Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems

Size: px
Start display at page:

Download "Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems"

Transcription

1 Convrgnc analysis of a discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of Hlmoltz problms Moamd Amara Laboratoir d Matématiqus Appliqués Univrsité d Pau t ds Pays d l Adour & CNRS-UMR542 BP 55, 6403 Pau cdx, FRANCE Rabia Djllouli Dpartmnt of Matmatics, California Stat Univrsity Nortridg 8 Nordoff Strt, Nortridg, CA , USA Carbl Farat Dpartmnt of Mcanical Enginring & Institut for Computational and Matmatical Enginring Building 500, Mailcod 3035, Stanford Univrsity, Stanford, CA 94305, USA Sptmbr 22, 2008 Abstract W analyz t convrgnc of a discontinuous Galrkin mtod (DGM) wit plan wavs and Lagrang multiplirs tat was rcntly proposd by Farat t al. [3] for solving twodimnsional Hlmoltz problms at rlativly ig wav numbrs. W prov tat t undrlying ybrid variational formulation is wll-posd. W also prsnt various a priori rror stimats tat stablis t convrgnc and ordr of accuracy of t simplst lmnt associatd wit tis mtod. W prov tat, for k (k ) 2 3 sufficintly small, t rlativ rror in t L 2 -norm (rsp. in t H smi-norm) is of ordr k (k ) 4 3 (rsp. of ordr (k ) 2 3 ) for a solution bing in H 5 3 (Ω). In addition, w stablis an a postriori rror stimat tat can b usd as a practical rror indicator wn rfining t partition of t computational domain. y words: acoustic scattring, discontinuous Galrkin, Hlmoltz problms, ybrid finit lmnt, inf sup condition, plan wavs. Corrsponding autor: Rabia.Djllouli@csun.du

2 Introduction T discontinuous nricmnt mtod (DEM) was dvlopd in [, 2] for t solution of multiscal boundary valu problms wit sarp gradints and rapid oscillations. Ts ar problms for wic t standard finit lmnt mtod (FEM) can bcom proibitivly xpnsiv. DEM can b dscribd as a discontinuous Galrkin mtod (DGM) wit Lagrang multiplir dgrs of frdom (dofs), in wic t standard finit lmnt polynomial fild is nricd witin ac lmnt by fr-spac solutions of t omognous partial diffrntial quation to b solvd. Usually, ts ar asily obtaind in analytical form and ar discontinuous across t lmnt intrfacs. T Lagrang multiplir dofs ar introducd at ts intrfacs to nforc a wak continuity of t solution. For t Hlmoltz quation, t nricmnt fild can b constructd wit plan wavs as ts ar fr-spac solutions of tis quation. In [3], it was sown tat for a larg class of Hlmoltz problms, t polynomial fild is not ncssary for capturing fficintly t solution. Hnc, for ts applications, t polynomial fild was droppd and DEM was transformd into a DGM wit plan wav basis functions. Similar xponntial functions wr prviously introducd in t wak lmnt mtod (WEM) [4], t partition of unity mtod (PUM) [5], t ultra wak variational mtod (UWM) [7], and t last-squars mtod (LSM) prsntd in [8], for t solution of t Hlmoltz quation. Howvr, unlik WEM, t DGM proposd in [3] is basd on a variational framwork, and unlik PUM, it is discontinuous. Furtrmor, in contrast to LSM, t continuity of t solution at t intr-lmnt boundaris is nforcd in DEM by Lagrang multiplirs ratr tan pnalty paramtrs, wic incrass t robustnss and accuracy of t undrlying framwork of approximation. In [3], two lowr-ordr rctangular DGM lmnts wit four and igt plan wavs, rspctivly, wr constructd and applid to t solution of two-dimnsional wavguid problms wit 0 kl 00, wr k dnots t wavnumbr and l is a caractristic lngt of t wavguid. T discrtization by ts lmnts of suc Hlmoltz problms was found to rquir fiv to svn tims fwr dofs tan tir discrtization by t standard Q2 lmnt, dpnding on t dsird lvl of accuracy. In [9], tis DGM was xtndd to xtrior Hlmoltz problms and was coupld wit a scond-ordr absorbing boundary condition. A lowr-ordr quadrilatral lmnt wit igt Lagrang multiplir dofs was dsignd and igligtd wit t solution on unstructurd mss of sampl acoustic scattring problms wit 20 kl 40, wr l dnots a caractristic lngt of t scattrr. Tis lmnt was sown to dlivr significant improvmnt ovr t prformanc of t standard and comparabl Q2 lmnt. In [0], two igr-ordr quadrilatral DGM lmnts wit 6 and 32 plan wavs, rspctivly, wr prsntd. T DGM lmnt wit 6 plan wavs as a computational complxity tat is comparabl to tat of t standard Q4 lmnt and was sown numrically to av t sam convrgnc rat wit rspct to t ms siz. Howvr, tis DGM lmnt was also sown numrically in [9] to dlivr t sam lvl of accuracy as Q4 using 6 tims fwr dofs. All of ts prformanc rsults igligt t potntial of t DGM introducd in [3] and xpandd in [9] and [0]. Howvr, no matmatical analysis of tis mtod as bn prformd yt. T objctiv of tis papr is to fill tis gap in t spcific contxt of t two-dimnsional low-ordr lmnt wit four plan wavs in ordr to st tis DGM mtod on a firm tortical basis. T proposd study assums tat t computational domain Ω is a polygonal-sapd domain tat can b partitiond into rctangular lmnts. Not tat t computational domain Ω may av rntrant cornrs, and trfor t considrd acoustic scattrd fild is in H 5 3 (Ω) only. W partition t computational domain into rctangular-sapd lmnts and considr t cas of t so-calld R-4- lmnt, tat is w approximat locally t primal variabl by four plan wavs and t dual variabl by constants 2

3 on t dgs of intrior lmnts. W must point out tat tis study cannot b xtndd at tis tim to igr ordr lmnts bcaus it assums tat t normal drivativ of t primal variabl is constant along t intrior dgs. Tis crucial proprty is valid only in t cas of R-4- lmnt. W prov tat for k (k ) 2 3 small noug, t rlativ rror in t L 2 -norm (rsp. in t H sminorm) is of ordr k (k ) (rsp. (k ) 3 ). W rcall tat in t cas of t standard finit lmnt mtod using P lmnt (s [, 2]), it as bn stablisd tat for k 2 small noug, t rlativ rror in t L 2 -norm (rsp. in t H smi-norm) is of ordr k 3 2 (rsp. k ). Morovr, if w assum tat k is small noug, it as bn stablisd in Rfrnc [2], tat t rlativ rror for bot t L 2 -norm and t H smi-norm ar boundd by k (k ) 2. Howvr, all ts rror stimats av bn stablisd assuming tat t scattrd fild is in H 2 (Ω) wic is not a ralistic assumption for most applications. W must also point out tat, to t bst of our knowldg, no rror stimats av bn drivd yt in t particular cas of Q4 finit lmnt wn applid to Hlmoltz problms. W also driv a postriori rror stimat tat can b usd as a practical rror indicator wn rfining t partition of t computational domain. Tis rror stimat rvals tat t rlativ rror in t L 2 norm dpnds on t rrors in t approximation of t intrior and xtrior boundary conditions as wll as on t jump across t lmnts of t partition. T rmaindr of tis papr is organizd as follows. In Sction, w spcify t notations and assumptions usd in tis papr, stat t formulation of a two-dimnsional acoustic scattring problm in a boundd domain, and prov tat t ybrid problm obtaind by applying t DGM introducd abov to t solution of t focus Hlmoltz problm is wll posd in t sns of Hadamard [3]. Mor spcifically, w introduc Torm to addrss t issus of xistnc, uniqunss, and stability of t DGM formulation. Nxt, w dvot Sction 3 to t analysis of t discrt solution obtaind wit a DGM lmnt wit four plan wavs. Mor spcifically, w rcall in Sction 3.2 t discrt DGM formulation and announc t main rsults of tis papr. Ts ar xistnc and uniqunss rsults, a priori rror stimats tat ar statd in Torm 2, and a postriori stimat tat is statd in Torm 3. T proofs of ts tr sts of fundamntal rsults ar dtaild in Sction 3.3 and Sction 3.4. Finally, Sction 4 concluds tis papr. Prliminaris W considr trougout tis papr t acoustic scattring problm by a sound-ard scattrr [4] formulatd in a boundd domain as follows Find u H (Ω) suc tat (BVP) u + k 2 u = 0 in Ω, n u = n ikx d on Γ, () n u = iku on Σ, wr u is t scattrd fild and Ω is t computational domain. Ω is a boundd polygonal-sapd domain tat can b partitiond into rctangular lmnts. Γ is its intrior boundary and Σ is t xtrior boundary. n is t unitary outward normal vctor to t boundaris Γ and Σ and n is t normal drivativ. k is a positiv numbr rprsnting t wavnumbr. d is a unit vctor 3

4 rprsnting t dirction of t incidnt plan wav. T quation on Γ is t Numann boundary condition tat caractrizs t sound-ard proprty of t scattrr. W must point out tat t intrior Numann boundary condition on Γ and t xtrior condition on Σ ar usd only for simplicity. T rsults prsntd rin apply to all typs of admissibl boundary conditions. In addition, as it is wll-known, on sould us igr ordr local absorbing boundary conditions for solving practical problms. 2 T continuous ybrid variational formulation 2. Nomnclatur and proprtis W us trougout tis papr t following notations and proprtis. 4 is a rctangular-sapd lmnt of Ω and is its boundary. = T j wr T j is t jt dg of wit vrtics (s j, s j+ ), and n j j= its outward unitary normal vctor. j is t lngt of t dg T j and = max j 4 j. (T ) is a rgular triangulation of t computational domain Ω into lmnts i.. ĉ > 0 /, T ; 2 ĉ wr dnots t ara of t lmnt [5]. Not tat (T ) is a quasi-uniform triangulation sinc its lmnts ar rctangls. = max. W also assum tat k π. Tis condition mans tat tr is at last two lmnts pr wavlngt. X is t spac of t primal variabl. X is givn by: X = { v L 2 (Ω); T, v = v H () } H () and is quippd wit t following norm: v X = v 2 X() T 2, v X, wr v X() = ( v 2, + ) v 2 2 0, 0, (rsp., ) is t L 2 -norm (rsp. smi-nom) on t lmnt. 4

