Neutrinos: status, models, string theory expectations

Size: px
Start display at page:

Download "Neutrinos: status, models, string theory expectations"

Transcription

1 Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

2 Neutrino mass Nonzero mass may be first break with standard model Enormous theoretical effort: GUT, family symmetries, bottom up Majorana masses may be favored because not forbidden by SM gauge symmetries GUT seesaw (heavy Majorana singlet). Usually ordinary hierarchy. Higgs triplets ( type II seesaw ), often assuming GUT, Left- Right relations

3 Models and spectra Weyl fermion Minimal (two-component) fermionic degree of freedom ψ L ψr c by CPT Active Neutrino (a.k.a. ordinary, doublet) in SU(2) doublet with charged lepton normal weak interactions ν L νr c by CPT Sterile Neutrino (a.k.a. singlet, right-handed) SU(2) singlet; no interactions except by mixing, Higgs, or BSM N R NL c by CPT Almost always present: Are they light? Do they mix?

4 Dirac Mass Connects distinct Weyl spinors (usually active to sterile): (m D ν L N R + h.c.) 4 components, L = 0 I = 1 2 Higgs doublet Why small? HDO? LED? Variant: couple active to antiactive, e.g., m D ν el ν c µr L e L µ conserved; I = 1 ν L h N R v = φ m D = hv

5 Majorana Mass Connects Weyl spinor with itself: 1 2 (m T ν L νr c + h.c.) (active); 1 2 (m S N L cn R + h.c.) (sterile) 2 components, L = ±2 Active: I = 1 triplet or seesaw Sterile: I = 0 singlet or bare mass Mixed Masses Majorana and Dirac mass terms ν L ν c R ν L ν L Seesaw for m S m D Ordinary-sterile mixing for m S and m D both small and comparable (or m S m d (pseudo-dirac))

6 3 ν Patterns Solar: LMA (SNO, KamLAND) 10 0 KARMEN2 LSND NOMAD NOMAD CDHSW CHORUS NOMAD CHORUS m ev 2, nonmaximal Atmospheric: m 2 Atm ev 2, near-maximal mixing Reactor: U e3 small m 2 [ev 2 ] Cl Ga Bugey K2K CHOOZ Super-K+SNO +KamLAND SNO BNL E776 SuperK PaloVerde KamLAND Super-K 10 9 ν e ν X ν µ ν τ ν e ν τ ν e ν µ tan 2 θ

7 Mixings: let ν ± 1 2 (ν µ ± ν τ ): ν 3 ν + ν 2 cos θ ν sin θ ν e ν 1 sin θ ν + cos θ ν e Hierarchical pattern Analogous to quarks, charged leptons ββ 0ν rate very small Inverted quasi-degenerate pattern ββ 0ν if Majorana SN1987A energetics (if U e3 0)? May be radiative unstable

8 Degenerate patterns Motivated by CHDM (no longer needed) Strong cancellations needed for ββ 0ν if Majorana May be radiative unstable

9 4 ν Patterns LSND: m 2 LSND > 1 ev 2 Z lineshape: 2.984(9) active ν s lighter than M Z /2 fourth sterile ν S patterns patterns Pure (ν µ ν s ) excluded for atmospheric by SuperK, MACRO Pure (ν e ν s ) excluded for solar by SNO, SuperK More general admixtures possible, but very poor global fits Additional sterile (e.g., 3 + 2) fit better but may have cosmological difficulties

10 Outstanding issues Dirac or Majorana? degenerate. (Observation?) Distinguish by ββ 0ν, at least for inverted, Scale of neutrino masses: 0.05 ev < m ν < O(0.3 ev). Probe by β decay (KATRIN), cosmology, ββ 0ν Hierarchy: ββ 0ν, matter effects in long baseline, supernova U e3, leptonic CP : reactor, long baseline LSND? New (sterile) ν s which mix with active: MiniBooNE. New interactions or nonstandard Solar effects as perturbations: need precise experiments, e.g. MINOS, future Solar Leptogenesis? Connection with top-down, especially strings

11 The minimal seesaw Active (sterile) neutrinos ν L (N R ) (3 flavors each) L = 1 2 ( νl N L) ( c m T m D m T D m S ) ( ) ν c R N R + hc m T = m T T = triplet Majorana mass matrix (Higgs triplet) m D = Dirac mass matrix (Higgs doublet) m S = m T S = singlet Majorana mass matrix (Higgs singlet)

