv option. Sinc t lading trm in 1.1a is t biarmonic oprator, t Morly lmnt is appaling sinc it as t last numbr of dgrs of frdom on ac lmnt for fourt ordr problms, as its basis functions consist of only quadratic polynomials [15, 19]. Unfortunatly, t Morly lmnt is not convrgnt for gnral scond ordr lliptic problms [3], and trfor, t rror dtriorats as ε 0 + as was sown in [16]. As a rsult, svral variants of t Morly lmnt mtod av bn proposd for 1.1a wit A = I, wic itr nric t Morly finit lmnt spac [16] or modify t finit lmnt formulation [1, ]. Dpartmnt of Matmatics and Cntr for Computation and cnology, Louisiana Stat Univrsity, Baton Roug, LA work of tis autor was supportd by t National Scinc Foundation undr Grant No. DMS brnnr@mat.lsu.du work of tis autor was supportd by t National Scinc Foundation undr Grant No. DMS nilan@mat.lsu.du 1

2 S. C. BRENNER AND M. NEILAN In tis papr, w tak a diffrnt approac, and formulat and study a symmtric C 0 IP mtod [10, 6] for 1.1. Similar to t Morly lmnt, w us picwis quadratic polynomials to construct our finit lmnt spac. Howvr, unlik any of t aformntiond mtods, w do not nd to modify t spac or modify t finit lmnt formulation. Furtrmor, t finit lmnts w us com in a natural irarcy, ar simpl to implmnt, and radily availabl on commrcial softwar. Finally, as ε 0 +, t mtod convrgs to t standard finit lmnt mtod for t unprturbd problm 1.3 blow. Du to t inqualitis 1., problm 1.1 is boundd and corciv on H Ω H0 1 Ω, and trfor, tr xists a uniqu wak solution v ε H Ω H0 1 Ω. Howvr unlik t cas of t clampd plat, vn on a convx domain, t bst tat can b said about t rgularity of v ε is tat v ε H +γ Ω for som γ 0, 1 wic dpnds on t angls of t cornrs of Ω [11, 4]. at is, v ε dos not ncssarily blong to H 3 Ω. W sall rfr to γ as t indx of lliptic rgularity. W discuss tis issu in furtr dtail as wll as dvlop a priori bounds in t subsqunt sctions cf. orms On of t main goals of tis papr is to rigorously prov tat t C 0 IP mtod is robust wit rspct to ε, tat is, to driv rror stimats tat ar indpndnt of ε. Anotr focal point of tis papr is t convrgnc of v ε v and v v ε, wr vε is t solution to t C 0 IP mtod, and v is t solution to t scond ordr problm A v = ϕ in Ω, 1.3a v = 0 on Ω. 1.3b Du to 1., v is uniquly dfind. Furtrmor, sinc ϕ L Ω, A [W 1, Ω], and Ω is convx, tr olds v H Ω wit [11] v H Ω C ϕ L Ω. 1.4 papr is organizd as follows. In Sction, w provid gnral notation tat will b usd in t subsqunt sctions and dfin t finit lmnt mtod for 1.1. In Sction 3, w us a postriori tcniqus to stablis som tcnical lmmas, wic w latr us to driv abstract a priori rror stimats in t nrgy norm. In Sction 4, w driv a priori stimats of t solution v ε and dtrmin t rats of convrgnc of v ε v in various norms. Sction 5 contains t main rsults of t papr. Hr, w combin t rsults of Sctions 3 and 4 to prov stimats of v ε v ε in t nrgy norm tat ar indpndnt of t paramtr ε, as wll as driv stimats of t rror v v ε wit rspct to bot ε and. Finally in Sction 6, w provid numrical xprimnts wic confirm t tortical rsults. A tcnical proof concrning t construction of a macro bubbl function is found in t Appndix.. Notation and t C 0 Intrior Pnalty Mtod. rougout t papr, w us H k Ω k 0 to dnot t st of all L Ω functions wos distributional drivativs up to ordr k ar in L Ω, and H k 0 Ω to dnot t st of H k Ω functions wos tracs vanis up to ordr k 1 on Ω. In ordr to dfin t wak solution to 1.1, w st av, w := D v, D w, bv, w := A v, w,.1

3 A C 0 IP mtod for a fourt ordr singular prturbation problm 3 wr, dnots t L innr product ovr Ω and D v, D w = Ω D v : D w dx = i,j=1 Ω v x i x j w x i x j dx. W tn dfin a function v ε V 0 := H Ω H 1 0 Ω to b a solution to 1.1 if εav ε, w + bv ε, w = ϕ, w w V 0.. Nxt, w lt b a rgular simplical triangulation [9, 5] of t domain Ω wit = diam. Lt E i dnot t st of intrior dgs in, E b t st of boundary dgs in, and st E = E i E b. For any E i tr ar two triangls + and suc tat = +. St ω = +, }, and lt n b t unit normal of pointing from + to. For any w H + H, dfin t avrag and jump of t normal drivativ of w on as follows: n w }} = 1 n w + + n w, [[ n w ]] = n w + n w. Hr, n w := w n and w ± = w ±. Similarly, w dfin t jump of t gradint of w across by [[ w ]] = w + w. Nxt, for w H 3 + H 3, dfin t avrag and jump of t scond ordr normal drivativ of w on, and t jump of t Laplacian of w on by nn w }} = 1 nn w + + n n w [[, nn w ]] = n n w + n n w, [[ ]] w = w + w, wr n n w := D wn n. For E b, w dfin [[ nn w ]] = n n w. W dnot by V t Lagrang finit lmnt spac consisting of globally continuous picwis quadratic polynomials and lt V 0 = V H 1 0 Ω. For a positiv ral numbr σ, w dfin t following bilinar form on H 3 : a w, z : = D w, D z nn w }}, [[ n z ]].3 E i + [[ n w ]], nnz }} σ 1 [[ n w ]], [[ n z ]] }, wr = diam and, rsp., dnots t L innr product ovr rsp.. C 0 IP mtod for 1.1 is to find v ε V 0 suc tat εa v ε, w + bv ε, w = ϕ, w w V 0..4

4 4 S. C. BRENNER AND M. NEILAN W dfin t discrt norms,, a,, and ε, as follows: w, : = w H, w a, : = w, + E i 1 w ε, : = ε w a, + w H 1 Ω. [[ n w ]] L, Rmark.1. r xists σ a > 0 dpnding only on t sap rgularity of suc tat for σ σ a [6] rfor by.5 and 1., tr olds 1 w a, a w, w w V 0..5 C w ε, ε w a, + λ w H 1 Ω εa w, w + bw, w w V 0..6 It tn follows tat tr xists a uniqu solution to.4 providd σ σ a. Rmark.. It can radily b cckd tat t numrical mtod.4 is consistnt. at is, if v ε H 3 Ω H 1 0 Ω is t solution to 1.1 tn v ε satisfis.4 wit v ε rplacd by vε. Howvr, as alrady mntiond in t Introduction, v ε dos not ncssarily blong to t spac H 3 Ω. As a rsult, standard finit lmnt analysis tcniqus for driving rror stimats i.. Ca s Lmma cannot b applid dirctly. Rmark.3. Intrior pnalty mtods for t corrsponding clampd plat problm wit ε = 1 wr proposd and studid in.g. [3, 13, 14, 7]. As t solution as H 3 Ω rgularity in tis cas, t analysis is rlativly simplr tan t simply supportd plat problm 1.1, and it is straigt-foward to sow tat t rsults of orm 3.1 blow old for t clampd plat problm. 3. Convrgnc Analysis. As mntiond in t prvious sction, w cannot us Ca s Lmma to driv rror stimats of t C 0 IP mtod.4 du to t low rgularity of v ε. o ovrcom tis difficulty, w us som of t main idas of [1] to driv our main rsult of tis sction, orm 3.1, assuming only v ε H Ω H0 1 Ω. As a first stp, w us som a postriori tcniqus [1, 0] to stablis t following tcnical lmma. Lmma 3.1. Suppos tat ϕ H m Ω and A [W m+1, Ω] for som m 0. n for any w V0 tr olds ϕ + A w L C ε 4 vε w H + vε w H m ϕ Hm + w H 1, [[ nnw ]] L C ω 1 vε w H + ε v ε w H ε m+3 ϕ H m + w H 1 } E, [[ ]] A w n C ε 3 L vε w H + 1 vε w H ω