5 ,T is t smi-norm in t spac X dfind by: v,t = v 2, T 2, v X. H 2 ( ) is t spac of t tracs of lmnts of H () and H 2 ( ) is t dual spac of H 2 ( ). H 2 ( ) is quippd wit t following norm: λ, = inf w X() = Λ X() (2) 2 w W (λ) wr W (λ) = { w H () ; w = λ } and Λ is t uniqu lmnt in W (λ) satisfying Λ + Λ = 0 a.. in. It follows from t dfinition of t norm X and Eq. (2) tat M is t spac of t dual variabl dfind by: M = µ v 2, v X(), v H (). (3) H 2 ( ) ; λ T, < µ, λ > 2 2, = 0 wr µ = µ and t spac T is givn by: T = λ 2 ( ); T, λ = λ on H T spac M is quippd wit t following norm: µ M = µ 2 2, T 2, µ M wr µ, = sup 2 λ H 2 ( ) < µ, λ > 2 2, < µ, v > 2 = sup 2, (4) λ 2, v H () v X() and <.,. > 2 2, is t duality product btwn H 2 ( ) and H 2 ( ) [6]. M is a subspac of M dfind by: M = µ L 2 ( ); µ = 0 on Ω and T, } µ + µ = 0 on. Trfor, w av M = M L 2 ( ). 5

6 2.2 Formulation and matmatical rsults W adopt t following ybrid-typ variational formulation (VP) for solving t boundary valu problm (BVP). Not tat t VP is quivalnt to BVP as indicatd in Rmark. (VP) Find (u, λ) X M suc tat a(u, v) + b(v, λ) = F (v) v X, b(u, µ) = 0 µ M, wr t bilinar forms a(, ) and b(, ) and t function F ar givn by: a(u, v) = ( ) u v dx k 2 uv dx ik uv dt u, v X, T Σ b(v, µ) = < µ, v > 2 2, (v, µ) X M, F (v) = Γ v n ikx d dt v X. Not tat t bilinar form b(, ) also satisfis b(v, µ) = µ v dt (v, µ) X M. (5) In addition, t bilinar forms a(, ) and b(, ) satisfy t following important proprtis. Proprty T bilinar forms a(.,.) and b(, ) ar continuous on X X and X M rspctivly. Furtrmor, w av: i. a(.,.) satisfis t Gärding inquality in H (Ω) wr R dsignats t ral part. Ra(v, v) + k 2 v 2 0,Ω = v 2,T ; v X (6) ii. T null spac N corrsponding to t bilinar form b(.,.) is givn N = {v X ; b(v, µ) = 0 µ M} = H (Ω) (7) iii. T bilinar form b(.,.) satisfis t so-calld inf-sup condition [22]: b(v, µ) b(φ, µ) µ M, φ X : sup = = µ M (8) v X v X φ X 6

7 Proof of Proprty. W prov only t tird point sinc t proof of Eq. (6) and Eq. (7) is straigtforward. From t continuity of t bilinar form b(.,.) w dduc tat b(v, µ) sup µ M µ M. (9) v X v X Nxt, for a fixd µ M, w considr t function φ X suc tat, for vry T, φ = φ is t uniqu solution of t following variational problm: φ v dx + φ v dx = < µ, v > 2 2, v H (). (0) Hnc, using Eq. (3) and Eq. (0), w av φ 2 X() = < µ, φ > 2 2, µ 2, φ 2, µ 2, φ X(). Tus, w dduc tat φ X() µ 2,, and tn φ X µ M. Morovr, from Eq. (4) and Eq. (0), w av µ 2, φ X(). Trfor, it follows tat φ X = µ M. On t otr and, from Eq. (0) and t dfinition of t bilinar form b(, ), w also av b(φ, µ) = φ 2 X() = φ 2 X = φ X µ M wic concluds t proof of t inf-sup condition givn by Eq. (8). Rmark T problms BVP and VP ar quivalnt in t following sns: i. If t pair (u, λ) is a solution of VP, tn it follows from t scond quation of VP tat u is in H (Ω). Morovr, using t first quation of VP wit tst functions v D(Ω), w dduc tat u is t solution of t first quation of BVP. Last, t us of tst functions v H (Ω) allows to vrify tat u is satisfis t boundary conditions on Γ and Σ. ii. If u is t solution of BVP, tn from t standard rgularity rsults for Laplac s oprator [23] and du to t possibl rntrant cornrs (wit a masur angl of 3π 2 ), it follows tat u H 5 3 (Ω). Tus, n u L 2 ( ) for all T ( n u is vn in H 6 ( )). Tn w st n u on \ Ω, λ = () 0 on Ω. Trfor, t dual variabl λ satisfis () in t L 2 ( ) sns, wic is t classical sns. Having tat in mind, on can multiply BPV by tst functions v X and dduc tat t pair (u, λ) satisfis VP. 7

8 Nxt, w prov tat t variational problm (VP) is wll-posd in t sns of Hadamard [3]. Tis is main rsult of tis sction. It is statd in t following torm. Torm T variational problm (VP) admits a uniqu solution (u, λ) X M. In addition, u blongs to H 5 3 (Ω), and for all θ [0, 5 3 ] tr is a positiv constant C (C dpnds on Ω and θ only) suc tat u θ,ω C ( + k) θ. T proof of tis torm is basd on t following intrmdiat stability rsult: Lmma Lt f b in L 2 (Ω). Tn, t following boundary valu problm U + k 2 U = f in Ω, n U = 0 on Γ, n U = ik U on Σ (2) as on and only on solution U in H 5 3 (Ω). Morovr, for all θ [0, 5 3 ] tr is a positiv constant C (C dpnds on Ω and θ only) suc tat U θ,ω C ( + k) θ f 0,Ω. (3) Proof of Lmma. First, obsrv tat t variational formulation corrsponding to t boundary valu problm (2) is givn by Find U H (Ω) suc tat (4) a(u, v) = f v dx v H (Ω). Ω From Eq. (6), it follows tat t bilinar form a(.,.) satisfis t Frdolm altrnativ on H (Ω). Hnc, t uniqunss nsurs t xistnc of t solution U in H (Ω). Trfor, w nd only to prov t uniqunss of t solution of t boundary valu problm (2). Lt w b t solution of t corrsponding omognous boundary valu problm. T function w satisfis a(w, w) = 0 tn w = 0 on Σ and w dduc tat n w = 0 on Γ and w = n w = 0 on Σ. Trfor, using t continuation torm [7, 8], w obtain tat w = 0 in Ω. From t standard rgularity rsults for scond-ordr lliptic boundary valu problms [23] and du to t possibl rntrant cornrs ( wit a masur angl of 3π 2 ), it follows tat t solution of 8

9 problm (2) satisfis U H 5 3 (Ω), and tr is a positiv constant C (C dpnds on Ω only) suc tat: ( ) U 5 3,Ω C U 3,Ω + nu 6, Ω. (5) Morovr, using t rsults stablisd in Rfrncs [9] and [20], w dduc t xistnc of a positiv constant C (C dpnds on Ω only) suc tat: U 0,Ω C + k f 0,Ω and U,Ω C f 0,Ω. (6) Nxt, w stablis t stimat (3). To do tis, w will us t spac intrpolation rsults in Rfrnc [2]. First, using boundary conditions in t boundary valu problm (2), w dduc tat tr is a positiv constant C (C dpnds on Ω only) suc tat: n U 6, Ω = nu 6,Σ = k U 6,Σ C k U 2 3,Ω. Trfor, it follows from t spac intrpolation rsults in [2] tat tr is a positiv constant C (C dpnds on Ω only) suc tat: n U 6, Ω C k U 3 0,Ω U 2 3,Ω. Finally, it follows from Eq. (6) tat tr xists a positiv constant C (C dpnds on Ω only) suc tat: n U 6, Ω C ( + k) 2 3 f 0,Ω (7) Furtrmor, from t first quation of t boundary valu problm (2), w dduc tat U 0,Ω k 2 U 0,Ω + f 0,Ω. Hnc, it follows from Eq. (6) tat tr is a positiv C (C dpnds on Ω only) suc tat U 0,Ω C ( + k) f 0,Ω In addition, from t norms proprtis and Eq. (6), tr is a positiv C (C dpnds on Ω only) suc tat U,Ω U,Ω U,Ω C f 0,Ω. Consquntly, it follows from ts quations and t intrpolation spac rsults torm (s [2]) tat tr is a positiv constant C (C dpnds on t domain Ω only) suc tat U 3,Ω C ( + k) 2 3 f 0,Ω (8) Estimat (3) is tn a dirct consqunc of Eq. (5), Eq. (7), and Eq. (8). Proof of Torm. Sinc H (Ω) is t null spac of t bilinar form b(.,.) (s Eq. (7)), t VP is rducd to t variational problm a(u, v) = F (v) v H (Ω) From Eq. (6), it follows tat t bilinar form a(.,.) satisfis t Frdolm altrnativ on H (Ω). Hnc, t uniqunss nsurs t xistnc of t solution u in H (Ω). On t otr and, t uniqunss rsults radily from t solution of t boundary valu problm (2). Trfor, t 9

10 solution u of t rducd variational problm in t null spac H (Ω) of t bilinar form b(.,.) xists and is uniqu. Trfor, bot xistnc and uniqunss of t solution of t complt variational problm VP ar standard consquncs (For xampl, s Rfrnc [22]) of t inf-sup condition givn by Eq. (8). To prov t stability stimats, w first obsrv tat t pair (u, λ) solution of t variational formulation (VP) satisfis t following mixd boundary valu problm: and T, w av Consquntly, if w st wr φ D(Ω) satisfis u + k 2 u = 0 in Ω, n u = n ikx d on Γ, n u = iku on Σ. n u on \ Ω, λ = 0 on Ω. U = u + ikx d φ (9) φ = on Γ, n φ = 0 on Γ, φ = n φ = 0 on Σ, tn, it is asy to vrify tat U is t uniqu solution of boundary valu problm (2) wit t rigt and-sid f givn by f = (2ik d φ + φ) ikx d and tr is a positiv constant C (C dpnds on Ω only) suc tat f 0,Ω C ( + k). Trfor, t proof of Torm s stimat is an immdiat consqunc of stimat (3) in Lmma wic concluds t proof of Torm. 3 T discrt formulation 3. Assumptions, notations, and proprtis W adopt trougout tis sction t following notations and proprtis. T, φ j = ik n j (x s j ) ; j 4. X is t discrt spac for t primal variabl. X is givn by: X = { v X; T, v X () } 0