12 Ordinary (type I) seesaw: m T = 0 and (eigenvalues) m S m D : m eff ν = m Dm 1 S mt D diagonalized by U ν, with U P MNS = U e U ν To achieve large mixings, most models assume either U e I in basis with manifest symmetries for m D,S need large mixings in U ν (requires clever m D, m S collaboration) Large U e mixings from lopsided m e in basis with m D,S diagonal (harder to achieve in SO(10) than SU(5)) SO(10) models, combined with family symmetries, often large Higgs representations (e.g., 126-plet); typically, m S GeV

13 Extended (TeV) Seesaw m ν m p+1 /m p S, p > 1 (e.g., m 100 MeV, m S 1 TeV for p = 2) ν L, N R, N R (3 flavors each) L = 1 ( νl N c L 2 N 0 m D m D L) c m T D 0 m SS m T D m T SS 0 νc R N R N R + hc or L = 1 2 ( νl N c N L L) c 0 m D 0 m T D 0 m SS 0 m T SS m S νc R N R N R + hc

14 Triplet models Introduce Higgs triplet T = (T ++ T + T 0 ) T with weak hypercharge Y = 1 Majorana masses m T generated from L ν = λ T ij L it L j if T 0 0 Old Gelmini-Roncadelli model: T 0 EW scale with spontaneous L violation Excluded by Z Majoron + scalar (equivalent to N ν = 2) Modern triplet models (type II seesaw) break L explicity by T HH couplings, giving large Majoron mass Often considered in SO(10) or LR context, with both ordinary and triplet mechanisms competing and with related parameters, but can consider independently.

15 Dirac Masses Can achieve small Dirac masses (neutrino or other) by higher dimensional operators L ν ( S M P l ) p LN c L H 2, S M P l m D ( S M P l ) p H 2 Large p S close to M P l (e.g., anomalous U(1) A ) Small p intermediate scale M P l Similar HDO may give light steriles and ordinary/sterile mixing

16 Other Models Large extra dimensions (suppressed Dirac Yukawa couplings) R-parity violation in supersymmetry TeV scale loops with new ad hoc scalars Ad hoc flavor symmetries, textures, anarchic models Anthropic considerations (string landscape)

17 Neutrino Mass in Strings Very little work from string constructions, even though may be Planck scale effect Key ingredients of most bottom up models forbidden in known constructions (heterotic or intersecting brane) (Due to string symmetries or constraints, not simplicity or elegance) Right-handed neutrinos may not be gauge singlets Large representations difficult to achieve (bifundamentals, singlets, or adjoints) GUT Yukawa relations broken String symmetries/constraints severely restrict couplings, e.g., Majorana masses, or simultaneous Dirac and Majorana masses

18 Quasi-realistic string constructions Two classes of quasi-realistic: intersecting D-brane, heterotic Intersecting D-brane (review: R. Blumenhagen, M. Cvetic, P.L., G. Shiu, hep-th/ ) Closed strings (gravitons) and open strings ending on D-branes D6-branes: fill ordinary space and 3 of the 6 extra dimensions Stringy implementation of brane world ideas

19 Gauge interactions from strings beginning/ending on stack of parallel branes (one for each group factor) Chiral matter: strings at intersection of branes, e.g., SU(N) SU(M) bifundamental (N, M) a Gauge bosons in adj. U(1) W U(1) b W + Chiral matter in (N, M)

20 Family replication from multiple intersections on compactified geometry Yukawa interactions exp( A ijk ) hierarchies Existing models: conserved L; no diagonal (Majorana) triangles However, no realistic model with large enough A for small Dirac neutrino masses (more generic geometries?) (1, 1) (1,3) (1, 1) (1,2) (1,0) (1,1) T 2 T 2 T 2 H Q 3 L U 3 SU(3) Q 2 L U2 Q 1 L SU(3) SU(2) U U(1) 1 SU(3)

21 The E 8 E 8 Heterotic String Dirac masses Can achieve small Dirac masses (neutrino or other) by higher dimensional operators L ν ( S M P l ) p LN c L H 2, S M P l m D ( S M P l ) p H 2 Recent variant: N c L is a modulus (Bouchard, Cvetič, Donagi, hepth/ )

22 Majorana masses Can one generate large effective m S from S q+1 S q+1 W ν c ij N i N j (m S ) ij c ij, M q P l consistent with D and F flatness? M q P l Can one have such terms simultaneously with Dirac couplings, consistent with flatness and other constraints? Are bottom-up model assumptions for relations to quark, charged lepton masses maintained?