5 A C 0 IP mtod for a fourt ordr singular prturbation problm 5 + m+1 ϕ Hm + } w H 1 E. i Proof. For, coos ϕ P m 1 if m = 0, w tak ϕ = 0 and Ā [P m ] suc tat ϕ ϕ L C m ϕ H m, A Ā L + A Ā W 1, C m A W m+1,. 3.5 Lt b P 6 H0 b t bubbl function dfind on suc tat b quals on at t barycntr of, tat is b = 7λ 1, λ λ3 i wr λ }3 i=1 dnot t barycntric coordinats of. Nxt, dfin r H0 Ω suc tat r = b ϕ + Ā w, and xtnd r to b zro outsid of. First, w not tat sinc ϕ + Ā w is a polynomial, tr xists a constant C > 0 indpndnt of suc tat C ϕ + Ā w ϕ + Ā w, r L. 3.6 Nxt, using standard invrs stimats [9, 5], 3.6,., and , w av for any w V 0 C ϕ + Ā w L ϕ + Ā w, r = ϕ ε w + Ā w, r = ϕ ϕ, r + Ā A w, r + ε D v ε w, D r + A v ε w, r C ϕ ϕ L + A Ā L w H + A Ā W 1, w H1 + ε vε w H + 1 vε w H1 r L C m ϕ Hm + w H1 + ε vε w H + 1 vε w H1 ϕ + Ā w. L Hr, w av usd t fact 0 b 1 to driv t last inquality. Dividing t last xprssion by ϕ + Ā w L, and using , and t triangl and invrs inqualitis, w gt ϕ + A w L ϕ + Ā w L + A Ā w L C ϕ + Ā w L + A Ā W 1, + 1 A Ā L w H1 C m ϕ Hm + w H1 + ε vε w H + 1 vε w H 1. stimat 3.1 follows from tis last inquality.

6 6 S. C. BRENNER AND M. NEILAN Nxt lt E b an arbitray dg. If E i wit = +, w construct ζ 1 P 1 + and ζ P 8 + suc tat [1]: ζ 1 = 0, n ζ 1 = [[ nnw ]], ζ ds, ζ + \ = 0, ζ + \ = 0, + ζ dx = + +. Otrwis if E b wit = + Ω, w construct ζ 1 P 1 + and ζ P 4 + suc tat ζ 1 = 0, n ζ 1 = [[ nnw ]], ζ ds, ζ + \ = 0, ζ + \ = 0, + ζ dx = +. Intgrating by parts, w av by. Cε [[ nnw ]] ε [[ L nnw ]], n ζ 1 ζ = ε [[ nnw ]], n ζ1 ζ + A [[ w ]] n, ζ 1 ζ = ε D w, D ζ 1 ζ ω + A w, ζ 1 ζ + A w, ζ 1 ζ = ε D w v ε, D ζ 1 ζ + A w v ε, ζ 1 ζ C ω } + ϕ + A w, ζ 1 ζ ε v ε w H ζ 1 ζ H + v ε w H 1 ζ 1 ζ H 1 ω By scaling, w av [1] and by t Poincaré inquality + ϕ + A w L ζ 1ζ L ζ 1 ζ H 1 ± C 1 [[ nn w ]] L, ζ 1 ζ L ± C ζ 1 ζ H1 ±. us, by t invrs inquality and 3.1, w av ε [[ nnw ]] L C ε 1 vε w H + v ε w H 1 ω + ϕ + A w L }. } } ζ 1 ζ H 1 ±

7 A C 0 IP mtod for a fourt ordr singular prturbation problm 7 C C It tn follows tat [[ nnw ]] L C ω ε 1 vε w H + v ε w H1 + m+1 } ϕ H m + w H 1 1 [[ nn w ]] L ε 1 vε w H + 1 v ε w H1 ω + m+ 3 ω } [[ ϕ H m + w H 1 nn w ]] L. 1 vε w H + ε v ε w H 1 + ε m+3 ϕ Hm + } w H 1. W now prov 3.3. o aciv tis, for givn = + E i, w construct χ 1 P m+1 + suc tat χ 1 = Ā[[ w ]] n, and xtnd χ 1 to + by constants along t normal dirctions of. Nxt, w lt χ b t macro bubbl function wit t following proprtis cf. Appndix A: χ = 0, χ + \ = 0, + \ n χ = 0, χ ds, χ L + 1. W tn av by. and by intgration by parts, C [[ Ā w ]] n Ā [[ w ]] n L, χ 1 χ = ε [[ nnw ]], n χ 1 χ + Ā [[ w ]] n, χ 1 χ = ε D w, D χ 1 χ + Ā w, χ 1 χ + Ā w, χ 1χ ω = ω ε D w v ε, D χ 1 χ + A w v ε, χ 1 χ + Ā A w, χ 1χ + ϕ + Ā w, χ 1χ us, by t invrs and Poincaré inqualitis, 3.1, and 3.5, [[ Ā w ]] n L C ε vε w H + 1 vε w H 1 By scaling, w av ω + 1 A Ā L w H 1 + ϕ + Ā w } L χ 1 χ L C ε vε w H + 1 vε w H 1 ω + m } ϕ Hm + w H 1 χ 1 χ L. χ 1 χ L χ 1 L χ L C 1 Ā [[ w ]] n L. }. }

8 8 S. C. BRENNER AND M. NEILAN It tn follows tat Ā [[ w ]] n L C and trfor, ω + m+1 ε 3 vε w H + 1 vε w H 1 ϕ H m + } w H 1, [[ ]] A w n L [[ Ā w ]] n L + A Ā [[ w ]] n L C ε 3 vε w H + 1 vε w H 1 ω + m+1 ϕ H m + w H 1 C ω + m+1 ε 3 vε w H + 1 vε w H 1 ϕ H m + } w H 1. } + A Ā L ω [[ w ]] L Bfor continuing, w discuss som proprtis of t nricing oprator, E : V V c, wr V c H Ω H 1 0 Ω is t Hsi-Cloug-ocr finit lmnt spac [9, 5] associatd wit. W sktc som of t main proprtis of tis linar oprator and rfr t radr to t paprs [6, 7] for a mor dtaild xposition. construction of E is don by avraging. o dscrib tis procss, w lt N b a global dgr of frdom of V c, tat is, N is itr t valuation of t sap function at a vrtx in, t valuation of t first ordr drivativs of a sap function at an intrior vrtx in, t valuation of t normal drivativ of a sap function at t midpoint of an dg in E, or t valuation of t normal drivativ of a sap function at any vrtx on t boundary Ω. n for any w V, w construct E w V c so tat NE w = 1 N Nw, N wr N dnots t st of triangls tat sar t dgr of frdom, and N is t cardinality of tis st. For any, t map E satisfis t stimat [7] w E w L C4 = C 4 1 p V E i p 1 E i [[ n w ]] L 3.7 [[ n w ]] L, wr V dnots t st of vrtics of, E i p is t st of all intrior dgs in E saring t ndpoint p, and cf. Figur 3.1 E i = p V E i p.