11 wr X () = v H () ; v = 4 αj φ j wr αj C Not tat X X, and trfor X is also quippd wit t norm. X. M is t discrt spac of t dual variabl. M is dfind as follows: { } M = µ M ; T and Tj : µ j = µ T C, j 4 j ( ) For vry T, T matrix B = Blj rprsnts t lmntary matrix corrsponding to t bilinar form b(, ). Hnc, t ntris of t matrix B ar givn l,j 4 by: B lj = l T l j= φ j dt, l, j 4. (20) Ĉ dsignats a gnric positiv constant. Ĉ is indpndnt of k, Ω, and t triangulation T. For a givn T and v H (), w av t following two classical inqualitis [5]: v 0, Ĉ( v 2 0, + v 2,) 2, (2) v v dx 0, Ĉ v,. (22) In addition, it follows from combining Eq. (2) (wn applid to v v dx) and Eq. (22) tat: v v dx 0, Ĉ 2 v,. (23) 3.2 Discrt formulation and announcmnt of t main rsults T discrt variational problm (DVP) corrsponding to t variational formulation (VP) can b formulatd as follows: Find (u, λ ) X M suc tat (DVP) a(u, v ) + b(v, λ ) = F (v ) v X, (24) b(u, µ ) = 0 µ M. T nxt two torms summariz t main rsults of tis sction.

12 Torm 2 T discrt variational problm (DVP) admits a uniqu solution (u, λ ) X M. Morovr, for 0 > 0 suc tat k ( + k) is sufficintly small and k 0 π, tr is a positiv constant C (C dpnds on Ω only) suc tat for all 0, w av u u 0,Ω C( + k) u u,t + λ λ M C( + k) wr (u, λ) is t solution of t continuous variational problm VP(5). (25) Torm 3 Lt u b t solution of t continuous variational problm VP(5) and u b t solution of t discrt variational problm (DVP). W assum tat k π, tn tr xists a constant C > 0 (C dpnds on Ω only) suc tat ( u u 0,Ω Ĉ ( Σ n u iku 2 0,) 2 + ( n u + n ikx d 2 0,) 2 + ( Γ intrior [u ] 2 0,) 2 wr is an dg of T, [u ] is t jump of u across t dg and is t lngt of. ) (26) Rmark 2 W must point out tat it as bn rportd in [, 2] tat for ig frquncy rgim, t us of P finit lmnt mtod lads to t following stimats: u u,ω C k 2 and u u 0,Ω C k 3 2 wn k 2 is small noug. Ts stimats wr drivd assuming tat u H 2 (Ω) wic is not owvr valid for most problms. T a postriori stimat givn by Eq. (26) is a practical tool for a ms adaptiv stratgy. Tis stimat rvals tat t L 2 rror dpnds on ow wll t jump of t primal variabl as wll as t intrior and xtrior boundary conditions ar approximatd at t lmnt lvl. In ordr to prov Torm 2 and Torm 3, w nd first to stablis intrmdiat intrpolation rsults. Tis is accomplisd in Sction 3.3. Tn, w prov in Sction 3.4. t xistnc and t uniqunss of t solution of t discrt variational problm. Tis rsult is stablisd as a dirct consqunc of Proposition and Proposition 2. Sction is dvotd to t proof of (25) and (26). T rror stimat givn by Eq. (25) is stablisd in four stps, ac stp is formulatd as a lmma (s Lmma 7 to Lmma 0). T a postriori rror stimat givn by Eq. (26) is stablisd at t nd of Sction T nxt rsult, tat can b asily stablisd, sows wy t xistnc and t uniqunss of t solution of (DVP) is not a dirct consqunc of t xistnc and t uniqunss of t solution of (VP). Lmma 2 T null spac N corrsponding to t bilinar form b(, ) dfind by satisfis N = { v X ; N = {v X : b(v, µ ) = 0 ; µ M } v dt = v dt, T } (27) 2

13 Rmark 3 Lmma 2 stats tat N is not a subspac of N = H (Ω) wic is t null spac of t bilinar form b(.,.). Indd, t trac of an lmnt of N on an dg of an lmnt is wakly continuous in t sns givn by (27), wil t trac of an lmnt of N on an dg of an lmnt is continuous almost vrywr. Trfor, t inf-sup condition givn by Eq. (8) and tn Torm ar no longr valid if w simply rplac X and M by X and M rspctivly. 3.3 Matmatical analysis of t intrpolation oprators W stablis in tis sction intrmdiat intrpolation rsults tat summariz t main proprtis of t projction oprator Π from X onto X and t projction oprator P from M onto M. Ts rsults ar obtaind in t cas of a rctangular-sapd partition of t computational domain Ω Intrpolation oprator in X Lmma 3 For a fixd T, w av t following two proprtis: i. T normal drivativ n φ j is constant on vry dg T l ( l, j 4). ii. If k π tn t matrix B is invrtibl and tr is a positiv constant Ĉ suc tat (B ) 2 Ĉ k 2 2. (28) Proof of Lmma 3. It follows from t dfinition of φ j (S Sction 3.) tat n φ j = ik n j n l φ j on T l ( l, j 4). Trfor, sinc is a rctangular-sapd lmnt, a simpl calculation sows tat n φ j = ik on T j, n φ j = ik on T j+2 and n φ j = 0 on T j+ T j+3. In addition, it follows from t dfinition of t lmntary matrix B (S Eq. (20)) tat B = b a 2 b b 2 b 2 a a 2 b b b 2 a b 2 wr a j = ik j and b j = ik j ik, j 4. j W st = ( + a )( + a 2 ) 4b b 2. Tn, it is asy to vrify tat 0 for k π (wic is in 3

14 fact a sufficint but not ncssary condition). Tis nsurs tat t matrix B is invrtibl, and w av +a + a 2 2 b +a a 2 2 b [B ] = 2 b 2 +a 2 + a 2 b 2 +a 2 a 2 +a a 2 2 b +a + a 2 2 b 2 b 2 +a 2 a 2 b 2 +a 2 Finally, on can vrify tat tr is a positiv constant Ĉ and k suc tat a [B ] 2 Ĉ k 2 2. Nxt, w introduc t squnc of linar oprators (π ) T dfind as follows: π : H () C 4 v π v wr (π v ) j = j T j v dt, j 4. (29) Tn, it follows from Eq.(2) tat, for any indpndnt vctorial norm. in C 4, tr is a positiv constant Ĉ suc tat In addition, w av π v Ĉ v X(), v H (). (30) 4 v X (), v = αj φ j wr αj = ([B ] π v ) j, j 4. (3) j= T nxt rsults stats tat, for a givn T, t st of dgrs of frdom associatd to t planar wavs (φ j )4 j= is unisolvnt. Lmma 4 For a givn T and for any v X (), w av t following quivalnc: ( ) v dt = 0, l 4 ( v = 0 on ) T l Proof of Lmma 4. Using Eq. (29) and Eq. (3), it follows tat for a givn T, w av v dt = 0, l 4 π v = 0 v = 0 T l 4

15 wic provs Lmma 4. Consquntly, on can construct a squnc of local linar oprator (Π ) T Π : H () X () v Π v as follows: wit T j v dt = T j Π v dt, j 4. (32) Nxt, w stat tr proprtis of t oprator Π. Ts proprtis ar immdiat consquncs of t dfinition of Π, t inqualitis (2)-(22), proprty (32) of t oprator Π, and t caractrization of lmnts of X () wit t lmntary matrix B (s Eq. (3)). Not tat T scond idntity of (33) is obtaind by Grn s formula using t rctangular sap of. Proprty 2 T oprator Π satisfis t following tr proprtis: i. T and v H (), w av (v Π v ) dt = 0, (v Π v ) dx = 0. (33) ii. Tr is a positiv constant Ĉ suc tat T, v Π v 0, Ĉ 2 v Π v,, v H (). (34) iii. For a givn v H (), w av π v = π o Π v and Π v = 4 αj φ j wit αj = ([B ] π v ) j. (35) j= Proof of Proprty 2. W prov only t scond proprty sinc t two otrs ar immdiat. Using Eq. (33) and t dfinition of t norm. 0,, w av v Π v 0, = v Π v (v Π v ) dt 0, W tn conclud using Eq. (23). inf β C v Π v β 0, v Π v (v Π v ) dt 0,. In t nxt two lmmas, w stablis a priori stimats on t oprator Π. 5

16 Lmma 5 Assum k π. Tn, tr is a positiv constant Ĉ suc tat T and v H (), w av v Π v 0, Ĉ v Π v, (36) k Π v 0, + Π v X() Ĉ v X() (37) Proof of Lmma 5. W stablis t stimat givn by Eq. (36) using Aubin-Nitsc argumnt [24, 25, 26]. Mor spcifically, considr t following auxiliary boundary valu problm Find ϕ H0 () suc tat ϕ = v Π v on. Sinc is a rctangular-sapd lmnt, tn ϕ is in fact in H 2 () H0 () and w av It follows tat v Π v 2 0, = Using Eq. (33), w dduc tat ( v Π v ) ϕ dx = Tn, ϕ 2, = ϕ 0, = v Π v 0,. ( v Π v ) ( ϕ dx v Π v ) n ϕ dt ( v Π v ) ( ϕ ) ϕ dx ( v Π v ) ϕ dx v Π v, ϕ It follows from Eq. (22), tat tr is a positiv constant Ĉ suc tat ( v Π v ) ϕ dx Ĉ v Π v, ϕ 2, Morovr, using Eq. (32) w obtain tat ( v Π v ) n ϕ dt = ϕ dx 0,. ( v Π v ) ( ϕ ) ϕ dx Hnc, w av ( v Π v ) n ϕ dt v Π v 0, ϕ dx. n dt ϕ dx 0, Finally, using t inquality (23) and Eq. (34), it follows tat tr is positiv constant Ĉ suc tat ( v Π v ) n ϕ dt Ĉ v Π v, ϕ 2, 6