23 The Z 3 Heterotic Orbifold (J. Giedt, G. Kane, P.L., B. Nelson, hepth/ ) Systematically studied large class of vacua Is minimal seesaw common? If rare, possibly guidance to model building Clues to textures, etc. Several models from each of 20 patterns; W through degree 9; huge number of D flat directions reduced greatly by F -flatness Only two patterns had Majorana mass operators S 1 S n 2 NN/M n 3 PL None had simultaneous Dirac operators S 1 S d 3 NLH u/m d 3 PL leading to m 2 > ev 2 (one apparent model ruined by offdiagonal Majorana) Feature of Z 3 orbifold? Or more general?

24 Systematic searches in other constructions important (Is seesaw generic? Rare? Alternatives?) Consider alternatives seriously Small Dirac masses from high degree terms (very common in constructions) (could also give light sterile ν s and mixing) Extended seesaws, m ν m 2+k D /M 1+k, with k 1 and low (e.g., TeV) scale M Higgs triplet models: non-trivial to embed in strings (higher level), but very predictive (e.g., inverted hierarchy with nearly bi-maximal mixing) (B. Nelson, PL, hep-ph/ )

25 Triplet models Introduce Higgs triplet T = (T ++ T + T 0 ) T with weak Y = 1 Majorana masses m T generated from L ν = λ T ij L it L j if T 0 0 General SUSY case W ν = λ T ij L it L j + } λ 1 H 1 T H 1 {{ + λ 2 H 2 T H } 2 needed to avoid Majoron +M T T T + µh 1 H 2 T, T are triplets with Y = ±1, M T GeV. Typically, T 0 λ 2 H /M T m ν ij = λt ij λ 2 v 2 2 M T Most previous models: GUT/LR symmetry, ordinary hierarchy

26 String constructions Expect λ T ij = 0 for i = j (off-diagonal) mν ii = 0 Also, need multiple Higgs doublets H 1,2 with λ 1,2 off diagonal Partial explanation: SU(2) triplet with Y 0 requires higher level embedding, e.g., of SU(2) SU(2) SU(2) (Have Z 3 constructions with some but not all of the features, B. Nelson, PL, hep-ph/ ) W λ T 1j L 1(2, 1)T (2, 2)L j (1, 2), j = 2, 3 yields m ν = 0 a b a 0 0 b 0 0 Typical string case: a = b

27 A special texture The L e L µ L τ conserving texture m ν 0 a b a 0 0 b 0 0 has been considered phenomenologically by many authors New aspects Strong string motivation Motivation for special case a = b Can perturb by HOT No reason for U e = I in this basis

28 Yields inverted hierarchy, with eigenvalues 0, ± a 2 + b 2 Diagonalization: tan θ Atm = b/a need b = a for maximal If U e = I: θ = π 4 (maximal) (experiment: π 4 θ = , 2σ) Comparable to Cabibbo angle, θ C 0.23 Perturbations on m ν cannot give both m 2 and π 4 θ 0.19 (cf θ C 0.23) without fine-tuning between terms, e.g., m 2 2 m 2 Atm π (m ν 23 + mν 11 ) θ 1 4 (mν 23 mν 11 ) 0.19

29 However, U e I with small angles (comparable to CKM) can give agreement with experiment U e 1 se 12 0 s e yields π 4 θ se 12 s e U e3 2 (se 12 )2 2 ( ), 2σ (exp : < 0.032) m ββ m 2 (cos 2 θ sin 2 θ ) ev

30 Outlook Neutrino mass likely due to large or Planck scale effects, but little work in string context Specific orbifold string constructions (heterotic, intersecting brane) not consistent with common GUT and bottom up assumptions for m ν No examples of minimal seesaw in large class of heterotic Z 3 orbifold vacua Small Dirac, extended seesaw, Higgs triplet (inverted hierarchy in string context) should be seriously considered

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Massive Neutrinos and (Heterotic) String Theory