9 A C 0 IP mtod for a fourt ordr singular prturbation problm 9 Fig triangls in t st and t dgs in t st E i dasd lins. Using a trac and invrs inquality, it follows from 3.7 tat w E w L C4 [[ n w ]] 3.8 L C 4 E i 1 E i ω w H 1 C w H 1, wr cf. Figur 3.1 = E i ω. Nxt, using t trac and invrs inqualitis again, w conclud tat ε 1 n w E w }} C ε 4 L w E w L 3.9 E E ω C ε 1 [[ n w ]] L E ω E i C w ε,, and by 3.8 and 3.7 n w E w }} C L E E C E ω C w ε,, ε nnw E w }} C L E E C E E i C w ε,. w E w L 3.10 ω ω w H 1 ε 4 w E w L 3.11 ε 1 ω E i [[ n w ]] L Using similar argumnts, w conclud tat by 3.8 w av 1 w E w L C w E w L 3.1 E i C E i and by 3.7, w av ε 3 w E w L E i E i ω ω ω w H 1 w ε,, ε 4 w E w L 3.13

10 10 S. C. BRENNER AND M. NEILAN E i ω w ε,. ε 1 [[ n w ]] L E i Finally, from 3.7 and t trac and invrs inqualitis, w av E w ε, C w ε, w V Lmma 3.. For all q H Ω, z V c, and w V, tr olds εaq, z εa w, z + bq w, z C q w ε, z ε, Proof. For any z V c and q H Ω, tr olds [[ n z ]] = [[ n q ]] = 0 E i. rfor by.1,.3, t Caucy-Scwarz inquality and trac/invrs inqualitis, w av εaq, z εa w, z + bq w, z = ε D q w, D z ε [[ n q w ]], nnz }} + bq w, z E i ε q w, z, + A L Ω q w H 1 Ω z H 1 Ω + ε 1 [[ n q w ]] 1/ L nn z }} L E i E i C q w ε, z ε,. 1/ Wit ts rsults stablisd, and wit t lp of Lmma 3.1, w can sow t following rsult. tru powr of Lmma 3.3 will b xposd in orm 3.1. Lmma 3.3. Lt v ε dnot t solution to 1.1, and lt v ε dnot t solution to.4, and suppos tat ϕ H m Ω, A [W m+1, Ω] for som m 0. W tn av [ v ε v ε ε, C1 + σ inf ε v ε w H 3.16 w V 0 + ε v ε w H 1 + m+1 w H1 + ϕ H m + E i ε 1 [[ n v ε w ]] L [ v ε v ε ε, C1 + σ inf w V 0 + v ε w H 1 + m+1 + E i ε 1 [[ n v ε w ]] L ] 1, }, ε + ε v ε w H 3.17 w H 1 + ϕ H m } ] 1.

11 A C 0 IP mtod for a fourt ordr singular prturbation problm 11 Proof. Lt w V0 suc tat w v ε, and to as notation st z = vε w. n using similar argumnts as in [1, Lmma.1], w av by.6,.4,., 3.15, and 3.14 C v ε w ε, εa v ε w, z + bv ε w, z = ϕ, z εa w, z bw, z = εav ε, E z εa w, E z + bv ε w, E z + ϕ, z E z εa w, z E z bw, z E z C v ε w ε, E z ε, + ϕ, z E z εa w, z E z bw, z E z C v ε w ε, v ε w ε, + ϕ, z E z εa w, z E z bw, z E z. It tn follows from tis xprssion and t triangl inquality tat [ ] v ε v ε ε, C inf v ε G w, z w ε, + sup, 3.18 w V0 z V0 \0} z ε, wr G w, z := ϕ, z E z εa w, z E z bw, z E z. Nxt, to as notation, st s = z E z, so tat Intgrating by parts, w av D w, D s = G w, z = ϕ, s εa w, s bw, s = D w, s + n w, s } nn w, n s + nτ w, τ s }, wr τ dnots t unit tangnt vctor of. Sinc E zp = zp for any vrtx p in, it follows tat D w, D s = nn w }}, [[ n s ]] + [[ nn w ]], n s }}. 3.0 E i By t dfinitions of t bilinar forms a, and b, and by 3.0, w av εa w, s + bw, s = A w, s + ε [[ n D w, D s ε w ]], nns }} E i + nnw }}, [[ n s ]] [[ σ 1 n w ]], [[ n s ]] } = A w, s ε [[ n w ]], nns }} E i εσ 1 [[ n w ]], [[ n s ]] A [[ w ]] n, s } E

12 1 S. C. BRENNER AND M. NEILAN + E ε [[ nnw ]], n s }}, and trfor by 3.19 and 3.11, G w, z = ϕ + A w, s + ε [[ n w v ε ]], nns }} 3.1 εσ 1 E i [[ n w v ε ]], [[ n s ]] A [[ w ]] n, s } E ε [[ nnw ]], n s }} 1 + σ v ε w ε, z ε, + + ε [[ nnw ]] L n s }} L E ϕ + A w L s L + E i A [[ w ]] n L s L. Hr, w av usd t fact v ε H Ω so tat [[ n v ε]] = 0, E i. W now bound t last tr xprssions in t rigt-and sid of 3.1. Combining 3.1 and , w av ϕ + A w L s L 3. C m+1 C m+1 ϕ Hm + w H1 + v ε w H1 z H ε v ε w H 1 [[ n z ]] 1 } L E i ϕ Hm + 1 w H 1 + v ε w ε, z ε,. Nxt, applying 3. and 3.9, w gt [[ nn w ]], n s }} 3.3 E ε ε [[ nnw ]] L E C ε [[ nnw ]] L E [ C 1 ε 1 E 1 z ε, ε v ε w H + ε 1 v ε w H 1 + ε 1 m+ n s }} L ϕ H m + w H 1 }] 1 z ε,. 1