17 Trfor, Eq. (36) rsults from : v Π v 2 0, Ĉ v Π v, ϕ 2, = Ĉ v Π v, v Π v 0,. Nxt, w stablis t stimat givn by Eq. (37). To do tis, w first not tat it follows from Eq. (35) tat 4 v H (), Π v αj φ j, wr. is any norm in X (). Hnc, using Eq. (3), Eq. (30), and Eq. (28), tr is a positiv constant Ĉ suc tat j= v H (), Π v Ĉ k 2 2 v X() max j 4 φ j. On t otr and, it is asy to vrify tat φ j 0, and φ j, k. Consquntly, tr is a positiv constant Ĉ suc tat Π v 0, Furtrmor, using Eq. (36), w dduc tat Tus, Ĉ k 2 v X() and Π v, Ĉ v k X(). v Π v 0, Ĉ( v, + Π v, ) Ĉ( v, + C k v X() ) k v Π v 0, Ĉ ( k v, + v X() ) and trfor, using t dfinition of t norm X(), it follows tat k Π v 0, Ĉ v X() wic concluds t proof of t first part of Eq. (37). Finally, w stablis t scond part of t stimat givn by Eq. (37). To do tis, w obsrv tat v H (), w av (v Π v ). v dx + (v Π v ) Π v dx, v Π v 2, = = (v Π v ). v dx k 2 (v Π v )Π v dx, v Π v, v, +k 2 v Π v 0, Π v 0,. Not tat tr is no boundary trms in t prvious qualitis bcaus of Lmma 3 and Eq. (32). Using again Eq. (36), w dduc t xistnc of a positiv constant Ĉ suc tat v Π v, v, + Ĉk2 Π v 0, 7

18 Trfor, using t first part of Eq. (37), w dduc tat v Π v, v, + Ĉk v X() Consquntly, tr is a positiv constant ĉ suc tat Π v, 2 v, + Ĉk v X() ĉ v X() Morovr, using Eq. (36), w dduc tat tr is a positiv constant Ĉ suc tat Π v 0, v 0, + Ĉ v Π v, and tus, Π v 0, Ĉ v X() wic concluds t proof of Eq. (37). Lmma 6 Assum k π. Tn for vry s [0, ], tr is a positiv constant all T, w av Ĉ suc tat for v Π v, Ĉ2( s v +s, + k 2 v 0, + k 2 2 v, ), v H +s (). (38) Proof of Lmma 6. First, lt ϕ b in P () wr P () is t spac of t affin polynomial functions. Tn, using first Eq. (33) and t fact tat ϕ is constant in ac triangl, nxt tat functions in X satisfy t omognous Hlmoltz quation in ac triangl, w can writ: ϕ Π ϕ 2, = (ϕ Π ϕ). (ϕ Π ϕ) dx = (ϕ Π ϕ). Π ϕ dx = = From rlation (36), w obtain Morovr, quation (37) givs Hnc, (ϕ Π ϕ). Π ϕ dx (ϕ Π ϕ). n Π ϕ dt (ϕ Π ϕ). Π ϕ dx = k 2 (ϕ Π ϕ).π ϕ dx k 2 ϕ Π ϕ 0, Π ϕ 0,. ϕ Π ϕ 0, Ĉ ϕ Π ϕ, Π ϕ 0, Ĉ( ϕ 0, + ϕ, ). ϕ Π ϕ, Ĉk2 ( ϕ 0, + ϕ, ). On t otr and, it follows from quation (37) tat for v H () and ϕ P (), w av Π (ϕ v ), Ĉ( v ϕ 0, + v ϕ, ) 8

19 and tn v Π v, v ϕ, + ϕ Π ϕ, + Π (ϕ v ), Furtrmor, sinc k π, w dduc tat Ĉ( v ϕ 0, + v ϕ, + k 2 ( ϕ 0, + ϕ, )). v Π v, Ĉ( v ϕ 0, + v ϕ, + k 2 v 0, + k 2 2 v, ). Sinc v H +s () wit s [0, ], w cos ϕ to b t P -polynomial approximation (t Lagrang polynomial intrpolation) of v on if s 0, and ϕ = v dx if s = 0. Trfor, it follows from t standard P intrpolation rsults on (s [5]) tat v Π v, Ĉ(s v +s, + k 2 v 0, + k 2 2 v, ). Nxt, w introduc t global intrpolation linar oprator Π as follows Π : X X wit v Π v (Π v) = Π (v ) X (), T. Proprty 3 T global intrpolation oprator Π : X X satisfis t following four proprtis: i. v H +s (Ω) wit s [0, ], w av v Π v 0,Ω Ĉ(+s v +s,ω + k 2 3 v,ω + k 2 2 v 0,Ω ) (39) v Π v,t Ĉ(s v +s,ω + k 2 2 v,ω + k 2 v 0,Ω ) (40) ii. v H (Ω), Π v N wr N is t null spac of b(.,.). iii. v X and v X, w av a(v Π v, v ) = ik a(v, v Π v) = ik Σ Σ (v Π v) v dt v (v Π v) dt (4) iv. v X and µ M, w av b(v, µ ) = b(π v, µ ) (42) Not tat Eqs. (39) (40) ar immdiat consquncs of Lmma 6, wil t two qualitis givn by Eq. (4) ar obtaind by Grn s formula and using t fact tat t plan wavs ar solutions of t Hlmoltz quation. 9

20 3.3.2 Intrpolation oprator in M W introduc r t projction oprator P for t dual variabl λ. P is dfind as follows: P : M M wr Tn, t oprator P satisfis T, P µ T j = j T, µ M, µ P µ T j µdt = µ dt, j 4. P µdt. (43) 3.4 Proof of Torm 2 W first prov tat t discrt variational problm (DVP) admits a uniqu solution (u, λ ) in X M, and tn w stablis t rror stimat givn by Eq. (25) Existnc and uniqunss First, w prov tat t bilinar form b(, ) satisfis t inf-sup condition [22]. Tis rsult is statd in Proposition. Tn, w prov in Proposition 2 t uniqunss of t solution of t omognous problm corrsponding to t variational problm (DVP). T xistnc and uniqunss of t discrt variational problm (DVP) is tn a dirct consqunc of Proposition and Proposition 2. Proposition Assum k π. Tn, tr is a positiv constant γ indpndnt of k and suc tat b(v, µ ) γ µ M sup µ M µ M. v X v X Proof of Proposition. From Eq. (9), w dduc tat µ M, b(v, µ ) sup µ M v X v X In addition, it follows from Eq. (8) tat µ M, φ X, b(v, µ ) sup = b(φ, µ ) = µ M v X v X φ X 20

21 Trfor, it follows from Eq. (42) tat µ M = b(π φ, µ ) Π φ X Π φ X φ X Sinc k π, it follows from Eq. (37) tat tr is a positiv constant Ĉ suc tat wic concluds t proof of Proposition. µ M Ĉ sup b(v, µ ) v X v X Proposition 2 Assum k π. Tn, t only solution of t following omognous discrt variational problm Find u N suc tat a(u, v ) = 0, v N. is t trivial on. Proof of Proposition 2. Lt u N suc tat a(u, v ) = 0 v N, tn a(u, u ) = 0 wic implis: u = 0 on Σ and k u 0,Ω = u,t. In addition, sinc u X, tn u + k 2 u = 0 in vry T. Trfor, using t intgration by parts, it follows tat: a(u, v ) = v n u dt = 0 v N tn, w also av n u = 0 on Γ Σ and [ n u ] = 0 on T wr [ n u ] = n u + nu is t jump of t normal drivativ of u across. To conclud t proof of tis proposition, w us a discrt continuation rsult. W considr first t following proprty (P): Lt T and Tl and Tm two adjacnt dgs of suc tat n u Tl = n u Tm = u dt = u dt = 0 tn u = 0 in. T l Not tat proprty (P) is asy to stablis sinc u X (a sum of four plan wavs), and trfor u satisfis t Hlmoltz quation at t lmnt lvl. T m Now sinc, tr is at last on lmnt T wit two adjacnt dgs blonging to t boundary Σ, tn using proprty (P) lads to u = 0 in. Tn, w obtain squntially tat u = 0 in all t quadrilatrals blonging to t first layr adjacnt to t boundary Σ. W rpat tis procss on t scond layr of t quadrilatrals and so on, until t boundary Γ is racd, wic provs t uniqunss of t solution u. 2

22 3.4.2 A priori rror stimats In t nxt lmmas, w stablis a priori stimats in ordr to prov t rror stimat (25) givn in Torm 2 btwn t xact solution (u, λ) and t discrt solution (u, λ ). W considr t following notations: κ = ( + k) and z = u Π u. (44) Lmma 7 Tr is a positiv constant variational problm VP(5) satisfis Ĉ indpndnt of k and suc tat t solution λ of t λ P λ M Ĉκ 2 3 ( + k). Proof of Lmma 7. First, rcall tat n u on \ Ω, λ = 0 on Ω. Trfor, using t dfinition of t oprator P along wit t fact t normal unit vctor n is constant on ac dg of, w dduc tat T, w av λ P λ 2 0, = u.n u.n dt 2 0,, intrior, intrior, intrior u u dt 2 0, =, intrior inf u β C β 2 2 0, u u dx 2 0, u u dx 2 0,. Finally, using t classical intrpolation rsults [5], tr is a positiv constant Ĉ suc tat In addition, w av from quation (4) tat T, λ P λ 0, Ĉ 6 u 5,. (45) 3 λ P λ H 2 ( ) = sup v H () (λ P λ)v dt. v X() On t otr and, from quation (43), w dduc tat (λ P λ)vdt = (λ P λ)(v v dx) dt, v H (). 22