Massive Neutrinos and (Heterotic) String Theory Massive Neutrinos and (Heterotic) String Theory Introduction Neutrino preliminaries The GUT seesaw A string primer The Z 3 heterotic orbifold (In collaboration with J. Giedt, G. Kane, B. Nelson.) Neutrino

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Overview of cosmological constraints on neutrino mass, number, and types

Overview of cosmological constraints on neutrino mass, number, and types Overview of cosmological constraints on neutrino mass, number, and types Preliminaries Big Bang Nucleosynthesis Large Scale Structure and CMB Brief Comments Supernovae Magnetic Moments Decays Ultra High

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Sterile Neutrinos from the Top Down

Sterile Neutrinos from the Top Down Sterile Neutrinos from the Top Down Active-sterile mixing The landscape Small Dirac or Majorana masses (or both) The mini-seesaw Light Sterile Neutrinos: A White Paper (K. Abazajian et al), 1204.5379 Neutrino

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

Sterile Neutrinos from the Top Down

Sterile Neutrinos from the Top Down Sterile Neutrinos from the Top Down Active-sterile mixing The landscape Small Dirac/Majorana masses The mini-seesaw Light Sterile Neutrinos: A White Paper (K. Abazajian et al), 1204.5379 Neutrino Masses

More information

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons Neutrinos Thanks to Ian Blockland and Randy Sobie for these slides spin particle with no electric charge; weak isospin partners of charged leptons observed in 193, in 1962 and in the 199s neutrino physics

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Status and Phenomenology of the Standard Model

Status and Phenomenology of the Standard Model Status and Phenomenology of the Standard Model The new standard model Experimental tests, unique features, anomalies, hints of new physics Precision tests Higgs Heavy quarks Neutrinos FCNC and EDMs Astrophysics

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

March 30, 01 Lecture 5 of 6 @ ORICL Philosophical Society Yuri Kamyshkov/ University of Tennessee email: kamyshkov@utk.edu 1. Concept/misconception of mass in Special Relativity (March,9). and n Oscillations:

More information

Neutrinos and Astrophysics

Neutrinos and Astrophysics Neutrinos and Astrophysics Astrophysical neutrinos Solar and stellar neutrinos Supernovae High energy neutrinos Cosmology Leptogenesis Big bang nucleosynthesis Large-scale structure and CMB Relic neutrinos

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Heterotic Brane World

Heterotic Brane World Heterotic Brane World Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, to appear in Physical Review D Heterotic

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

New Physics from Type IIA Quivers

New Physics from Type IIA Quivers New Physics from Type IIA Quivers The string vacuum Tadpoles and extended MSSM quivers New matter and Z s Axigluons from type IIa quivers M. Cvetič, J. Halverson, PL: Implications of String Constraints

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Frontiers in Neutrino Physics

Frontiers in Neutrino Physics Frontiers in Neutrino Physics Neutrinos as a Probe Spectra Intrinsic Properties Astrophysics/Cosmology/Geophysics Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties

More information

Updating the Status of Neutrino Physics

Updating the Status of Neutrino Physics Updating the Status of Neutrino Physics J. W. F. Valle IFIC-CSIC/U. Valencia Based on hep-ph/36 and hep-ph/3792 String Phenomenology 23, Durham p. Atmospheric zenith distribution Maltoni, Schwetz, Tortola

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Phenomenological Aspects of LARGE Volume Models

Phenomenological Aspects of LARGE Volume Models Phenomenological Aspects of LARGE Volume Models Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) 15th Irish Quantum Field Theory Meeting May(nooth) 2008 Phenomenological Aspects of LARGE Volume

More information

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross THE DREAM OF GRAND UNIFIED THEORIES AND THE HC atsis symposium, Zurich, 2013 Graham Ross The Standard Model after HC 8 u Symmetries è Dynamics Gauge bosons Chiral Matter Higgs u i d i SU(3) SU(2) U(1)

More information

Neutrino Oscillations And Sterile Neutrinos

Neutrino Oscillations And Sterile Neutrinos Neutrino Oscillations And Sterile Neutrinos Keshava Prasad Gubbi University of Bonn s6nagubb@uni-bonn.de May 27, 2016 Keshava Prasad Gubbi (Uni Bonn) Neutrino Oscillations,Sterile Neutrinos May 27, 2016