13 A C 0 IP mtod for a fourt ordr singular prturbation problm 13 W also av by 3.10 and 3. [[ nn w ]], n s }} 3.4 E ε 1 ε [[ nnw ]] 1 L E C [ C 1 ε [[ nnw ]] L E + m+1 E 1 z H 1 Ω ε vε w H + vε w H 1 ϕ Hm + w H 1 }] 1 z ε,. n s }} L Continuing, w us 3.3 and 3.1 to conclud [[ ]] A w n, s E i [[ ]] A w n E i L C A [[ w ]] n E i C + m+1 1 L E i 1 s L 1 z H 1 ε vε w H + vε w H 1 ϕ H m + } w H 1 z ε,, and by 3.13, w av [[ ]] A w n, s E i E i ε 1 3 A [[ w ]] n L 1 E i ε 3 C ε 1 3 [[ ]] A w n z L ε, E i C ε v ε w H + ε 1 v ε w H 1 + ε 1 m+ 1 ϕ H m + } w H 1 z ε,. s L Finally, t stimat 3.16 is obtaind by combining 3.18, 3.1, and t stimats 3., 3.3, and 3.6. Similarly, t stimat 3.17 is obtaind by combining 3.18, 3.1, and t stimats 3., 3.4, and

14 14 S. C. BRENNER AND M. NEILAN orm 3.1. Suppos tat ϕ H m Ω, A [W m+1, Ω] and t ms is quasiuniform wit. n tr olds v ε v ε ε, C1 + σ inf w V0 v ε w ε, + m+1 w H 1 Ω + ϕ H Ω m. 3.7 Proof. If ε 1, tn by 3.17, w av [ ε v ε v ε ε, C1 + σ inf 1 + ε 1 v ε w, w V0 + v ε w H 1 Ω + m+1 w H 1 Ω + ϕ H m + ε 1 [[ n v ε w ]] 1 ] L E i C1 + σ inf v ε w ε, + m+1 w H1 Ω + ϕ H m. w V0 On t otr and, if ε 1, tn by 3.16 w av [ v ε v ε ε, C1 + σ inf ε 1 v ε w, w V0 + ε v ε w H1 Ω + m+1 w H1 Ω + ϕ H m + E i ε 1 [[ n v ε w ]] L 1 ] C1 + σ inf v ε w ε, + m+1 w H 1 Ω + ϕ H m. w V0 4. A Priori Estimats and Convrgnc as ε 0 +. Sinc t rror stimat 3.1 will vntually dpnd on t norms of v ε, w must driv a priori bounds of ts quantitis in ordr to obtain uniform convrgnc of t finit lmnt mtod wit rspct to ε. orm 4.1 A Priori Estimats I. Lt v ε b t solution to 1.1 and lt v dnot t solution to 1.3. n t following old: v ε H Ω C ϕ L Ω, 4.1 v ε v L Ω Cε ϕ L Ω, 4. v ε v H 1 Ω Cε 1 ϕ L Ω. 4.3 Morovr, v ε H +γ Ω for som γ 0, 1 and v ε H +γ Ω Cε γ ϕ L Ω. 4.4 Proof. Sinc v H Ω, w av for any w V 0 ε D v ε v, D w + A v ε v, w = εd v, D w.

15 A C 0 IP mtod for a fourt ordr singular prturbation problm 15 Stting w = v ε v in t xprssion abov, w us 1. to conclud ε v ε v H Ω + λ vε v H 1 Ω ε v H Ω v ε v H Ω. Assuming λ ε, w av by 1.4 v ε v H Ω C v H Ω C ϕ L Ω, v ε v H 1 Ω Cε 1 v H Ω Cε 1 ϕ L Ω, and trfor, v ε H Ω C ϕ L Ω. 4.5 o obtain t stimat 4., w lt φ H Ω H0 1 Ω b t solution to ε φ A φ = v ε v in Ω, 4.6 φ = φ = 0 on Ω. W tn av by 4.1 φ H Ω C v ε v L Ω. 4.7 W also av by 4.6, 1.1, 1.3, and 4.7 v ε v L Ω = εd v, D φ ε v H Ω φ H Ω Cε v H Ω v ε v L Ω Cε ϕ L Ω v ε v L Ω. Dividing t last xprssion by v ε v L Ω, w obtain 4.. W now sow 4.4. o tis nd, w not tat v ε = ε 1 A v ε v. Sinc A [W 1, Ω] and v ε, v H Ω, tr olds A v ε v L Ω. us by lliptic tory for t simply supportd plat, tr xists a γ 0, 1 wic w call t indx of lliptic rgularity, suc tat v ε H +γ Ω and By , w av v ε H +γ Ω Cε 1 A v ε v H +γ Ω 4.8 Cε 1 v ε v Hγ Ω. v ε v L Ω Cε ϕ L Ω, v ε v H 1 Ω Cε 1 ϕ L Ω, and trfor, by intrpolation btwn Sobolv spacs, It tn follows from tat v ε v H γ Ω Cε γ ϕ L Ω. 4.9 v ε H +γ Ω Cε γ ϕ L Ω.

16 16 S. C. BRENNER AND M. NEILAN Nxt, undr assumption tat t solution to t unprturbd scond ordr problm as igr rgularity, w ar abl to improv som of t stimats of orm 4.1. orm 4. A Priori Estimats II.. Suppos tat v H 3 Ω. n tr olds v ε v H 1 Ω Cε 3 4 v H 3 Ω, 4.10 v ε v H Ω Cε 1 4 v H 3 Ω, 4.11 v ε H +γ Ω Cε γ 4 ϕ L Ω + v H 3 Ω. 4.1 Proof. Intgrating by parts, w av ε D v ε v, D w + A v ε v, w = εd v, D w = ε v, w ε v, n w Ω. Stting w = v ε v and using trac inqualitis givs us ε v ε v H Ω + λ vε v H 1 Ω ε v L Ω v ε v L Ω + v L Ω n v ε v L Ω Cε v ε v H1 Ω + v ε v 1 H 1 Ω vε v 1 H Ω v H 3 Ω. us by Young s inquality, w av ε v ε v H Ω + λ vε v H 1 Ω C ε + ε 3 v H3 Ω Cε 3 v H3 Ω. stimats follow from tis last inquality. Nxt, by intrpolation btwn Sobolv spacs, v ε v H γ Ω Cε 4 γ 4 ϕ L Ω + v H Ω 3 γ 0, 1. It tn follows from 4.8 tat v ε H +γ Ω Cε γ 4 ϕ L Ω + v H 3 Ω. Rmark 4.1. As Ω is a polygonal domain, w cannot xpct tat v H 3 Ω in gnral. Howvr, t rsults of orm 4. xplain som of t numrical xprimnts in Sction Convrgnc Analysis Rvisitd. In tis sction, w combin t rror analysis drivd in orm 3.1 wit t a priori bounds dvlopd in t prvious sction. First, w driv stimats of t rror v ε v ε, wic w summariz in t following torm. orm 5.1. Lt γ 0, 1 dnot t indx of lliptic rgularity. n tr olds v ε v ε ε, C1 + σ γ ϕ L Ω. 5.1