23 Hnc, (λ P λ)v dt λ P λ 0, v v dx 0,, v H (). Using t following classical intrpolation rsults [5], it follows tat tr is a positiv constant Ĉ suc tat v v dx 0, Ĉ 2 v, Ĉ 2 v X(). W tn dduc t xistnc of a positiv constant Ĉ suc tat T, λ P λ H 2 ( ) Ĉ 2 λ P λ 0,, µ M. (46) Lmma 7 is t consqunc of quations (45)-(46) and Torm. T nxt lmma can b viwd as a consistncy rsult. Lmma 8 Assum k π. Tn, tr is a positiv constant Ĉ indpndnt of k and suc tat v X and v H (Ω): a(z, v ) + b(v, λ P λ) Ĉ ( + k)κ 2 3 [ κ v,t + v v,t ]. Proof of Lmma 8. W av a(z, v ) = a(u Π u, v ) = a(u Π u, v ) a(u u, v ). Morovr, sinc u satisfis VP, w av a(u, v ) + b(v, λ) = F (v ) and sinc u satisfis DVP, w av a(u, v ) + b(v, λ ) = F (v ) Consquntly, w obtain wic lads to a(u u, v ) = b(v, λ λ ) a(z, v ) + b(v, λ P λ) = a(u Π u, v ) + b(v, λ P λ) Hnc, it follows from quation (4) tat a(u Π u, v ) + b(v, λ P λ) = ik (u Π u)v dt + b(v, λ P λ) v X. (47) Σ 23

24 Nxt, using (32) and following t sam proof of Eq. (45) in Lmma 7, w obtain (u Π u)v dt u Π u v v dt dt Σ Σ u Π u 0, v v dx 0, Σ Hnc, using Eq. (23), it follows tat tr is a positiv constant Ĉ suc tat (u Π u)v dt Ĉ u Π u, v, Σ Tn, it follows from using Torm and Lmma 6, tat tr is a positiv constant Ĉ suc tat (u Π u)v dt Ĉ (κ κ 2 + κ3 ) v,t Σ wic implis (assuming k π) tat (u Π u)v dt Ĉ κ 5 3 v,t. (48) On t otr and, w av v H (Ω): Σ b(v, λ P λ) = = intrior intrior [v ] (λ P λ) dt = intrior (λ P λ).[(v v ) (v v )] dt λ P λ 0, (v v ) [v v ] (λ P λ) dt (v v ) dx 0, Trfor, it follows from using using Eq. (23), tat tr is a positiv constant Ĉ suc tat b(v, λ P λ) Ĉ 2 v v, λ P λ 0, Hnc, from Eq. (45) and Torm, w obtain tat tr is a positiv constant Ĉ suc tat b(v, λ P λ) Ĉ κ 2 3 ( + k) v v,t (49) W conclud t proof of Lmma 8 by substituting Eq. (48) and Eq. (49) into Eq. (47). 24

25 Rmark 4 W dduc from Lmma 8 tat, wn k π, tr is a positiv constant Ĉ suc tat v N and v H (Ω), a(z, v ) Ĉ ( + k) κ 2 3 [ κ v,t + v v,t ]. (50) Lmma 9 Assum k π. Tn, tr is a positiv constant C (C dpnds on Ω only) suc tat, z 0,Ω C κ 2 3 [( + k)κ z,t ] (5) Proof of Lmma 9. First obsrv tat z blongs to N and lt φ b t solution of t following boundary valu problm (s Lmma ): and φ k 2 φ = z in Ω, n φ = 0 on Γ, n φ = ik φ on Σ. Hnc, it follows from Lmma tat φ H 5 3 (Ω) and (s Eq. (3)) tr is constant C > 0 (C dpnds on Ω only) suc tat, for vry s [0, 5 3 ], w av In addition, w av φ s,ω C ( + k) s z 0,Ω. (52) z 2 0,Ω = a(z, φ) intrior [z ] n φ dt. (53) Eq. (53) rsults from multiplying t boundary valu problm introducd in Lmma 9, intgrating by parts on Ω, and using t dfinition of t bilinar form a. T scond trm of tis quality is du to t discontinuity of z along t intrior dgs. Rcall tat t jump [φ] along is givn by [φ] = φ φ. On t otr and, w av a(z, φ) a(z, Π φ) + a(z, φ Π φ). It follows from Eq. (4) tat a(z, φ) a(z, Π φ) + k Σ z (φ Π φ) dt. (54) Sinc Π φ N (s proprty ii in Proprty 3), tn it follows from Rmark 4 tat tr is a positiv constant Ĉ suc tat a(z, Π φ) Ĉ ( + k) κ 2 3 [κ Π φ,t + φ Π φ,t ]. Morovr, it follows from Lmma 6, tat tr is a positiv constant Ĉ suc tat } φ Π φ,t { Ĉ 2 3 φ 53,Ω + k2 φ 0,Ω + k 2 2 φ,ω tn using rlation (52) and t assumption k π, w obtain φ Π φ,t Ĉκ 2 3 z 0,Ω and Π φ,t Ĉ z 0,Ω. 25

26 W obtain tn: a(z, Π φ) Ĉ ( + k)κ 4 3 z 0,Ω. For t scond part of Eq. (54), w av z (φ Π φ) dt Ĉ φ Π φ,t z,t Ĉκ 2 3 z,t z 0,Ω. Σ Not tat t prvious inquality was obtaind using t sam mtodology to prov Lmma 5. Hnc, w first, w us Eq. (32) wn w add t constant ( z dt) to z. Tn, w apply Caucy-Scwartz along wit inqualitis (2) and ( 23). Finally, it follows tat tr is a positiv constant C (C dpnds on Ω only) suc tat Nxt, w stimat t trm and a(z, φ) C [( + k)κ κ 5 3 z,t ] z 0,Ω. (55) intrior z dt = (z z ) nφ dt = [z ] n φ dt in Eq. (53). First, obsrv tat z dt, and T + ( ) ( ) z z dt φ φ dx n dt ( ) ( z z dt φ ) φ dx n dt Trfor, [z ] n φ dt intrior z z dt φ φ dx dt. Hnc, it follows tat intrior [z ] n φ dt Ĉ 2 3 z,t φ 5 3,Ω Cκ 2 3 z,t z 0,Ω. (56) W conclud t proof of Lmma 9 by substituting Eq. (55) and Eq.(56) into Eq.(53). Lmma 0 Lt 0 b a positiv numbr suc tat k ( + k) 2 3 is sufficintly small. Tn, tr is a positiv constant C (C dpnds on Ω only) suc tat for all 0, w av u Π u 0,Ω Ĉ( + k)κ 4 3 and u Π u,t Ĉ( + k)κ

27 Proof of Lmma 0. It follows from t dfinition of t bilinar form a(.,.) tat a(z, z ) 2 = z 2,T k 2 z 2 2 0,Ω + k 2 z 4 0,Γ Morovr, using Rmark 4 wit v = z and v = 0 along wit t fact tat k π w obtain Trfor, w dduc tat a(z, z ) Ĉ ( + k)κ 2 3 z,t. z 2,T k 2 z 2 0,Ω + Ĉ ( + k)κ 2 3 z,t. Tn, using Eq. (5) along wit Young s inquality, w obtain Consquntly, w av z 2,T C[k 2 ( + k) 2 κ k 2 κ 4 3 z 2,T + ( + k)κ 2 3 z,t ]. z 2,T C[k 2 ( + k) 2 κ k 2 κ 4 3 z 2,T + ( + k) 2 κ 4 3 ]. Lt us considr 0 suc tat Ck 2 ( + k) tn for vry 0, w av Ck 2 κ W dduc tat z 2,T C[k 2 ( + k) 2 κ ( + k) 2 κ 4 3 ] tn z,t Ĉ ( + k)κ 2 3. In addition, w obtain from using Eq. (5), tat wic concluds t proof of Lmma 0. z 0,Ω Ĉ( + k)κ 4 3. Proof of t a priori rror stimat of Torm 2. W ar now rady to prov t stimat givn by Eq. (25). From Lmma 6 and Lmma 0, it follows tat tr is a positiv constant C (C dpnds on Ω only) suc tat and Hnc, w dduc tat u u 0,Ω u Π u 0,Ω + u Π u 0,Ω C [κ ( + k)κ 4 3 ] u u,t u Π u,t + u Π u,t C [κ kκ + ( + k)κ 2 3 ]. u u 0,Ω C ( + k)κ 4 3 and u u,t C ( + k)κ 2 3. Morovr, w dduc from Lmma 8 tat tr is a positiv constant Ĉ suc tat b(v, λ P λ) Ĉ ( + k)κ 2 3 v,t + a(z, v ) v X. 27

28 On t otr and, it follows from t dfinition of t bilinar form a(.,.) tat a(z, v ) z,t v,t + k 2 z.v dx + k z 0,Σ v 0,Σ v X. Ω Trfor, using t dfinition of t norm X and invrs inquality rsults, w dduc tat tr is a positiv constant Ĉ suc tat a(z, v ) ( z 2,T + k 2 2 z 2 ) 2 0,Ω v X + Ĉ k z 0,Σ 2 v X v X. In addition, it follows from t dfinition of t bilinar form a(.,.) and from using Eq. (50) wit v = z and v = 0 (s Rmark 4) tat tr is a positiv constant Ĉ suc tat k z 2 0,Σ a(z, z ) Ĉ ( + k)κ 2 3 z,t Trfor, using Lmma 0, w dduc tat tr is a positiv constant C (C dpnds on Ω only) suc tat k 2 z 0,Σ ( + k)κ 2 3. Hnc, w dduc tat tr is a positiv constant C (C dpnds on Ω only) suc tat a(z, v ) C ( + k)κ 2 3 v X v X. Consquntly, it follows Proposition tat tr is a positiv constant C (C dpnds on Ω only) suc tat λ P λ M C ( + k)κ 2 3. Finally, w dduc from Lmma 7 tat tr is a positiv constant C (C dpnds on Ω only) suc tat λ λ M C ( + k)κ 2 3. wic concluds t proof of t rror stimat of Torm 2. Proof of t a postriori rror stimat (26) in Torm 3. Lt φ b t solution of t boundary valu problm (2) (s Lmma ) wit f = u u. Tn tis solution φ blongs to H 5 3 (Ω) and for vry s [0, 5 3 ], tr xists a constant C > 0 dpnding only on s and Ω suc tat φ s,ω C( + k) s u u 0,Ω. Using intgration by parts, on can asily vrify tat u u 2 0,Ω = + intrior On t otr and, w also av φ( n u ik u ) dt + [ n u ]φ dt [u ] n φ dt Σ a(u, Π φ) = intrior Γ Γ n ikx d Π φ dt φ( n u + n ikx d ) dt 28