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Implications of an extra U(1) gauge symmetry

Implications of an extra U(1) gauge symmetry Implications of an extra U(1) gauge symmetry Motivations 400 LEP2 (209 GeV) Higgsstrahlung Cross Section A (string-motivated) model σ(e + e - -> ZH) (fb) 350 300 250 200 150 100 50 H 1 H 2 Standard Model

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

Family Replicated Gauge Group Models

Family Replicated Gauge Group Models Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 2, 77 74 Family Replicated Gauge Group Models C.D. FROGGATT, L.V. LAPERASHVILI, H.B. NIELSEN and Y. TAKANISHI Department of

More information

Neutrinos as Probes of new Physics

Neutrinos as Probes of new Physics Neutrinos as Probes of new Physics Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg The Birth of the Neutrino energy-momentum conservation: postulate new particle invisible, since Q=0 spin

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006 Unbound Neutrino Roadmaps MARCO LAVEDER Università di Padova e INFN NOW 2006-11 September 2006 Experimental Data : 2006 Experiment Observable (# Data) Measured/SM Chlorine Average Rate (1) [CC]=0.30 ±

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Neutrino Physics: Lecture 12

Neutrino Physics: Lecture 12 Neutrino Physics: Lecture 12 Sterile neutrinos Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Apr 5, 2010 Outline 1 Short baseline experiments and LSND anomaly 2 Adding

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D ) 21th. December 2007 Seminar Univ. of Toyama D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D75.033001) Plan to talk 1; 2; 2-1); canonical seesaw 2-2); radiative seesaw(ma model) 3; Textures

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo The Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006

More information

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay) Predictions from F-theory GUTs Arthur Hebecker (Heidelberg) (including some original work with James Unwin (Notre Dame)) Outline: Motivation (Why F-theory GUTs?) Proton decay Flavor; neutrino masses Gauge

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

Strings, Exotics, and the 750 GeV Diphoton Excess

Strings, Exotics, and the 750 GeV Diphoton Excess Strings, Exotics, and the 750 GeV Diphoton Excess Events / 0 GeV 4 ATLAS Preliminary Data Background-only fit Spin-0 Selection s = 1 TeV,. fb The ATLAS and CMS results 1 Phenomenology and theory Data -

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry V Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Flavor symmetries: Tests & alternatives

Flavor symmetries: Tests & alternatives Flavor symmetries: finding tests & alternatives Miami 2010 The Higgs as a harbinger of flavor symmetry G. Bhattacharyya, P. Leser, H. Päs, arxiv:1006.5597 Knotted strings & leptonic flavor structure T.W.

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil Neutrinos & Large Extra Dimensions Renata Zukanovich Funchal Universidade de São Paulo, Brazil What is ν? Workshop June 26, 2012 ν Masses & Mixings Majorana CP Violating phases solar atmospheric accelerator

More information

Geography on Heterotic Orbifolds

Geography on Heterotic Orbifolds Geography on Heterotic Orbifolds Hans Peter Nilles Physikalisches Institut, Universität Bonn and CERN, Geneva Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, hep-th/0504117

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005 Proton Decay and GUTs Hitoshi Murayama (Berkeley) SUSY05 @ Durham July 20, 2005 Why do we pursue proton decay? Minimal SU(5) GUT excluded by IMB Minimal SUSY SU(5) GUT excluded by SuperKamiokande Why do

More information

Lepton Masses and Dimensional Deconstruction

Lepton Masses and Dimensional Deconstruction Technische Universitt Mnchen Physik Department Institut für Theoretische Physik T30d Univ.-Prof. Dr. M. Lindner Lepton Masses and Dimensional Deconstruction Dipl.-Phys. Univ. Gerhart Seidl Vollständiger

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

Perspectives Flavor Physics beyond the Standard Model

Perspectives Flavor Physics beyond the Standard Model Perspectives Flavor Physics beyond the Standard Model Invited Talk at FLASY13 (Jul 2013) OTTO C. W. KONG Nat l Central U, Taiwan Personal :- PhD. dissertation on horizontal/family symmetry Frampton & O.K.

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Grand Unification Theories

Grand Unification Theories Grand Unification Theories After the success of the unified theroy of electroweak interactions it was natural to ask if strong interactions are united with the weak and em ones. The greater strength of

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information