17 A C 0 IP mtod for a fourt ordr singular prturbation problm 17 Proof. Lt I v ε dnot t standard finit lmnt intrpolant of v ε. By 3.7, 4.1 and 4.4, w av v ε v ε ε, C1 + σ ε 1 v ε I v ε a, + v ε I v ε H 1 Ω + I v ε H 1 Ω + ϕ L Ω C1 + σ ε 1 γ v ε H +γ Ω + v ε H Ω + ϕ L Ω C1 + σ ε 1 γ γ + ϕ L Ω C1 + σ γ ϕ L Ω. Nxt, w turn our attntion to dvloping stimats of v v ε. Of cours, t most natural approac is to combin t stimats drivd in orm 5.1 wit t convrgnc rats drivd in orms and us t triangl inquality. Howvr, a bttr stratgy is to us t stimat 3.7 dirctly and avoid t lliptic rgularity of v ε. Furtrmor, by considring t discrt vrsion of 1.3, and wit t lp of t invrs inquality, w ar also abl to trad-in powrs of for powrs of ε. orm 5.. r olds v v ε ε, C1 + σε 1 + ϕ L Ω, 5. v v ε H 1 Ω C + ε σ ϕ L Ω. 5.3 Morovr, if v H 3 Ω, ϕ H 1 Ω, and A [W, Ω], tn v v ε ε, C1 + σ ε ϕ H1 Ω + v H3 Ω, 5.4 v v ε H 1 Ω C v H 3 Ω + ε σ ϕ L Ω, 5.5 v v ε a, C v H 3 Ω + ε 1 + σ ϕ L Ω. 5.6 Proof. Lt I v dnot t finit lmnt intrpolant of v. By 3.7, 1.4, and t triangl inquality, w av v ε v ε ε, 5.7 C1 + σ v ε I v ε, + I v H1 Ω + ϕ L Ω C1 + σ v ε I v ε, + v I v H1 Ω + v H1 Ω + ϕ L Ω C1 + σ v ε v ε, + v I v ε, + ϕ L Ω. By standard intrpolation stimats and 1.4, w av v I v ε, Cε 1 + v H Ω Cε 1 + ϕ L Ω. 5.8 Morovr, by 4.1, 1.4, and 4.3, v ε v ε, Cε 1 ϕ L Ω. 5.9

18 18 S. C. BRENNER AND M. NEILAN Applying t bounds to t inquality 5.7, and using t triangl inquality, w obtain v v ε ε, v ε v ε, + v ε v ε ε, C1 + σε 1 + ϕ L Ω. In a similar fasion, if v H 3 Ω, ϕ H 1 Ω, and A [ W, Ω ], tn by 3.7 w av v ε v ε ε, C1 + σ v ε I v ε, + I v H 1 Ω + ϕ H Ω C1 + σ v ε v ε, + v I v ε, + ϕ H 1 Ω. W also av by and standard intrpolation stimats and trfor, v I v ε, C ε 1 + v H3 Ω, v ε v ε, Cε 3 4 v H 3 Ω, v v ε ε, v ε v ε, + v ε v ε ε, C1 + σ ε ε + ϕ H1 Ω + v H3 Ω Nxt, w lt v dnot t solution to C1 + σ ε ϕ H 1 Ω + v H 3 Ω. b v, w = ϕ, w By standard finit lmnt analysis tcniqus, w av and trfor, v I v H 1 Ω C v I v H 1 Ω, w V v v H1 Ω C v H Ω C ϕ L Ω. 5.1 Also, by t invrs inquality tr olds v a, C 1 v I v H1 Ω + I v a, C v H Ω C ϕ L Ω Furtrmor, if v H 3 Ω, tn v v H 1 Ω C v H 3 Ω, 5.14 v v a, C 1 v I v H1 Ω + v I v a, 5.15 C 1 v I v H 1 Ω + v v H 1 Ω + v I v a, C v H3 Ω. From t dfinition of v ε and v and by Rmark.1, w av C v ε v ε, εa v ε v, v ε v + bv ε v, v ε v = εa v, v ε v Cε1 + σ v a, v ε v a,.

19 A C 0 IP mtod for a fourt ordr singular prturbation problm 19 us by t invrs inquality, w obtain v ε v ε, Cε1 + σ v a, v ε v a, Cε σ v a, v ε v H 1 Ω Cε σ v a, v ε v ε,. rfor, dividing by v ε v ε, and using 5.13, w av and nc, v ε v ε, Cε σ v a, Cε σ ϕ L Ω, v ε v H1 Ω Cε σ ϕ L Ω, v ε v a, Cε σ ϕ L Ω. rfor, by t triangl inquality and 5.1 v v ε H1 Ω v v H1 Ω + v ε v H1 Ω C + ε σ ϕ L Ω, and if v H 3 Ω, by 5.14 w av v v ε H1 Ω C v H3 Ω + ε σ ϕ L Ω. Also, if v H 3 Ω, tn by t invrs inquality and 5.15 v v ε a, C 1 v v ε H1 Ω + v v a, C v H 3 Ω + ε 1 + σ ϕ L Ω. Rmark 5.1. By t proof of orm 5., v ε v ε ε, C1 + σ ε 1 + ϕ L Ω, 5.16 and if ϕ H 1 Ω, v H 3 Ω, and A [ W, Ω ], tn v ε v ε ε, C1 + σ ε ϕ H1 Ω + v H3 Ω Corollary 5.1. Suppos tat = ε α for som α > 0. n tr olds v v ε ε, C1 + σ ϕ L Ω ε α α 1 ε 1 α 1, 5.18 and if v H 3 Ω, ϕ H 1 Ω, and A W, Ω, tn v v ε H1 Ω C1 + σ ϕ H1 Ω + v H3 Ω ε α α 3 8 ε 3 4 α 3 8, 5.19 v v ε a, C1 + σ ε α α 1 3 ϕ H1 Ω + v H3 Ω ε 1 α 1 3 α ε 1 4 α 3 8

20 0 S. C. BRENNER AND M. NEILAN Proof. stimat 5.18 is a dirct consqunc of t rror stimat 5.. If v H 3 Ω, ϕ H 1 Ω, and A [ W, Ω ] tn by v v ε H 1 Ω C1 + σ min ε ε α, ε α + ε 1 α} ϕ H 1 Ω + v H 3 Ω } C1 + σ ε α + min ε 3 4, ε 1 α ϕ H 1 Ω + v H Ω 3. If α 1 4, tn v v ε H1 Ω C1 + σ ε α + ε 1 α ϕ H1 Ω + v H3 Ω Otrwis, if 1 4 α 3 8, tn and if α 3 8, tn v v ε H1 Ω C1 + σ v v ε H1 Ω C1 + σ C1 + σε α ϕ H 1 Ω + v H 3 Ω. ε α + ε 3 ϕ H1 4 Ω + v H3 Ω C1 + σε α ϕ H 1 Ω + v H 3 Ω, ε α + ε 3 ϕ H1 4 Ω + v H3 Ω C1 + σε 3 4 ϕ H1 Ω + v H3 Ω, wic stabliss Nxt, by 5.4 and 5.6, w av v v ε a, C1 + σ min ε ε α 1, ε α + ε 1 α} ϕ H 1 Ω + v H Ω 3. If α 1 3, tn min ε ε α 1, ε α + ε 1 α} } min ε α 1, ε α = ε α. If 1 3 α 3 8, tn min ε ε α 1, ε α + ε 1 α} } min ε α 1, ε 1 α = ε 1 α, and if α 3 8, tn min ε ε α 1, ε α + ε 1 α} } min ε 1 4, ε 1 α = ε 1 4. stimat 5.0 follows from ts last tr inqualitis. 6. Numrical Exprimnts. In tis sction, w provid svral numrical xprimnts tat back up t tortical findings in t prcding sctions. All of t tsts prsntd blow ar on t domain Ω = 0, 1 and w st A = I so tat 1.1a and 1.3a rad, rspctivly ε v ε v ε = ϕ in Ω, v = ϕ in Ω. Furtrmor, w rplac t omognous Diriclt boundary conditions 1.1b, 1.3b wit v ε Ω = g, v Ω = g.