29 Trfor, using intgration by parts along wit t fact tat u satisfis t Hlmoltz quation at t lmnt lvl, w av n u Π φ dt + ( n u iku ) Π φ dt + [ n u ] Π φ dt Γ Σ = Γ n ikx d Π φ dt intrior Consquntly, using t fact tat for vry intrior dg, w av [ nu ] φ dt = [ nu ] Π φ dt, w dduc tat u u 2 0,Ω = ( φ Π φ ) ( n u ik u ) dt T Σ + ( φ Π φ ) ( n u + n ikx d ) dt (57) [u ] n φ dt Γ intrior Nxt, w stimat ac intgral in t rigt-and sid of Eq. (57) to dduc t a postriori stimat givn by Eq. (26) in Torm 3. ( First, w stimat: I = φ Π φ ) ( n u ik u ) dt T Σ. W av ( ) ( ) ( ) I n u ik u 2 0, φ Π φ 2 0, Ĉ n u ik u 2 0, φ Π φ,t. Σ Σ Σ Trfor, assuming tat k π, it follows from t proprtis of t oprator Π (s Eq. (40) in Proprty 3) tat tr is a positiv constant Ĉ suc tat: ( ) 2 ) I Ĉ n u ik u 2 0, ( 2 3 φ 53,Ω + φ,ω + k φ 0,Ω. Σ W dduc from t a priori stimat on φ s,ω tat tr is a positiv constant Ĉ suc tat: ( I Ĉ n u ik u 2 0, Σ ) 2 u u 0,Ω. Similarly, tr is also a positiv constant Ĉ2 suc tat: ( I 2 = φ Π φ ) ( ( n u + n ikx d ) dt Γ Ĉ n u + n ikx d 2 0, Tn, tr is tr is a positiv constant dnotd again by Ĉ2 suc tat ( ) 2 I 2 Ĉ2 n u + n ikx d 2 0, u u 0,Ω. Γ 29 Γ ) 2 φ Π φ,t

30 Last, w stimat: I 3 = intrior [u ] n φ dt. Considr an intrior dg = () (), tn [u ] n φ dt = [u ] φ.n dt = [u ] ( φ β).n dt β C 2. W tn obtain [u ] n φ dt [u ] 0, inf φ β 0,. β C 2 On t otr and, sinc tr is a positiv constant Ĉ suc tat it follows tat I 3 Ĉ intrior inf β C 2 φ β 0, Ĉ 6 φ 5 3,(), 6 [u ] 0, φ 5 3,() Ĉ Tn, tr is a positiv constant Ĉ3 suc tat ( intrior [u ] 2 0, ) φ 5 3,Ω. I 3 Ĉ3 ( intrior [u ] 2 0, ) 2 u u 0,Ω. 4 Conclusion A discontinuous Galrkin mtod (DGM) wit plan wavs and Lagrang multiplirs was rcntly proposd by Farat t al. [3] for solving two-dimnsional Hlmoltz problms at rlativly ig wav numbrs. In many prvious paprs, tis mtod was sown numrically to offr a significant potntial for wav propagation problms including acoustic scattring. Howvr, it lackd a formal convrgnc tory. Tis papr is a first stp toward filling tis gap. Indd, it is provd tat t ybrid variational formulation undrlying tis DGM is wll-posd in t sns of Hadamard. In addition, a priori rror stimats provd for t so-calld R-4- lmnt, tat is t simplst two-dimnsional lmnt associatd wit tis discrtization mtod, stablis t convrgnc of tis lmnt and rval its formal ordr of accuracy. Furtrmor, a postriori rror stimat was drivd and tat can b usd as a practical rror indicator wn rfining t partition of t computational domain. Higr ordr lmnts will b analyzd in futur rsarc. Acknowldgmnt T autors ar gratful to t Rfrs for tir constructiv suggstions and rmarks. T scond and t tird autors acknowldg partial support by t National Scinc Foundation (NSF) undr 30

31 Grant No. DMS , and partial support by t Offic of Naval Rsarc (ONR) undr Grant N Any opinions, findings, and conclusions or rcommndations xprssd in tis matrial ar tos of t autors and do not ncssarily rflct t viws of t NSF or t ONR. 3

32 Rfrncs [] C. Farat, I. Harari, L. P. Franca, T discontinuous nricmnt mtod, Comput. Mts. Appl. Mc. Engrg, 90, (200), pp [2] C. Farat, I. Harari, U. Htmaniuk, T discontinuous nricmnt mtod for multiscal analysis, Comput. Mts. Appl. Mc. Engrg, 92, (2003), pp [3] C. Farat, I. Harari, U. Htmaniuk, A discontinuous Galrkin mtod wit Lagrang multiplirs for t solution of Hlmoltz problms in t mid-frquncy rgim, Comput. Mts. Appl. Mc. Engrg., 92, (2003), pp [4] M. E. Ros, Wak lmnt approximations to lliptic diffrntial quations, Numr. Mat., 24, (975), pp [5] I. Babuška I, J. M. Mlnk, T partition of unity mtod, Intrnat. J. Numr. Mts. Engrg., 40, (997), pp [6] O. Lagrouc, P. Bttss, Sort wav modlling using spcial finit lmnts, J. Comput. Acoust., 8, (2000), pp [7] O. Cssnat, B. Dsprs, Application of an ultra wak variational formulation of lliptic PDEs to t two-dimnsional Hlmoltz problm, SIAM J. Numr. Anal., 35, (998), pp [8] P. Monk, D. Q. Wang, A last-squars mtod for t Hlmoltz quation, Comput. Mts. Appl. Mc. Engrg., 75, (999), pp [9] C. Farat, P. Widmann-Goiran, R. Tzaur, A discontinuous Galrkin mtod wit plan wavs and Lagrang multiplirs for t solution of sort wav xtrior Hlmoltz problms on unstructurd mss, Wav Motion, (in prss). [0] C. Farat, R. Tzaur and P. Widmann-Goiran, Higr-Ordr Extnsions of a Discontinuous Galrkin Mtod for Mid-Frquncy Hlmoltz Problms, Intrnat. J. Numr. Mts. Engrg., 6, (2004), pp [] A. Bayliss, C.I. Goldstin, and E. Turkl, On accuracy conditions for t numrical computations of wavs, Journal of Computational Pysics, 59, (985), pp [2] F. Ilnburg, Finit lmnt analysis of acoustic scattring, Applid Matmatical Scincs 32, Springr-Vrlag, 998. [3] J. Hadamard, Lcturs on Caucy s problm in linar partial diffrntial quations, Nw Havn, Yal Univrsity Prss, 923. [4] D. Colton and R. rss, Invrs acoustic and lctromagntic scattring tory, Applid Matmatical Scincs 93, Springr-Vrlag, 992. [5] P. G. Ciarlt, T finit lmnt mtod for lliptic problms, Nort-Holland, Amstrdam, 978. [6] R. A. Adams, Sobolv spacs, Acadmic Prss, Nw York,

33 [7] L. Hörmandr, T analysis of linar partial diffrntial oprator, Springr-Vrlg, Nw-York, 985. [8] M. E. Taylor, Partial Diffrntial Equations I: Basic tory, Springr-Vrlag, Nw-York, 997. [9] M. Mlnk, On gnralizd finit lmnt mtods, PD tsis, Univrsity of Maryland, 995. [20] U. Htmaniuk, Fictitious domain dcomposition mtods for a class of partially axisymmtric problms: Application to t scattring of acoustic wavs, PD tsis, Univrsity of Colorado at Bouldr, [2] J. L. Lions and E. Magns, Non-omognous Boundary Valu Poblms and Applications,Volum I, Springr-Vrlag, 972. [22] F. Brzzi and M. Fortin, Mixd and ybrid finit lmnt mtods, Springr-Vrlag, 99. [23] P. Grisvard, Elliptic problms in non smoot domains, Pittman dition, 985. [24] J. P. Aubin, Analys fonctionnll appliqué, Prss Univrsitair d Franc, Paris, 987. [25] J. Nitsc, Ein kritrium fur di quasi-optimalitat ds Ritzcn Vrfarns, Numr. Mat., (968), pp [26] J. Ca, Approximation variationnll ds problèms aux limits, Ann. Inst. Fourir, 4, (964), pp

UNIFIED ERROR ANALYSIS

UNIFIED ERROR ANALYSIS UNIFIED ERROR ANALYSIS LONG CHEN CONTENTS 1. Lax Equivalnc Torm 1 2. Abstract Error Analysis 2 3. Application: Finit Diffrnc Mtods 4 4. Application: Finit Elmnt Mtods 4 5. Application: Conforming Discrtization

More information

arxiv: v1 [math.na] 22 Oct 2010

arxiv: v1 [math.na] 22 Oct 2010 arxiv:10104563v1 [matna] 22 Oct 2010 ABSOLUTELY STABLE LOCAL DSCONTNUOUS GALERKN METHODS FOR THE HELMHOLTZ EQUATON WTH LARGE WAVE NUMBER XAOBNG FENG AND YULONG XNG Abstract Two local discontinuous Galrkin

More information

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method

A Weakly Over-Penalized Non-Symmetric Interior Penalty Method Europan Socity of Computational Mthods in Scincs and Enginring (ESCMSE Journal of Numrical Analysis, Industrial and Applid Mathmatics (JNAIAM vol.?, no.?, 2007, pp.?-? ISSN 1790 8140 A Wakly Ovr-Pnalizd