21 A C 0 IP mtod for a fourt ordr singular prturbation problm st 1. For tis tst, w calculat t rror v v ε for fixd =6E-3, wil varying ε. W coos our data so tat t xact solution is v = x + y. W solv.4 wit =6E-3, and list t rrors and rats of convrgnc in abl 6.1. Not tat by 5.4, for ε E-6, w av v v ε ε, C1 + σ ε ϕ H 1 Ω + v H 3 Ω C1 + σε 3 4 ϕ H1 Ω + v H3 Ω. is bavior is rflctd in abl 6.1, wr t scond column sows tat v v ε H 1 Ω = Oε 3 4 and t tird column sows tat v v ε, = Oε 1 4. Also, sinc v H3 Ω = 0, t stimats rad v v ε H1 Ω Cε σ ϕ L Ω, v v ε a, Cε 1 + σ ϕ L Ω. rfor, as ε 0 + and for fixd, w xpct to s linar convrgnc wit rspct to ε in all norms. Again, tis bavior is sn in t scond and tird columns of abl 6.1. abl 6.1 st 1. Error v v ε wit rspct to ε. =6E-3, σ = 0. ε v v ε L Ω rat v v ε H 1 Ω rat v v ε, rat 1.00E E E-01.85E E E E E E E E E E-04.93E E E E E E E E E E E E-06.55E E E E E E E E E E E E-08.05E E E E E E E E-09 8.E E E E E E E st. For tis tst, w fix a rlation = 4ε α wit α = 1, α = 1 3, and α = 1 4 and stimat t rat of convrgnc of t rror v vε wit rspct to ε. W st y x = 0, ϕ = 3x + y + x y + x 3 x x, g = x y = 0, 1 + y x = 1, 1 + x x y = 1, so tat t xact solution to t scond ordr problm 1.3 is v = x + y x.

22 S. C. BRENNER AND M. NEILAN By , w av v v ε H 1 Ω C1 + σ ε 1 α = 1 4 ϕ H 1 Ω + v H 3 Ω ε 3 α = 1 3 ε 3 4 α = 1, v v ε, C1 + σ ε 1 4 α = 1 4 ϕ H 1 Ω + v H 3 Ω ε 1 3 α = 1 3 ε 1 4 α = 1 All of ts xpctd rats of convrgnc ar obsrvd in abls abl 6. st a. Error v v ε wit rspct to ε. = 4ε 1, σ = 0. ε v v ε L Ω rat v v ε H 1 Ω rat v v ε, rat 1.00E E E E E+00.00E E-01.06E E E E E E E E E E E E E E E-0.11E E E abl 6.3 st b. Error v v ε wit rspct to ε. = 4ε 1 3, σ = 0. ε v v ε L Ω rat v v ε H 1 Ω rat v v ε, rat 1.00E E E E E E-04.3E E E E E E E E E E E-0.05E E E E-07.3E-0.06E E E abl 6.4 st c. Error v v ε wit rspct to ε. = 4ε 1 4, σ = 0. ε v v ε L Ω rat v v ε H 1 Ω rat v v ε, rat 1.00E-05.5E E E-0.06E E E-01.4E E E E E-0 4.5E E E E E E E E E-09.5E E E E

23 A C 0 IP mtod for a fourt ordr singular prturbation problm 3 REFERENCES [1] M. Ainswort and J.. Odn, A Postriori Error Estimation in Finit Elmnt Analysis, Wily-Intrscinc Jon Wily & Sons, 000. [] G. Awanou, Robustnss of a splin lmnt mtod wit constraints, J. Sci. Comput., , pp [3] G.A. Bakr, Finit lmnt mtods for lliptic quations using nonconforming lmnts, Mat. Comp., , pp [4] H. Blum and R. Rannacr, On t boundary valu problm of t biarmonic oprator on domains wit angular cornrs, Mat. Mtods Appl. Sci., 1980, pp [5] S.C. Brnnr and L.R. Scott, Matmatical ory of Finit Elmnt Mtods, tird dition, Springr, 008. [6] S.C. Brnnr and L.-Y. Sung, C 0 intrior pnalty mtods for fourt ordr lliptic boundary valu problms on polygonal domains, J. Sci. Comput., /3 005, pp [7] S.C. Brnnr,. Gudi, and L.-Y. Sung, An a postriori rror stimator for a quadratic C 0 intrior pnalty mtod for t biarmonic problm, IMA J. Numr. Anal., , pp [8] S.C. Brnnr,. Gudi, M. Nilan, and L.-Y. Sung, C 0 pnalty mtods for t fully nonlinar Mong-Ampèr quation, Mat. Comp., to appar. [9] P.G. Ciarlt, Finit Elmnt Mtod for Elliptic Problms. Nort-Holland, Amstrdam, [10] G. Engl, K. Garikipati,.J.R. Hugs, M.G. Larson, L. Mazzi, and R.L. aylor, Continuous/discontinuous finit lmnt approximations of fourt ordr lliptic problms in structural and continuum mcanics wit applications to tin bams and plats, and strain gradint lasticity, Comput. Mt. Appl. Mc. Eng., , pp [11] P. Grisvard, Elliptic Problms on Nonsmoot Domains, Pitman Publising Inc., [1]. Gudi, A nw rror analysis for discontinuous finit lmnt mtods for linar lliptic problms, Mat. Comp., , pp [13] I. Mozolvski and E. Süli, A priori rror analysis for t p-vrsion of t discontinuous Galrkin finit lmnt mtod for t biarmonic quation, Comput. Mtods Appl. Mat., 3 003, pp [14] I. Mozolvski, E. Süli, and P.R. Bösing, p-vrsion a priori rror analysis of intrior pnalty discontinuous Galrkin finit lmnt approximations to t biarmonic quation, J. Sci. Comput., , pp [15] L.S.D. Morly, triangular quilibrium lmnt in t solution of plat bnding problms, Aro. Quart., , pp [16].K. Nilssn, X.C. ai, and R. Wintr, A robust nonconforming H -lmnt, Mat Comp., , pp [17] B. Smpr, Conforming finit lmnt approximations for a fourt-ordr singular prturbation problm, SIAM J. Numr. Anal., 9 199, pp [18] B. Smpr, Locking in finit-lmnt approximations to long tin xtnsibl bams, IMA J. Numr. Anal., , pp [19] Z. Si, Error stimats of Morly lmnt, Mat. Numr. Sinica, , pp [0] R. Vrfürt A Postriori Error Estimation and Adaptiv Ms-Rfinmnt cniqus, Wily-ubnr, Cicstr, [1] M. Wang, J. Xu, and Y. Hu, Modifid Morly lmnt mtod for a fourt ordr lliptic singular prturbation problm, J. Comput. Mat., 4 006, pp [] M. Wang and Y. Hu, A robust finit lmnt mtod for 3-D lliptic singular prturbation problm, J. Comput. Mat., 5 007, pp [3] M. Wang, ncssity and sufficincy of t patc tst for t convrgnc of nonconforming finit lmnts, SIAM J. Numr. Anal., , pp Appndix A. Construction of Macro Bubbl Function. Lmma A.1. For any E i wit = +, tr xists a macro bubbl function χ suc tat χ + \ = 0, χ + \ = 0, n χ = 0, χ L + 1, χ ds.