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM

A C 0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM A C 0 INERIOR PENALY MEHOD FOR A FOURH ORDER ELLIPIC SINGULAR PERURBAION PROBLEM SUSANNE C. BRENNER AND MICHAEL NEILAN Abstract. In tis papr, w dvlop a C 0 intrior pnalty mtod for a fourt ordr singular

More information

arxiv: v1 [math.na] 8 Oct 2008

arxiv: v1 [math.na] 8 Oct 2008 DISCONTINUOUS GALERKIN METHODS FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER XIAOBING FENG AND HAIJUN WU arxiv:080.475v [mat.na] 8 Oct 008 Abstract. Tis papr dvlops and analyzs som intrior pnalty discontinuous

More information

Discontinuous Galerkin Approximations for Elliptic Problems

Discontinuous Galerkin Approximations for Elliptic Problems Discontinuous Galrkin Approximations for lliptic Problms F. Brzzi, 1,2 G. Manzini, 2 D. Marini, 1,2 P. Pitra, 2 A. Russo 2 1 Dipartimnto di Matmatica Univrsità di Pavia via Frrata 1 27100 Pavia, Italy

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems

Journal of Computational and Applied Mathematics. An adaptive discontinuous finite volume method for elliptic problems Journal of Computational and Applid Matmatics 235 (2011) 5422 5431 Contnts lists availabl at ScincDirct Journal of Computational and Applid Matmatics journal ompag: www.lsvir.com/locat/cam An adaptiv discontinuous

More information

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A LOCALLY CONSERVATIVE LDG METHOD FOR THE INCOMPRESSIBLE NAVIER-STOES EQUATIONS BERNARDO COCBURN, GUIDO ANSCHAT, AND DOMINI SCHÖTZAU Abstract. In this papr, a nw local discontinuous Galrkin mthod for th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem

Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem www.oaw.ac.at Uniformly stabl discontinuous Galrin discrtization and robust itrativ solution mtods for t Brinman problm Q. Hong, J. Kraus RICAM-Rport 2014-36 www.ricam.oaw.ac.at UNIFORMLY STABLE DISCONTINUOUS

More information

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden

APPROXIMATION THEORY, II ACADEMIC PRfSS. INC. New York San Francioco London. J. T. aden Rprintd trom; APPROXIMATION THORY, II 1976 ACADMIC PRfSS. INC. Nw York San Francioco London \st. I IITBRID FINIT L}ffiNT }ffithods J. T. adn Som nw tchniqus for dtrmining rror stimats for so-calld hybrid

More information

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons

Symmetric Interior penalty discontinuous Galerkin methods for elliptic problems in polygons Symmtric Intrior pnalty discontinuous Galrkin mthods for lliptic problms in polygons F. Müllr and D. Schötzau and Ch. Schwab Rsarch Rport No. 2017-15 March 2017 Sminar für Angwandt Mathmatik Eidgnössisch

More information

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3

Christine Bernardi 1, Tomás Chacón Rebollo 1, 2,Frédéric Hecht 1 and Zoubida Mghazli 3 ESAIM: MAN 4 008) 375 410 DOI: 10.1051/man:008009 ESAIM: Matmatical Modlling and Numrical Analysis www.saim-man.org MORTAR FINITE ELEMENT DISCRETIZATION OF A MODEL COUPLING DARCY AND STOES EQUATIONS Cristin

More information

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations

A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations www.oaw.ac.at A robust multigrid mtod for discontinuous Galrin discrtizations of Stos and linar lasticity quations Q. Hong, J. Kraus, J. Xu, L. Ziatanov RICAM-Rport 2013-19 www.ricam.oaw.ac.at A ROBUST

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS

A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS A UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE VOLUME METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. In tis papr, t autors stablisd a unifid framwork for driving and

More information

1 Isoparametric Concept

1 Isoparametric Concept UNIVERSITY OF CALIFORNIA BERKELEY Dpartmnt of Civil Enginring Spring 06 Structural Enginring, Mchanics and Matrials Profssor: S. Govindj Nots on D isoparamtric lmnts Isoparamtric Concpt Th isoparamtric

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 45, No. 3, pp. 1269 1286 c 2007 Socity for Industrial and Applid Mathmatics NEW FINITE ELEMENT METHODS IN COMPUTATIONAL FLUID DYNAMICS BY H (DIV) ELEMENTS JUNPING WANG AND XIU

More information

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems

Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems Journal of Scintific Computing, Volums and 3, Jun 005 ( 005) DOI: 0.007/s095-004-447-3 Analysis of a Discontinuous Finit Elmnt Mthod for th Coupld Stoks and Darcy Problms Béatric Rivièr Rcivd July 8, 003;

More information

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains

Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains Finit lmnt approximation of Diriclt boundary control for lliptic PDEs on two- and tr-dimnsional curvd domains Klaus Dcklnick, Andras Güntr & Mical Hinz Abstract: W considr t variational discrtization of

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin plate A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin plat Douglas N. Arnold Franco Brzzi L. Donatlla Marini Sptmbr 28, 2003 Abstract W dvlop a family of locking-fr lmnts for th Rissnr Mindlin

More information

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems

A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems Portland Stat Univrsity PDXScolar Matmatics and Statistics Faculty Publications and Prsntations Fariborz Mas Dpartmnt of Matmatics and Statistics 2004 A Caractrization of Hybridizd Mixd Mtods for Scond

More information

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids Discontinuous Galrkin and Mimtic Finit Diffrnc Mthods for Coupld Stoks-Darcy Flows on Polygonal and Polyhdral Grids Konstantin Lipnikov Danail Vassilv Ivan Yotov Abstract W study locally mass consrvativ

More information

An interior penalty method for a two dimensional curl-curl and grad-div problem

An interior penalty method for a two dimensional curl-curl and grad-div problem ANZIAM J. 50 (CTAC2008) pp.c947 C975, 2009 C947 An intrior pnalty mthod for a two dimnsional curl-curl and grad-div problm S. C. Brnnr 1 J. Cui 2 L.-Y. Sung 3 (Rcivd 30 Octobr 2008; rvisd 30 April 2009)

More information

Space-Time Discontinuous Galerkin Method for Maxwell s Equations

Space-Time Discontinuous Galerkin Method for Maxwell s Equations Commun. Comput. Pys. doi: 0.4208/cicp.23042.2722a Vol. 4, No. 4, pp. 96-939 Octobr 203 Spac-Tim Discontinuous Galrkin Mtod for Maxwll s Equations Ziqing Xi,2, Bo Wang 3,4, and Zimin Zang 5,6 Scool of Matmatics

More information

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME

A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME A NEW SIGNATURE PROTOCOL BASED ON RSA AND ELGAMAL SCHEME ABSTRACT J Ettanfoui and O Kadir Laboratory of Matmatics, Cryptograpy and Mcanics, Fstm, Univrsity Hassan II of Casablanca, Morocco In tis papr,

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES C. CHINOSI Dipartimnto di Scinz Tcnologi Avanzat, Univrsità dl Pimont Orintal, Via Bllini 5/G, 5 Alssandria, Italy E-mail: chinosi@mfn.unipmn.it

More information

arxiv: v1 [math.na] 3 Mar 2016

arxiv: v1 [math.na] 3 Mar 2016 MATHEMATICS OF COMPUTATION Volum 00, Numbr 0, Pags 000 000 S 0025-5718(XX)0000-0 arxiv:1603.01024v1 [math.na] 3 Mar 2016 RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING

More information

3-2-1 ANN Architecture

3-2-1 ANN Architecture ARTIFICIAL NEURAL NETWORKS (ANNs) Profssor Tom Fomby Dpartmnt of Economics Soutrn Mtodist Univrsity Marc 008 Artificial Nural Ntworks (raftr ANNs) can b usd for itr prdiction or classification problms.

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

Symmetric Interior Penalty Galerkin Method for Elliptic Problems

Symmetric Interior Penalty Galerkin Method for Elliptic Problems Symmtric Intrior Pnalty Galrkin Mthod for Elliptic Problms Ykatrina Epshtyn and Béatric Rivièr Dpartmnt of Mathmatics, Univrsity of Pittsburgh, 3 Thackray, Pittsburgh, PA 56, U.S.A. Abstract This papr

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

H(curl; Ω) : n v = n

H(curl; Ω) : n v = n A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

Rational Approximation for the one-dimensional Bratu Equation

Rational Approximation for the one-dimensional Bratu Equation Intrnational Journal of Enginring & Tchnology IJET-IJES Vol:3 o:05 5 Rational Approximation for th on-dimnsional Bratu Equation Moustafa Aly Soliman Chmical Enginring Dpartmnt, Th British Univrsity in

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

ETNA Kent State University

ETNA Kent State University Elctronic Transactions on Numrical Analysis Volum 41, pp 262-288, 2014 Copyrigt 2014, Knt Stat Univrsity ISSN 1068-9613 ETNA Knt Stat Univrsity ttp://tnamatkntdu A UNIFIED ANALYSIS OF THREE FINITE ELEMENT

More information

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS

A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS A LOCALLY DIVERGENCE-FREE INTERIOR PENALTY METHOD FOR TWO-DIMENSIONAL CURL-CURL PROBLEMS SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. An intrior pnalty mthod for crtain two-dimnsional curl-curl

More information

A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER. 1. Introduction

A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER. 1. Introduction A MULTI-DOMAI SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATIO WITH HIGH WAVE UMBER Lunji Song Scool of Matmatics and Statistics, Lanzou Univrsity, Lanzou 730000, Cina Email: song@lzu.du.cn Jing Zang Scool of

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

A ROBUST NONCONFORMING H 2 -ELEMENT

A ROBUST NONCONFORMING H 2 -ELEMENT MAHEMAICS OF COMPUAION Volum 70, Numbr 234, Pags 489 505 S 0025-5718(00)01230-8 Articl lctronically publishd on Fbruary 23, 2000 A ROBUS NONCONFORMING H 2 -ELEMEN RYGVE K. NILSSEN, XUE-CHENG AI, AND RAGNAR

More information

Discontinuous Galerkin methods

Discontinuous Galerkin methods ZAMM Z. Angw. Mat. Mc. 83, No. 11, 731 754 2003 / DOI 10.1002/zamm.200310088 Discontinuous Galrkin mtods Plnary lctur prsntd at t 80t Annual GAMM Confrnc, Augsburg, 25 28 Marc 2002 Brnardo Cockburn Univrsity

More information

16. Electromagnetics and vector elements (draft, under construction)

16. Electromagnetics and vector elements (draft, under construction) 16. Elctromagntics (draft)... 1 16.1 Introduction... 1 16.2 Paramtric coordinats... 2 16.3 Edg Basd (Vctor) Finit Elmnts... 4 16.4 Whitny vctor lmnts... 5 16.5 Wak Form... 8 16.6 Vctor lmnt matrics...