24 4 S. C. BRENNER AND M. NEILAN Proof. Witout loss of gnrality, w may assum tat t dg is orizontal. First, w considr t cas wr + is t triangl wit vrtics 0, 0, 0.5, a, 1, 0, and is t triangl wit vrtics 0, 0, 0.5, a, 1, 0, wr a is som fixd positiv numbr. Hnc, is t lin sgmnt wit vrtics 0, 0 and 1, 0. W tn dfin χ P 8 + to b χ = y + ax y ax + a y + ax a y ax. A.1 It is asy to vrify tat χ vaniss up to t first ordr on + \ and tat n χ = 0, χ 0, χ L + = a 8. Nxt, w considr t gnral cas wr + = ABC, = ACD, and is t lin sgmnt AC s Figur A.1. Lt M b t midpoint of dg, and lt E rsp. F b t point on BC rsp. AD suc tat EM rsp. F M is prpndicular to AC. Witout loss of gnrality, w may assum tat EM F M. W tn st G to b t midpoint of EM and st H to b t point on t sgmnt F M suc tat HM = GM. On ACG ACH, w tak χ to b t scald vrsion of χ dfind by A.1. W not tat by construction χ vaniss up to t first ordr on AG, CG, CH, AH, and n χ = 0. On ac of t triangls AF H, CDH, BCG, and ABG, w tak χ to b t polynomial of dgr six so tat χ vaniss up to t first ordr on AF, F H, AH, CD, DH, CH, BC, CG, and BG, and χ quals on at t cntr of ac of t triangls. It follows from tis construction tat χ C 1 +, χ vaniss up to first ordr on + \, n χ = 0, and χ 0. Furtrmor, by scaling χ L + 1 and χ ds. Fig. A.1. Partition of macro bubbl function

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems Journal of Computational and Applid Matmatics 235 (2011) 5422 5431 Contnts lists availabl at ScincDirct Journal of Computational and Applid Matmatics journal ompag: www.lsvir.com/locat/cam An adaptiv discontinuous

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. In tis papr, t autors stablisd a unifid framwork for driving and

More information

arxiv: v1 [math.na] 22 Oct 2010

arxiv: v1 [math.na] 22 Oct 2010 arxiv:10104563v1 [matna] 22 Oct 2010 ABSOLUTELY STABLE LOCAL DSCONTNUOUS GALERKN METHODS FOR THE HELMHOLTZ EQUATON WTH LARGE WAVE NUMBER XAOBNG FENG AND YULONG XNG Abstract Two local discontinuous Galrkin

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems

Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems Convrgnc analysis of a discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of Hlmoltz problms Moamd Amara Laboratoir d Matématiqus Appliqués Univrsité d Pau t ds Pays d l Adour

More information

ETNA Kent State University

ETNA Kent State University Elctronic Transactions on Numrical Analysis Volum 41, pp 262-288, 2014 Copyrigt 2014, Knt Stat Univrsity ISSN 1068-9613 ETNA Knt Stat Univrsity ttp://tnamatkntdu A UNIFIED ANALYSIS OF THREE FINITE ELEMENT

More information

A ROBUST NONCONFORMING H 2 -ELEMENT

A ROBUST NONCONFORMING H 2 -ELEMENT MAHEMAICS OF COMPUAION Volum 70, Numbr 234, Pags 489 505 S 0025-5718(00)01230-8 Articl lctronically publishd on Fbruary 23, 2000 A ROBUS NONCONFORMING H 2 -ELEMEN RYGVE K. NILSSEN, XUE-CHENG AI, AND RAGNAR

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

An interior penalty method for a two dimensional curl-curl and grad-div problem

An interior penalty method for a two dimensional curl-curl and grad-div problem ANZIAM J. 50 (CTAC2008) pp.c947 C975, 2009 C947 An intrior pnalty mthod for a two dimnsional curl-curl and grad-div problm S. C. Brnnr 1 J. Cui 2 L.-Y. Sung 3 (Rcivd 30 Octobr 2008; rvisd 30 April 2009)

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

Discontinuous Galerkin Approximations for Elliptic Problems

Discontinuous Galerkin Approximations for Elliptic Problems Discontinuous Galrkin Approximations for lliptic Problms F. Brzzi, 1,2 G. Manzini, 2 D. Marini, 1,2 P. Pitra, 2 A. Russo 2 1 Dipartimnto di Matmatica Univrsità di Pavia via Frrata 1 27100 Pavia, Italy

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

arxiv: v1 [math.na] 8 Oct 2008

arxiv: v1 [math.na] 8 Oct 2008 DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER XIAOBING FENG AND HAIJUN WU arxiv:080.475v [mat.na] 8 Oct 008 Abstract. Tis papr dvlops and analyzs som intrior pnalty discontinuous

More information

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains Finit lmnt approximation of Diriclt boundary control for lliptic PDEs on two- and tr-dimnsional curvd domains Klaus Dcklnick, Andras Güntr & Mical Hinz Abstract: W considr t variational discrtization of

More information

arxiv: v1 [math.na] 11 Dec 2014

arxiv: v1 [math.na] 11 Dec 2014 DISCRETE KORN S INEQUALITY FOR SHELLS SHENG ZHANG arxiv:14123654v1 [matna] 11 Dc 2014 Abstract W prov Korn s inqualitis for Nagdi and Koitr sll modls dfind on spacs of discontinuous picwis functions Ty

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

arxiv: v1 [math.na] 3 Mar 2016

arxiv: v1 [math.na] 3 Mar 2016 MATHEMATICS OF COMPUTATION Volum 00, Numbr 0, Pags 000 000 S 0025-5718(XX)0000-0 arxiv:1603.01024v1 [math.na] 3 Mar 2016 RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem www.oaw.ac.at Uniformly stabl discontinuous Galrin discrtization and robust itrativ solution mtods for t Brinman problm Q. Hong, J. Kraus RICAM-Rport 2014-36 www.ricam.oaw.ac.at UNIFORMLY STABLE DISCONTINUOUS

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3 ESAIM: MAN 4 008) 375 410 DOI: 10.1051/man:008009 ESAIM: Matmatical Modlling and Numrical Analysis www.saim-man.org MORTAR FINITE ELEMENT DISCRETIZATION OF A MODEL COUPLING DARCY AND STOES EQUATIONS Cristin

More information

H(curl; Ω) : n v = n

H(curl; Ω) : n v = n A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr is concrnd with rsidual typ a postriori rror stimators

More information

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

Rational Approximation for the one-dimensional Bratu Equation

Rational Approximation for the one-dimensional Bratu Equation Intrnational Journal of Enginring & Tchnology IJET-IJES Vol:3 o:05 5 Rational Approximation for th on-dimnsional Bratu Equation Moustafa Aly Soliman Chmical Enginring Dpartmnt, Th British Univrsity in

More information

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM A POSTERIORI ERROR ESTIMATE FOR THE Hdiv CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM WENBIN CHEN AND YANQIU WANG Abstract An Hdiv conforming mixd finit lmnt mtod as bn proposd for

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations

Direct Discontinuous Galerkin Method and Its Variations for Second Order Elliptic Equations DOI 10.1007/s10915-016-0264-z Dirct Discontinuous Galrkin Mthod and Its Variations for Scond Ordr Elliptic Equations Hongying Huang 1,2 Zhng Chn 3 Jin Li 4 Ju Yan 3 Rcivd: 15 Dcmbr 2015 / Rvisd: 10 Jun

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations www.oaw.ac.at A robust multigrid mtod for discontinuous Galrin discrtizations of Stos and linar lasticity quations Q. Hong, J. Kraus, J. Xu, L. Ziatanov RICAM-Rport 2013-19 www.ricam.oaw.ac.at A ROBUST

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

VSMN30 FINITA ELEMENTMETODEN - DUGGA

VSMN30 FINITA ELEMENTMETODEN - DUGGA VSMN3 FINITA ELEMENTMETODEN - DUGGA 1-11-6 kl. 8.-1. Maximum points: 4, Rquird points to pass: Assistanc: CALFEM manual and calculator Problm 1 ( 8p ) 8 7 6 5 y 4 1. m x 1 3 1. m Th isotropic two-dimnsional

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr stablishs a postriori rror

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design MAE4700/5700 Finit Elmnt Analysis for Mchanical and Arospac Dsign Cornll Univrsity, Fall 2009 Nicholas Zabaras Matrials Procss Dsign and Control Laboratory Sibly School of Mchanical and Arospac Enginring

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

1973 AP Calculus AB: Section I

1973 AP Calculus AB: Section I 97 AP Calculus AB: Sction I 9 Minuts No Calculator Not: In this amination, ln dnots th natural logarithm of (that is, logarithm to th bas ).. ( ) d= + C 6 + C + C + C + C. If f ( ) = + + + and ( ), g=

More information

Numerische Mathematik

Numerische Mathematik Numr. Math. 04 6:3 360 DOI 0.007/s00-03-0563-3 Numrisch Mathmatik Discontinuous Galrkin and mimtic finit diffrnc mthods for coupld Stoks Darcy flows on polygonal and polyhdral grids Konstantin Lipnikov

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Space-Time Discontinuous Galerkin Method for Maxwell s Equations

Space-Time Discontinuous Galerkin Method for Maxwell s Equations Commun. Comput. Pys. doi: 0.4208/cicp.23042.2722a Vol. 4, No. 4, pp. 96-939 Octobr 203 Spac-Tim Discontinuous Galrkin Mtod for Maxwll s Equations Ziqing Xi,2, Bo Wang 3,4, and Zimin Zang 5,6 Scool of Matmatics

More information

A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR POISSON EQUATION. We consider the Cauchy problem for Poisson equation

A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR POISSON EQUATION. We consider the Cauchy problem for Poisson equation INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 14, Numbr 4-5, Pags 591 603 c 2017 Institut for Scintific Computing and Information A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 16, Numbr 1, Pags 49 62 c 2019 Institut for Scintific Computing and Information RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06 Cas Study Qustion. A 3 yar old, 5 kg patint was brougt in for surgry and was givn a /kg iv bolus injction of a muscl rlaxant. T plasma concntrations wr masurd post injction and notd in t tabl blow: Tim

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ESAIM: MAN Vol. 39, N o 6, 005, pp. 5 47 DOI: 0.05/man:005048 ESAIM: Mathmatical Modlling and Numrical Analysis A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation

Difference -Analytical Method of The One-Dimensional Convection-Diffusion Equation Diffrnc -Analytical Mthod of Th On-Dimnsional Convction-Diffusion Equation Dalabav Umurdin Dpartmnt mathmatic modlling, Univrsity of orld Economy and Diplomacy, Uzbistan Abstract. An analytical diffrncing

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

DG Methods for Elliptic Equations

DG Methods for Elliptic Equations DG Mthods for Elliptic Equations Part I: Introduction A Prsntation in Profssor C-W Shu s DG Sminar Andras löcknr Tabl of contnts Tabl of contnts 1 Sourcs 1 1 Elliptic Equations 1 11

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

AP Calculus BC AP Exam Problems Chapters 1 3

AP Calculus BC AP Exam Problems Chapters 1 3 AP Eam Problms Captrs Prcalculus Rviw. If f is a continuous function dfind for all ral numbrs and if t maimum valu of f() is 5 and t minimum valu of f() is 7, tn wic of t following must b tru? I. T maimum

More information

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand

Online Supplement: Advance Selling in a Supply Chain under Uncertain Supply and Demand Onlin Supplmnt Avanc Slling in a Supply Cain unr Uncrtain Supply an Dman. Proos o Analytical sults Proo o Lmma. Using a = minl 0 ; x g; w can rwrit () as ollows (x ; w ; x ; w ) = a +(m0 w )a +( +" x w

More information

Adrian Lew, Patrizio Neff, Deborah Sulsky, and Michael Ortiz

Adrian Lew, Patrizio Neff, Deborah Sulsky, and Michael Ortiz AMRX Applid Mathmatics Rsarch Xprss 004, No. 3 Optimal V stimats for a Discontinuous Galrkin Mthod for Linar lasticity Adrian Lw, Patrizio Nff, Dborah Sulsky, and Michal Ortiz 1 Introduction Discontinuous

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l

perm4 A cnt 0 for for if A i 1 A i cnt cnt 1 cnt i j. j k. k l. i k. j l. i l h 4D, 4th Rank, Antisytric nsor and th 4D Equivalnt to th Cross Product or Mor Fun with nsors!!! Richard R Shiffan Digital Graphics Assoc 8 Dunkirk Av LA, Ca 95 rrs@isidu his docunt dscribs th four dinsional

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14 Univrsity of Wasinton Dpartmnt of Cmistry Cmistry 453 Wintr Quartr 04 Lctur 0: Transition Stat Tory. ERD: 5.4. Transition Stat Tory Transition Stat Tory (TST) or ctivatd Complx Tory (CT) is a raction mcanism

More information

A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER. 1. Introduction

A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER. 1. Introduction A MULTI-DOMAI SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATIO WITH HIGH WAVE UMBER Lunji Song Scool of Matmatics and Statistics, Lanzou Univrsity, Lanzou 730000, Cina Email: song@lzu.du.cn Jing Zang Scool of

More information

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h For t BWR oprating paramtrs givn blow, comput and plot: a) T clad surfac tmpratur assuming t Jns-Lotts Corrlation b) T clad surfac tmpratur assuming t Tom Corrlation c) T clad surfac tmpratur assuming

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

L ubomír Baňas 1 and Robert Nürnberg Introduction A POSTERIORI ESTIMATES FOR THE CAHN HILLIARD EQUATION WITH OBSTACLE FREE ENERGY

L ubomír Baňas 1 and Robert Nürnberg Introduction A POSTERIORI ESTIMATES FOR THE CAHN HILLIARD EQUATION WITH OBSTACLE FREE ENERGY ESAIM: MAN 43 (009) 1003 106 DOI: 10.1051/man/009015 ESAIM: Mathmatical Modlling and Numrical Analysis www.saim-man.org A POSERIORI ESIMAES FOR HE CAHN HILLIARD EQUAION WIH OBSACLE FREE ENERGY L ubomír

More information