More information

Numerische Mathematik

Numerische Mathematik Numr. Math. 04 6:3 360 DOI 0.007/s00-03-0563-3 Numrisch Mathmatik Discontinuous Galrkin and mimtic finit diffrnc mthods for coupld Stoks Darcy flows on polygonal and polyhdral grids Konstantin Lipnikov

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

ME469A Numerical Methods for Fluid Mechanics

ME469A Numerical Methods for Fluid Mechanics ME469A Numrical Mthods for Fluid Mchanics Handout #5 Gianluca Iaccarino Finit Volum Mthods Last tim w introducd th FV mthod as a discrtization tchniqu applid to th intgral form of th govrning quations

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate

A Family of Discontinuous Galerkin Finite Elements for the Reissner Mindlin Plate Journal of Scintific Computing, Volums 22 and 23, Jun 2005 ( 2005) DOI: 10.1007/s10915-004-4134-8 A Family of Discontinuous Galrkin Finit Elmnts for th Rissnr Mindlin Plat Douglas N. Arnold, 1 Franco Brzzi,

More information

A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR POISSON EQUATION. We consider the Cauchy problem for Poisson equation

A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR POISSON EQUATION. We consider the Cauchy problem for Poisson equation INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 14, Numbr 4-5, Pags 591 603 c 2017 Institut for Scintific Computing and Information A SIMPLE FINITE ELEMENT METHOD OF THE CAUCHY PROBLEM FOR

More information

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind

Legendre Wavelets for Systems of Fredholm Integral Equations of the Second Kind World Applid Scincs Journal 9 (9): 8-, ISSN 88-495 IDOSI Publications, Lgndr Wavlts for Systs of Frdhol Intgral Equations of th Scond Kind a,b tb (t)= a, a,b a R, a. J. Biazar and H. Ebrahii Dpartnt of

More information

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM

RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG METHODS FOR A SIMPLIFIED FRICTIONAL CONTACT PROBLEM INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volum 16, Numbr 1, Pags 49 62 c 2019 Institut for Scintific Computing and Information RELIABLE AND EFFICIENT A POSTERIORI ERROR ESTIMATES OF DG

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

L ubomír Baňas 1 and Robert Nürnberg Introduction A POSTERIORI ESTIMATES FOR THE CAHN HILLIARD EQUATION WITH OBSTACLE FREE ENERGY

L ubomír Baňas 1 and Robert Nürnberg Introduction A POSTERIORI ESTIMATES FOR THE CAHN HILLIARD EQUATION WITH OBSTACLE FREE ENERGY ESAIM: MAN 43 (009) 1003 106 DOI: 10.1051/man/009015 ESAIM: Mathmatical Modlling and Numrical Analysis www.saim-man.org A POSERIORI ESIMAES FOR HE CAHN HILLIARD EQUAION WIH OBSACLE FREE ENERGY L ubomír

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

arxiv: v1 [math.na] 11 Dec 2014

arxiv: v1 [math.na] 11 Dec 2014 DISCRETE KORN S INEQUALITY FOR SHELLS SHENG ZHANG arxiv:14123654v1 [matna] 11 Dc 2014 Abstract W prov Korn s inqualitis for Nagdi and Koitr sll modls dfind on spacs of discontinuous picwis functions Ty

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS UNIFIED A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr is concrnd with rsidual typ a postriori rror stimators

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Novi Sad J. Math. Vol. 45, No. 1, 2015, 201-206 ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Mirjana Vuković 1 and Ivana Zubac 2 Ddicatd to Acadmician Bogoljub Stanković

More information

DG Methods for Elliptic Equations

DG Methods for Elliptic Equations DG Mthods for Elliptic Equations Part I: Introduction A Prsntation in Profssor C-W Shu s DG Sminar Andras löcknr Tabl of contnts Tabl of contnts 1 Sourcs 1 1 Elliptic Equations 1 11

More information

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator

Properties of Phase Space Wavefunctions and Eigenvalue Equation of Momentum Dispersion Operator Proprtis of Phas Spac Wavfunctions and Eignvalu Equation of Momntum Disprsion Oprator Ravo Tokiniaina Ranaivoson 1, Raolina Andriambololona 2, Hanitriarivo Rakotoson 3 raolinasp@yahoo.fr 1 ;jacqulinraolina@hotmail.com

More information

Symmetric centrosymmetric matrix vector multiplication

Symmetric centrosymmetric matrix vector multiplication Linar Algbra and its Applications 320 (2000) 193 198 www.lsvir.com/locat/laa Symmtric cntrosymmtric matrix vctor multiplication A. Mlman 1 Dpartmnt of Mathmatics, Univrsity of San Francisco, San Francisco,

More information

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ESAIM: MAN Vol. 39, N o 6, 005, pp. 5 47 DOI: 0.05/man:005048 ESAIM: Mathmatical Modlling and Numrical Analysis A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE TRANSIENT INCOMPRESSIBLE NAVIER-STOKES

More information

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS

A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS A POSTERIORI ERROR ESTIMATION FOR AN INTERIOR PENALTY TYPE METHOD EMPLOYING H(DIV) ELEMENTS FOR THE STOKES EQUATIONS JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This papr stablishs a postriori rror

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Physics 43 HW #9 Chapter 40 Key

Physics 43 HW #9 Chapter 40 Key Pysics 43 HW #9 Captr 4 Ky Captr 4 1 Aftr many ours of dilignt rsarc, you obtain t following data on t potolctric ffct for a crtain matrial: Wavlngt of Ligt (nm) Stopping Potntial (V) 36 3 4 14 31 a) Plot

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1

Ewald s Method Revisited: Rapidly Convergent Series Representations of Certain Green s Functions. Vassilis G. Papanicolaou 1 wald s Mthod Rvisitd: Rapidly Convrgnt Sris Rprsntations of Crtain Grn s Functions Vassilis G. Papanicolaou 1 Suggstd Running Had: wald s Mthod Rvisitd Complt Mailing Addrss of Contact Author for offic

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems

MsFEM à la Crouzeix-Raviart for highly oscillatory elliptic problems MsFEM à la Crouzix-Raviart for highly oscillatory lliptic problms Claud L Bris 1, Frédéric Lgoll 1, Alxi Lozinski 2 1 Écol National ds Ponts t Chaussés, 6 t 8 avnu Blais Pascal, 77455 Marn-La-Vallé Cdx

More information

CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY METHODS. Philippe Angot.

CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY METHODS. Philippe Angot. DISCRETE AND CONTINUOUS doi:.3934/dcdsb..7.383 DYNAMICAL SYSTEMS SERIES B Volum 7, Numbr 5, July pp. 383 45 CONVERGENCE RESULTS FOR THE VECTOR PENALTY-PROJECTION AND TWO-STEP ARTIFICIAL COMPRESSIBILITY

More information

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM

A POSTERIORI ERROR ESTIMATE FOR THE H(div) CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM A POSTERIORI ERROR ESTIMATE FOR THE Hdiv CONFORMING MIXED FINITE ELEMENT FOR THE COUPLED DARCY-STOKES SYSTEM WENBIN CHEN AND YANQIU WANG Abstract An Hdiv conforming mixd finit lmnt mtod as bn proposd for

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 47 No. 3 pp. 2132 2156 c 2009 Socity for Industrial and Applid Mathmatics RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS ZHIQIANG CAI AND SHUN

More information

Discontinuous Galerkin approximation of flows in fractured porous media

Discontinuous Galerkin approximation of flows in fractured porous media MOX-Rport No. 22/2016 Discontinuous Galrkin approximation of flows in fracturd porous mdia Antonitti, P.F.; Facciola', C.; Russo, A.;Vrani, M. MOX, Dipartimnto di Matmatica Politcnico di Milano, Via Bonardi

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis Middl East Tchnical Univrsity Dpartmnt of Mchanical Enginring ME 43 Introduction to Finit Elmnt Analysis Chaptr 3 Computr Implmntation of D FEM Ths nots ar prpard by Dr. Cünyt Srt http://www.m.mtu.du.tr/popl/cunyt

More information

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient Full Wavform Invrsion Using an Enrgy-Basd Objctiv Function with Efficint Calculation of th Gradint Itm yp Confrnc Papr Authors Choi, Yun Sok; Alkhalifah, ariq Ali Citation Choi Y, Alkhalifah (217) Full

More information

Higher-Order Discrete Calculus Methods

Higher-Order Discrete Calculus Methods Highr-Ordr Discrt Calculus Mthods J. Blair Prot V. Subramanian Ralistic Practical, Cost-ctiv, Physically Accurat Paralll, Moving Msh, Complx Gomtry, Slid 1 Contxt Discrt Calculus Mthods Finit Dirnc Mimtic

More information

The Highest Superconvergence of the Tri-linear Element for Schrödinger Operator with Singularity

The Highest Superconvergence of the Tri-linear Element for Schrödinger Operator with Singularity J Sci Comput (06) 66: 8 DOI 0.007/s095-05-0007-6 Th Highst Suprconvrgnc of th Tri-linar Elmnt for Schrödingr Oprator with Singularity Wnming H Zhimin Zhang Rn Zhao Rcivd: May 04 / Rvisd: 8 January 05 /

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14 Univrsity of Wasinton Dpartmnt of Cmistry Cmistry 453 Wintr Quartr 04 Lctur 0: Transition Stat Tory. ERD: 5.4. Transition Stat Tory Transition Stat Tory (TST) or ctivatd Complx Tory (CT) is a raction mcanism

More information